Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/asmc/@/i386/pci/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/asmc/@/i386/pci/pci_cfgreg.c |
/*- * Copyright (c) 1997, Stefan Esser <se@freebsd.org> * Copyright (c) 2000, Michael Smith <msmith@freebsd.org> * Copyright (c) 2000, BSDi * Copyright (c) 2004, Scott Long <scottl@freebsd.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/i386/pci/pci_cfgreg.c 222531 2011-05-31 15:11:43Z nwhitehorn $"); #include "opt_xbox.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/lock.h> #include <sys/kernel.h> #include <sys/mutex.h> #include <sys/malloc.h> #include <sys/queue.h> #include <sys/sysctl.h> #include <dev/pci/pcivar.h> #include <dev/pci/pcireg.h> #include <machine/pci_cfgreg.h> #include <machine/pc/bios.h> #include <vm/vm.h> #include <vm/vm_param.h> #include <vm/vm_kern.h> #include <vm/vm_extern.h> #include <vm/pmap.h> #include <machine/pmap.h> #ifdef XBOX #include <machine/xbox.h> #endif #define PRVERB(a) do { \ if (bootverbose) \ printf a ; \ } while(0) #define PCIE_CACHE 8 struct pcie_cfg_elem { TAILQ_ENTRY(pcie_cfg_elem) elem; vm_offset_t vapage; vm_paddr_t papage; }; enum { CFGMECH_NONE = 0, CFGMECH_1, CFGMECH_2, CFGMECH_PCIE, }; SYSCTL_DECL(_hw_pci); static TAILQ_HEAD(pcie_cfg_list, pcie_cfg_elem) pcie_list[MAXCPU]; static uint64_t pcie_base; static int pcie_minbus, pcie_maxbus; static uint32_t pcie_badslots; static int cfgmech; static int devmax; static struct mtx pcicfg_mtx; static int mcfg_enable = 1; TUNABLE_INT("hw.pci.mcfg", &mcfg_enable); SYSCTL_INT(_hw_pci, OID_AUTO, mcfg, CTLFLAG_RDTUN, &mcfg_enable, 0, "Enable support for PCI-e memory mapped config access"); static uint32_t pci_docfgregread(int bus, int slot, int func, int reg, int bytes); static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes); static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes); #ifndef XEN static int pcireg_cfgopen(void); #endif static int pciereg_cfgread(int bus, unsigned slot, unsigned func, unsigned reg, unsigned bytes); static void pciereg_cfgwrite(int bus, unsigned slot, unsigned func, unsigned reg, int data, unsigned bytes); /* * Some BIOS writers seem to want to ignore the spec and put * 0 in the intline rather than 255 to indicate none. Some use * numbers in the range 128-254 to indicate something strange and * apparently undocumented anywhere. Assume these are completely bogus * and map them to 255, which means "none". */ static __inline int pci_i386_map_intline(int line) { if (line == 0 || line >= 128) return (PCI_INVALID_IRQ); return (line); } #ifndef XEN static u_int16_t pcibios_get_version(void) { struct bios_regs args; if (PCIbios.ventry == 0) { PRVERB(("pcibios: No call entry point\n")); return (0); } args.eax = PCIBIOS_BIOS_PRESENT; if (bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL))) { PRVERB(("pcibios: BIOS_PRESENT call failed\n")); return (0); } if (args.edx != 0x20494350) { PRVERB(("pcibios: BIOS_PRESENT didn't return 'PCI ' in edx\n")); return (0); } return (args.ebx & 0xffff); } #endif /* * Initialise access to PCI configuration space */ int pci_cfgregopen(void) { #ifdef XEN return (0); #else static int opened = 0; uint64_t pciebar; u_int16_t vid, did; u_int16_t v; if (opened) return (1); if (cfgmech == CFGMECH_NONE && pcireg_cfgopen() == 0) return (0); v = pcibios_get_version(); if (v > 0) PRVERB(("pcibios: BIOS version %x.%02x\n", (v & 0xff00) >> 8, v & 0xff)); mtx_init(&pcicfg_mtx, "pcicfg", NULL, MTX_SPIN); opened = 1; /* $PIR requires PCI BIOS 2.10 or greater. */ if (v >= 0x0210) pci_pir_open(); if (cfgmech == CFGMECH_PCIE) return (1); /* * Grope around in the PCI config space to see if this is a * chipset that is capable of doing memory-mapped config cycles. * This also implies that it can do PCIe extended config cycles. */ /* Check for supported chipsets */ vid = pci_cfgregread(0, 0, 0, PCIR_VENDOR, 2); did = pci_cfgregread(0, 0, 0, PCIR_DEVICE, 2); switch (vid) { case 0x8086: switch (did) { case 0x3590: case 0x3592: /* Intel 7520 or 7320 */ pciebar = pci_cfgregread(0, 0, 0, 0xce, 2) << 16; pcie_cfgregopen(pciebar, 0, 255); break; case 0x2580: case 0x2584: case 0x2590: /* Intel 915, 925, or 915GM */ pciebar = pci_cfgregread(0, 0, 0, 0x48, 4); pcie_cfgregopen(pciebar, 0, 255); break; } } return(1); #endif } static uint32_t pci_docfgregread(int bus, int slot, int func, int reg, int bytes) { if (cfgmech == CFGMECH_PCIE && (bus >= pcie_minbus && bus <= pcie_maxbus) && (bus != 0 || !(1 << slot & pcie_badslots))) return (pciereg_cfgread(bus, slot, func, reg, bytes)); else return (pcireg_cfgread(bus, slot, func, reg, bytes)); } /* * Read configuration space register */ u_int32_t pci_cfgregread(int bus, int slot, int func, int reg, int bytes) { uint32_t line; /* * Some BIOS writers seem to want to ignore the spec and put * 0 in the intline rather than 255 to indicate none. The rest of * the code uses 255 as an invalid IRQ. */ if (reg == PCIR_INTLINE && bytes == 1) { line = pci_docfgregread(bus, slot, func, PCIR_INTLINE, 1); return (pci_i386_map_intline(line)); } return (pci_docfgregread(bus, slot, func, reg, bytes)); } /* * Write configuration space register */ void pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes) { if (cfgmech == CFGMECH_PCIE && (bus >= pcie_minbus && bus <= pcie_maxbus) && (bus != 0 || !(1 << slot & pcie_badslots))) pciereg_cfgwrite(bus, slot, func, reg, data, bytes); else pcireg_cfgwrite(bus, slot, func, reg, data, bytes); } /* * Configuration space access using direct register operations */ /* enable configuration space accesses and return data port address */ static int pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes) { int dataport = 0; #ifdef XBOX if (arch_i386_is_xbox) { /* * The Xbox MCPX chipset is a derivative of the nForce 1 * chipset. It almost has the same bus layout; some devices * cannot be used, because they have been removed. */ /* * Devices 00:00.1 and 00:00.2 used to be memory controllers on * the nForce chipset, but on the Xbox, using them will lockup * the chipset. */ if (bus == 0 && slot == 0 && (func == 1 || func == 2)) return dataport; /* * Bus 1 only contains a VGA controller at 01:00.0. When you try * to probe beyond that device, you only get garbage, which * could cause lockups. */ if (bus == 1 && (slot != 0 || func != 0)) return dataport; /* * Bus 2 used to contain the AGP controller, but the Xbox MCPX * doesn't have one. Probing it can cause lockups. */ if (bus >= 2) return dataport; } #endif if (bus <= PCI_BUSMAX && slot < devmax && func <= PCI_FUNCMAX && (unsigned)reg <= PCI_REGMAX && bytes != 3 && (unsigned)bytes <= 4 && (reg & (bytes - 1)) == 0) { switch (cfgmech) { case CFGMECH_PCIE: case CFGMECH_1: outl(CONF1_ADDR_PORT, (1 << 31) | (bus << 16) | (slot << 11) | (func << 8) | (reg & ~0x03)); dataport = CONF1_DATA_PORT + (reg & 0x03); break; case CFGMECH_2: outb(CONF2_ENABLE_PORT, 0xf0 | (func << 1)); outb(CONF2_FORWARD_PORT, bus); dataport = 0xc000 | (slot << 8) | reg; break; } } return (dataport); } /* disable configuration space accesses */ static void pci_cfgdisable(void) { switch (cfgmech) { case CFGMECH_PCIE: case CFGMECH_1: /* * Do nothing for the config mechanism 1 case. * Writing a 0 to the address port can apparently * confuse some bridges and cause spurious * access failures. */ break; case CFGMECH_2: outb(CONF2_ENABLE_PORT, 0); break; } } static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes) { int data = -1; int port; mtx_lock_spin(&pcicfg_mtx); port = pci_cfgenable(bus, slot, func, reg, bytes); if (port != 0) { switch (bytes) { case 1: data = inb(port); break; case 2: data = inw(port); break; case 4: data = inl(port); break; } pci_cfgdisable(); } mtx_unlock_spin(&pcicfg_mtx); return (data); } static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes) { int port; mtx_lock_spin(&pcicfg_mtx); port = pci_cfgenable(bus, slot, func, reg, bytes); if (port != 0) { switch (bytes) { case 1: outb(port, data); break; case 2: outw(port, data); break; case 4: outl(port, data); break; } pci_cfgdisable(); } mtx_unlock_spin(&pcicfg_mtx); } #ifndef XEN /* check whether the configuration mechanism has been correctly identified */ static int pci_cfgcheck(int maxdev) { uint32_t id, class; uint8_t header; uint8_t device; int port; if (bootverbose) printf("pci_cfgcheck:\tdevice "); for (device = 0; device < maxdev; device++) { if (bootverbose) printf("%d ", device); port = pci_cfgenable(0, device, 0, 0, 4); id = inl(port); if (id == 0 || id == 0xffffffff) continue; port = pci_cfgenable(0, device, 0, 8, 4); class = inl(port) >> 8; if (bootverbose) printf("[class=%06x] ", class); if (class == 0 || (class & 0xf870ff) != 0) continue; port = pci_cfgenable(0, device, 0, 14, 1); header = inb(port); if (bootverbose) printf("[hdr=%02x] ", header); if ((header & 0x7e) != 0) continue; if (bootverbose) printf("is there (id=%08x)\n", id); pci_cfgdisable(); return (1); } if (bootverbose) printf("-- nothing found\n"); pci_cfgdisable(); return (0); } static int pcireg_cfgopen(void) { uint32_t mode1res, oldval1; uint8_t mode2res, oldval2; /* Check for type #1 first. */ oldval1 = inl(CONF1_ADDR_PORT); if (bootverbose) { printf("pci_open(1):\tmode 1 addr port (0x0cf8) is 0x%08x\n", oldval1); } cfgmech = CFGMECH_1; devmax = 32; outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK); DELAY(1); mode1res = inl(CONF1_ADDR_PORT); outl(CONF1_ADDR_PORT, oldval1); if (bootverbose) printf("pci_open(1a):\tmode1res=0x%08x (0x%08lx)\n", mode1res, CONF1_ENABLE_CHK); if (mode1res) { if (pci_cfgcheck(32)) return (cfgmech); } outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK1); mode1res = inl(CONF1_ADDR_PORT); outl(CONF1_ADDR_PORT, oldval1); if (bootverbose) printf("pci_open(1b):\tmode1res=0x%08x (0x%08lx)\n", mode1res, CONF1_ENABLE_CHK1); if ((mode1res & CONF1_ENABLE_MSK1) == CONF1_ENABLE_RES1) { if (pci_cfgcheck(32)) return (cfgmech); } /* Type #1 didn't work, so try type #2. */ oldval2 = inb(CONF2_ENABLE_PORT); if (bootverbose) { printf("pci_open(2):\tmode 2 enable port (0x0cf8) is 0x%02x\n", oldval2); } if ((oldval2 & 0xf0) == 0) { cfgmech = CFGMECH_2; devmax = 16; outb(CONF2_ENABLE_PORT, CONF2_ENABLE_CHK); mode2res = inb(CONF2_ENABLE_PORT); outb(CONF2_ENABLE_PORT, oldval2); if (bootverbose) printf("pci_open(2a):\tmode2res=0x%02x (0x%02x)\n", mode2res, CONF2_ENABLE_CHK); if (mode2res == CONF2_ENABLE_RES) { if (bootverbose) printf("pci_open(2a):\tnow trying mechanism 2\n"); if (pci_cfgcheck(16)) return (cfgmech); } } /* Nothing worked, so punt. */ cfgmech = CFGMECH_NONE; devmax = 0; return (cfgmech); } int pcie_cfgregopen(uint64_t base, uint8_t minbus, uint8_t maxbus) { struct pcie_cfg_list *pcielist; struct pcie_cfg_elem *pcie_array, *elem; #ifdef SMP struct pcpu *pc; #endif vm_offset_t va; uint32_t val1, val2; int i, slot; if (!mcfg_enable) return (0); if (minbus != 0) return (0); #ifndef PAE if (base >= 0x100000000) { if (bootverbose) printf( "PCI: Memory Mapped PCI configuration area base 0x%jx too high\n", (uintmax_t)base); return (0); } #endif if (bootverbose) printf("PCIe: Memory Mapped configuration base @ 0x%jx\n", (uintmax_t)base); #ifdef SMP STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) #endif { pcie_array = malloc(sizeof(struct pcie_cfg_elem) * PCIE_CACHE, M_DEVBUF, M_NOWAIT); if (pcie_array == NULL) return (0); va = kmem_alloc_nofault(kernel_map, PCIE_CACHE * PAGE_SIZE); if (va == 0) { free(pcie_array, M_DEVBUF); return (0); } #ifdef SMP pcielist = &pcie_list[pc->pc_cpuid]; #else pcielist = &pcie_list[0]; #endif TAILQ_INIT(pcielist); for (i = 0; i < PCIE_CACHE; i++) { elem = &pcie_array[i]; elem->vapage = va + (i * PAGE_SIZE); elem->papage = 0; TAILQ_INSERT_HEAD(pcielist, elem, elem); } } pcie_base = base; pcie_minbus = minbus; pcie_maxbus = maxbus; cfgmech = CFGMECH_PCIE; devmax = 32; /* * On some AMD systems, some of the devices on bus 0 are * inaccessible using memory-mapped PCI config access. Walk * bus 0 looking for such devices. For these devices, we will * fall back to using type 1 config access instead. */ if (pci_cfgregopen() != 0) { for (slot = 0; slot <= PCI_SLOTMAX; slot++) { val1 = pcireg_cfgread(0, slot, 0, 0, 4); if (val1 == 0xffffffff) continue; val2 = pciereg_cfgread(0, slot, 0, 0, 4); if (val2 != val1) pcie_badslots |= (1 << slot); } } return (1); } #endif /* !XEN */ #define PCIE_PADDR(bar, reg, bus, slot, func) \ ((bar) | \ (((bus) & 0xff) << 20) | \ (((slot) & 0x1f) << 15) | \ (((func) & 0x7) << 12) | \ ((reg) & 0xfff)) /* * Find an element in the cache that matches the physical page desired, or * create a new mapping from the least recently used element. * A very simple LRU algorithm is used here, does it need to be more * efficient? */ static __inline struct pcie_cfg_elem * pciereg_findelem(vm_paddr_t papage) { struct pcie_cfg_list *pcielist; struct pcie_cfg_elem *elem; pcielist = &pcie_list[PCPU_GET(cpuid)]; TAILQ_FOREACH(elem, pcielist, elem) { if (elem->papage == papage) break; } if (elem == NULL) { elem = TAILQ_LAST(pcielist, pcie_cfg_list); if (elem->papage != 0) { pmap_kremove(elem->vapage); invlpg(elem->vapage); } pmap_kenter(elem->vapage, papage); elem->papage = papage; } if (elem != TAILQ_FIRST(pcielist)) { TAILQ_REMOVE(pcielist, elem, elem); TAILQ_INSERT_HEAD(pcielist, elem, elem); } return (elem); } static int pciereg_cfgread(int bus, unsigned slot, unsigned func, unsigned reg, unsigned bytes) { struct pcie_cfg_elem *elem; volatile vm_offset_t va; vm_paddr_t pa, papage; int data = -1; if (bus < pcie_minbus || bus > pcie_maxbus || slot > PCI_SLOTMAX || func > PCI_FUNCMAX || reg > PCIE_REGMAX) return (-1); critical_enter(); pa = PCIE_PADDR(pcie_base, reg, bus, slot, func); papage = pa & ~PAGE_MASK; elem = pciereg_findelem(papage); va = elem->vapage | (pa & PAGE_MASK); switch (bytes) { case 4: data = *(volatile uint32_t *)(va); break; case 2: data = *(volatile uint16_t *)(va); break; case 1: data = *(volatile uint8_t *)(va); break; } critical_exit(); return (data); } static void pciereg_cfgwrite(int bus, unsigned slot, unsigned func, unsigned reg, int data, unsigned bytes) { struct pcie_cfg_elem *elem; volatile vm_offset_t va; vm_paddr_t pa, papage; if (bus < pcie_minbus || bus > pcie_maxbus || slot > PCI_SLOTMAX || func > PCI_FUNCMAX || reg > PCIE_REGMAX) return; critical_enter(); pa = PCIE_PADDR(pcie_base, reg, bus, slot, func); papage = pa & ~PAGE_MASK; elem = pciereg_findelem(papage); va = elem->vapage | (pa & PAGE_MASK); switch (bytes) { case 4: *(volatile uint32_t *)(va) = data; break; case 2: *(volatile uint16_t *)(va) = data; break; case 1: *(volatile uint8_t *)(va) = data; break; } critical_exit(); }