config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atacore/@/dev/ie/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atacore/@/dev/ie/if_ie.c

/*-
 * Copyright (c) 1992, 1993, University of Vermont and State
 *  Agricultural College.
 * Copyright (c) 1992, 1993, Garrett A. Wollman.
 *
 * Portions:
 * Copyright (c) 1990, 1991, William F. Jolitz
 * Copyright (c) 1990, The Regents of the University of California
 *
 * 3Com 3C507 support:
 * Copyright (c) 1993, 1994, Charles M. Hannum
 *
 * EtherExpress 16 support:
 * Copyright (c) 1993, 1994, 1995, Rodney W. Grimes
 * Copyright (c) 1997, Aaron C. Smith
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	Vermont and State Agricultural College and Garrett A. Wollman, by
 *	William F. Jolitz, by the University of California, Berkeley,
 *	Lawrence Berkeley Laboratory, and their contributors, by
 *	Charles M. Hannum, by Rodney W. Grimes, and by Aaron C. Smith.
 * 4. Neither the names of the Universities nor the names of the authors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE UNIVERSITY OR AUTHORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * MAINTAINER: Matthew N. Dodd <winter@jurai.net>
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/dev/ie/if_ie.c 207554 2010-05-03 07:32:50Z sobomax $");

/*
 * Intel 82586 Ethernet chip
 * Register, bit, and structure definitions.
 *
 * Written by GAW with reference to the Clarkson Packet Driver code for this
 * chip written by Russ Nelson and others.
 *
 * Intel EtherExpress 16 support from if_ix.c, written by Rodney W. Grimes.
 */

/*
 * The i82586 is a very versatile chip, found in many implementations.
 * Programming this chip is mostly the same, but certain details differ
 * from card to card.  This driver is written so that different cards
 * can be automatically detected at run-time.
 */

/*
 * Mode of operation:
 *
 * We run the 82586 in a standard Ethernet mode.  We keep NFRAMES   
 * received frame descriptors around for the receiver to use, and   
 * NRXBUFS associated receive buffer descriptors, both in a circular
 * list.  Whenever a frame is received, we rotate both lists as
 * necessary.  (The 586 treats both lists as a simple queue.)  We also
 * keep a transmit command around so that packets can be sent off
 * quickly.
 *
 * We configure the adapter in AL-LOC = 1 mode, which means that the
 * Ethernet/802.3 MAC header is placed at the beginning of the receive
 * buffer rather than being split off into various fields in the RFD. 
 * This also means that we must include this header in the transmit 
 * buffer as well.
 *
 * By convention, all transmit commands, and only transmit commands,
 * shall have the I (IE_CMD_INTR) bit set in the command.  This way, 
 * when an interrupt arrives at ieintr(), it is immediately possible
 * to tell what precisely caused it.  ANY OTHER command-sending routines
 * should run at splimp(), and should post an acknowledgement to every
 * interrupt they generate.
 *
 * The 82586 has a 24-bit address space internally, and the adaptor's
 * memory is located at the top of this region.  However, the value
 * we are given in configuration is normally the *bottom* of the adaptor
 * RAM.  So, we must go through a few gyrations to come up with a
 * kernel virtual address which represents the actual beginning of the
 * 586 address space.  First, we autosize the RAM by running through
 * several possible sizes and trying to initialize the adapter under
 * the assumption that the selected size is correct.  Then, knowing
 * the correct RAM size, we set up our pointers in the softc `iomem'
 * represents the computed base of the 586 address space.  `iomembot'
 * represents the actual configured base of adapter RAM.  Finally,
 * `iosize' represents the calculated size of 586 RAM.  Then, when
 * laying out commands, we use the interval [iomembot, iomembot +
 * iosize); to make 24-pointers, we subtract iomem, and to make
 * 16-pointers, we subtract iomem and and with 0xffff.
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/syslog.h>

#include <sys/module.h>
#include <sys/bus.h>

#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>

#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_dl.h>

#include <netinet/in.h>
#include <netinet/if_ether.h>

#include <dev/ic/i82586.h>
#include <dev/ie/if_ievar.h>
#include <dev/ie/if_iereg.h>
#include <dev/ie/if_ie507.h>
#include <dev/ie/if_iee16.h>
#include <i386/isa/elink.h>

#include <net/bpf.h>

#ifdef DEBUG
#define IED_RINT	0x01
#define IED_TINT	0x02
#define IED_RNR		0x04
#define IED_CNA		0x08
#define IED_READFRAME	0x10
static int	ie_debug = IED_RNR;

#endif

#define IE_BUF_LEN	ETHER_MAX_LEN	/* length of transmit buffer */

/* Forward declaration */
struct ie_softc;

static void	ieinit			(void *);
static void	ieinit_locked		(struct ie_softc *);
static void	ie_stop			(struct ie_softc *);
static int	ieioctl			(struct ifnet *, u_long, caddr_t);
static void	iestart			(struct ifnet *);
static void	iestart_locked		(struct ifnet *);

static __inline void
		ee16_interrupt_enable	(struct ie_softc *);
static void	ee16_eeprom_outbits	(struct ie_softc *, int, int);
static void	ee16_eeprom_clock	(struct ie_softc *, int);
static u_short	ee16_read_eeprom	(struct ie_softc *, int);
static int	ee16_eeprom_inbits	(struct ie_softc *);

static __inline void
		ie_ack			(struct ie_softc *, u_int);
static void	iereset			(struct ie_softc *);
static void	ie_readframe		(struct ie_softc *, int);
static void	ie_drop_packet_buffer	(struct ie_softc *);
static void	find_ie_mem_size	(struct ie_softc *);
static int	command_and_wait	(struct ie_softc *,
					 int, void volatile *, int);
static void	run_tdr			(struct ie_softc *,
					 volatile struct ie_tdr_cmd *);
static int	ierint			(struct ie_softc *);
static int	ietint			(struct ie_softc *);
static int	iernr			(struct ie_softc *);
static void	start_receiver		(struct ie_softc *);
static __inline int
		ieget			(struct ie_softc *, struct mbuf **);
static v_caddr_t setup_rfa		(struct ie_softc *, v_caddr_t);
static int	mc_setup		(struct ie_softc *);
static void	ie_mc_reset		(struct ie_softc *);

#ifdef DEBUG
static void	print_rbd		(volatile struct ie_recv_buf_desc * rbd);
static int	in_ierint = 0;
static int	in_ietint = 0;
#endif

static const char *ie_hardware_names[] = {
	"None",
	"StarLAN 10",
	"EN100",
	"StarLAN Fiber",
	"3C507",
	"NI5210",
	"EtherExpress 16",
	"Unknown"
};

/*
 * sizeof(iscp) == 1+1+2+4 == 8
 * sizeof(scb) == 2+2+2+2+2+2+2+2 == 16
 * NFRAMES * sizeof(rfd) == NFRAMES*(2+2+2+2+6+6+2+2) == NFRAMES*24 == 384
 * sizeof(xmit_cmd) == 2+2+2+2+6+2 == 18
 * sizeof(transmit buffer) == 1512
 * sizeof(transmit buffer desc) == 8
 * -----
 * 1946
 * 
 * NRXBUFS * sizeof(rbd) == NRXBUFS*(2+2+4+2+2) == NRXBUFS*12
 * NRXBUFS * IE_RBUF_SIZE == NRXBUFS*256
 * 
 * NRXBUFS should be (16384 - 1946) / (256 + 12) == 14438 / 268 == 53
 * 
 * With NRXBUFS == 48, this leaves us 1574 bytes for another command or
 * more buffers.  Another transmit command would be 18+8+1512 == 1538
 * ---just barely fits!
 * 
 * Obviously all these would have to be reduced for smaller memory sizes.
 * With a larger memory, it would be possible to roughly double the number
 * of both transmit and receive buffers.
 */

#define	NFRAMES		4	/* number of receive frames */
#define	NRXBUFS		24	/* number of buffers to allocate */
#define	IE_RBUF_SIZE	256	/* size of each buffer, MUST BE POWER OF TWO */
#define	NTXBUFS		1	/* number of transmit commands */
#define	IE_TBUF_SIZE	ETHER_MAX_LEN	/* size of transmit buffer */

#define MK_24(base, ptr) ((caddr_t)((uintptr_t)ptr - (uintptr_t)base))
#define MK_16(base, ptr) ((u_short)(uintptr_t)MK_24(base, ptr))

void
ee16_shutdown(struct ie_softc *sc)
{

	ee16_reset_586(sc);
	outb(PORT(sc) + IEE16_ECTRL, IEE16_RESET_ASIC);
	outb(PORT(sc) + IEE16_ECTRL, 0);
}

/*
 * Taken almost exactly from Bill's if_is.c, then modified beyond recognition.
 */
int
ie_attach(device_t dev)
{
	struct ie_softc *       sc;
	struct ifnet *          ifp;
	size_t                  allocsize;
	int                     error, factor;

	sc = device_get_softc(dev);
	ifp = sc->ifp = if_alloc(IFT_ETHER);
	if (ifp == NULL) {
		device_printf(sc->dev, "can not if_alloc()\n");
		return (ENOSPC);
	}

	sc->dev = dev;
	mtx_init(&sc->lock, device_get_nameunit(dev), MTX_NETWORK_LOCK,
	    MTX_DEF);

	/*
	 * based on the amount of memory we have, allocate our tx and rx
	 * resources.
	 */
	factor = rman_get_size(sc->mem_res) / 8192;
	sc->nframes = factor * NFRAMES;
	sc->nrxbufs = factor * NRXBUFS;
	sc->ntxbufs = factor * NTXBUFS;

	/*
	 * Since all of these guys are arrays of pointers, allocate as one
	 * big chunk and dole out accordingly.
	 */
	allocsize = sizeof(void *) * (sc->nframes
				      + (sc->nrxbufs * 2)
				      + (sc->ntxbufs * 3));
	sc->rframes = (volatile struct ie_recv_frame_desc **) malloc(allocsize,
								     M_DEVBUF,
								   M_NOWAIT);
	if (sc->rframes == NULL) {
		mtx_destroy(&sc->lock);
		return (ENXIO);
	}
	sc->rbuffs =
	    (volatile struct ie_recv_buf_desc **)&sc->rframes[sc->nframes];
	sc->cbuffs = (volatile u_char **)&sc->rbuffs[sc->nrxbufs];
	sc->xmit_cmds =
	    (volatile struct ie_xmit_cmd **)&sc->cbuffs[sc->nrxbufs];
	sc->xmit_buffs =
	    (volatile struct ie_xmit_buf **)&sc->xmit_cmds[sc->ntxbufs];
	sc->xmit_cbuffs = (volatile u_char **)&sc->xmit_buffs[sc->ntxbufs];

	if (bootverbose)
		device_printf(sc->dev, "hardware type %s, revision %d\n",
			ie_hardware_names[sc->hard_type], sc->hard_vers + 1);

	ifp->if_softc = sc;
	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
	ifp->if_mtu = ETHERMTU;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_start = iestart;
	ifp->if_ioctl = ieioctl;
	ifp->if_init = ieinit;
	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);

	ether_ifattach(ifp, sc->enaddr);

	error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE,
				NULL, ie_intr, sc, &sc->irq_ih);
	if (error) {
		device_printf(dev, "Unable to register interrupt handler\n"); 
		mtx_destroy(&sc->lock);
		return (error);
	}

	return (0);
}

static __inline void
ie_ack(struct ie_softc *sc, u_int mask)
{

	sc->scb->ie_command = sc->scb->ie_status & mask;
	(*sc->ie_chan_attn) (sc);
}

/*
 * What to do upon receipt of an interrupt.
 */
void
ie_intr(void *xsc)
{
	struct ie_softc *sc = (struct ie_softc *)xsc;
	u_short status;

	IE_LOCK(sc);

	/* Clear the interrupt latch on the 3C507. */
	if (sc->hard_type == IE_3C507
	 && (inb(PORT(sc) + IE507_CTRL) & EL_CTRL_INTL))
		outb(PORT(sc) + IE507_ICTRL, 1);

	/* disable interrupts on the EE16. */
	if (sc->hard_type == IE_EE16)
		outb(PORT(sc) + IEE16_IRQ, sc->irq_encoded);

	status = sc->scb->ie_status;

loop:

	/* Don't ack interrupts which we didn't receive */
	ie_ack(sc, IE_ST_WHENCE & status);

	if (status & (IE_ST_RECV | IE_ST_RNR)) {
#ifdef DEBUG
		in_ierint++;
		if (ie_debug & IED_RINT)
			if_printf(sc->ifp, "rint\n");
#endif
		ierint(sc);
#ifdef DEBUG
		in_ierint--;
#endif
	}
	if (status & IE_ST_DONE) {
#ifdef DEBUG
		in_ietint++;
		if (ie_debug & IED_TINT)
			if_printf(sc->ifp, "tint\n");
#endif
		ietint(sc);
#ifdef DEBUG
		in_ietint--;
#endif
	}
	if (status & IE_ST_RNR) {
#ifdef DEBUG
		if (ie_debug & IED_RNR)
			if_printf(sc->ifp, "rnr\n");
#endif
		iernr(sc);
	}
#ifdef DEBUG
	if ((status & IE_ST_ALLDONE) && (ie_debug & IED_CNA))
		if_printf(sc->ifp, "cna\n");
#endif

	if ((status = sc->scb->ie_status) & IE_ST_WHENCE)
		goto loop;

	/* Clear the interrupt latch on the 3C507. */
	if (sc->hard_type == IE_3C507)
		outb(PORT(sc) + IE507_ICTRL, 1);

	/* enable interrupts on the EE16. */
	if (sc->hard_type == IE_EE16)
		outb(PORT(sc) + IEE16_IRQ, sc->irq_encoded | IEE16_IRQ_ENABLE);
	IE_UNLOCK(sc);
}

/*
 * Process a received-frame interrupt.
 */
static int
ierint(struct ie_softc *sc)
{
	int	i, status;
	static int timesthru = 1024;

	i = sc->rfhead;
	while (1) {
		status = sc->rframes[i]->ie_fd_status;

		if ((status & IE_FD_COMPLETE) && (status & IE_FD_OK)) {
			sc->ifp->if_ipackets++;
			if (!--timesthru) {
				sc->ifp->if_ierrors +=
				    sc->scb->ie_err_crc +
				    sc->scb->ie_err_align +
				    sc->scb->ie_err_resource +
				    sc->scb->ie_err_overrun;
				sc->scb->ie_err_crc = 0;
				sc->scb->ie_err_align = 0;
				sc->scb->ie_err_resource = 0;
				sc->scb->ie_err_overrun = 0;
				timesthru = 1024;
			}
			ie_readframe(sc, i);
		} else {
			if (status & IE_FD_RNR) {
				if (!(sc->scb->ie_status & IE_RU_READY)) {
					sc->rframes[0]->ie_fd_next =
					    MK_16(MEM(sc), sc->rbuffs[0]);
					sc->scb->ie_recv_list =
					    MK_16(MEM(sc), sc->rframes[0]);
					command_and_wait(sc, IE_RU_START, 0, 0);
				}
			}
			break;
		}
		i = (i + 1) % sc->nframes;
	}
	return (0);
}

/*
 * Process a command-complete interrupt.  These are only generated by
 * the transmission of frames.	This routine is deceptively simple, since
 * most of the real work is done by iestart().
 */
static int
ietint(struct ie_softc *sc)
{
	struct ifnet *ifp = sc->ifp;
	int	status;
	int	i;

	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;

	for (i = 0; i < sc->xmit_count; i++) {
		status = sc->xmit_cmds[i]->ie_xmit_status;

		if (status & IE_XS_LATECOLL) {
			if_printf(ifp, "late collision\n");
			ifp->if_collisions++;
			ifp->if_oerrors++;
		} else if (status & IE_XS_NOCARRIER) {
			if_printf(ifp, "no carrier\n");
			ifp->if_oerrors++;
		} else if (status & IE_XS_LOSTCTS) {
			if_printf(ifp, "lost CTS\n");
			ifp->if_oerrors++;
		} else if (status & IE_XS_UNDERRUN) {
			if_printf(ifp, "DMA underrun\n");
			ifp->if_oerrors++;
		} else if (status & IE_XS_EXCMAX) {
			if_printf(ifp, "too many collisions\n");
			ifp->if_collisions += 16;
			ifp->if_oerrors++;
		} else {
			ifp->if_opackets++;
			ifp->if_collisions += status & IE_XS_MAXCOLL;
		}
	}
	sc->xmit_count = 0;

	/*
	 * If multicast addresses were added or deleted while we were
	 * transmitting, ie_mc_reset() set the want_mcsetup flag indicating
	 * that we should do it.
	 */
	if (sc->want_mcsetup) {
		mc_setup(sc);
		sc->want_mcsetup = 0;
	}
	/* Wish I knew why this seems to be necessary... */
	sc->xmit_cmds[0]->ie_xmit_status |= IE_STAT_COMPL;

	iestart_locked(ifp);
	return (0);		/* shouldn't be necessary */
}

/*
 * Process a receiver-not-ready interrupt.  I believe that we get these
 * when there aren't enough buffers to go around.  For now (FIXME), we
 * just restart the receiver, and hope everything's ok.
 */
static int
iernr(struct ie_softc *sc)
{
#ifdef doesnt_work
	setup_rfa(sc, (v_caddr_t) sc->rframes[0]);

	sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
	command_and_wait(sc, IE_RU_START, 0, 0);
#else
	/* This doesn't work either, but it doesn't hang either. */
	command_and_wait(sc, IE_RU_DISABLE, 0, 0);	/* just in case */
	setup_rfa(sc, (v_caddr_t) sc->rframes[0]);	/* ignore cast-qual */

	sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
	command_and_wait(sc, IE_RU_START, 0, 0);	/* was ENABLE */

#endif
	ie_ack(sc, IE_ST_WHENCE);

	sc->ifp->if_ierrors++;
	return (0);
}

/*
 * Compare two Ether/802 addresses for equality, inlined and
 * unrolled for speed.	I'd love to have an inline assembler
 * version of this...
 */
static __inline int
ether_equal(u_char * one, u_char * two)
{
	if (one[0] != two[0])
		return (0);
	if (one[1] != two[1])
		return (0);
	if (one[2] != two[2])
		return (0);
	if (one[3] != two[3])
		return (0);
	if (one[4] != two[4])
		return (0);
	if (one[5] != two[5])
		return (0);
	return 1;
}

/*
 * Determine quickly whether we should bother reading in this packet.
 * This depends on whether BPF and/or bridging is enabled, whether we
 * are receiving multicast address, and whether promiscuous mode is enabled.
 * We assume that if IFF_PROMISC is set, then *somebody* wants to see
 * all incoming packets.
 */
static __inline int
check_eh(struct ie_softc *sc, struct ether_header *eh)
{
	/* Optimize the common case: normal operation. We've received
	   either a unicast with our dest or a multicast packet. */
	if (sc->promisc == 0) {
		int i;

		/* If not multicast, it's definitely for us */
		if ((eh->ether_dhost[0] & 1) == 0)
			return (1);

		/* Accept broadcasts (loose but fast check) */
		if (eh->ether_dhost[0] == 0xff)
			return (1);

		/* Compare against our multicast addresses */
		for (i = 0; i < sc->mcast_count; i++) {
			if (ether_equal(eh->ether_dhost,
			    (u_char *)&sc->mcast_addrs[i]))
				return (1);
		}
		return (0);
	}

	/* Always accept packets when in promiscuous mode */
	if ((sc->promisc & IFF_PROMISC) != 0)
		return (1);

	/* Always accept packets directed at us */
	if (ether_equal(eh->ether_dhost, IF_LLADDR(sc->ifp)))
		return (1);

	/* Must have IFF_ALLMULTI but not IFF_PROMISC set. The chip is
	   actually in promiscuous mode, so discard unicast packets. */
	return((eh->ether_dhost[0] & 1) != 0);
}

/*
 * We want to isolate the bits that have meaning...  This assumes that
 * IE_RBUF_SIZE is an even power of two.  If somehow the act_len exceeds
 * the size of the buffer, then we are screwed anyway.
 */
static __inline int
ie_buflen(struct ie_softc *sc, int head)
{
	return (sc->rbuffs[head]->ie_rbd_actual
		& (IE_RBUF_SIZE | (IE_RBUF_SIZE - 1)));
}

static __inline int
ie_packet_len(struct ie_softc *sc)
{
	int	i;
	int	head = sc->rbhead;
	int	acc = 0;

	do {
		if (!(sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
#ifdef DEBUG
			print_rbd(sc->rbuffs[sc->rbhead]);
#endif
			log(LOG_ERR,
			    "%s: receive descriptors out of sync at %d\n",
			    sc->ifp->if_xname, sc->rbhead);
			iereset(sc);
			return (-1);
		}
		i = sc->rbuffs[head]->ie_rbd_actual & IE_RBD_LAST;

		acc += ie_buflen(sc, head);
		head = (head + 1) % sc->nrxbufs;
	} while (!i);

	return (acc);
}

/*
 * Read data off the interface, and turn it into an mbuf chain.
 *
 * This code is DRAMATICALLY different from the previous version; this
 * version tries to allocate the entire mbuf chain up front, given the
 * length of the data available.  This enables us to allocate mbuf
 * clusters in many situations where before we would have had a long
 * chain of partially-full mbufs.  This should help to speed up the
 * operation considerably.  (Provided that it works, of course.)
 */
static __inline int
ieget(struct ie_softc *sc, struct mbuf **mp)
{
	struct	ether_header eh;
	struct	mbuf *m, *top, **mymp;
	int	offset;
	int	totlen, resid;
	int	thismboff;
	int	head;

	totlen = ie_packet_len(sc);
	if (totlen <= 0)
		return (-1);

	/*
	 * Snarf the Ethernet header.
	 */
	bcopy(sc->cbuffs[sc->rbhead], &eh, sizeof(struct ether_header));
	/* ignore cast-qual warning here */

	/*
	 * As quickly as possible, check if this packet is for us. If not,
	 * don't waste a single cycle copying the rest of the packet in.
	 * This is only a consideration when FILTER is defined; i.e., when
	 * we are either running BPF or doing multicasting.
	 */
	if (!check_eh(sc, &eh)) {
		ie_drop_packet_buffer(sc);
		sc->ifp->if_ierrors--;	/* just this case, it's not an
						 * error
						 */
		return (-1);
	}

	MGETHDR(m, M_DONTWAIT, MT_DATA);
	if (!m) {
		ie_drop_packet_buffer(sc);
		/* XXXX if_ierrors++; */
		return (-1);
	}

	*mp = m;
	m->m_pkthdr.rcvif = sc->ifp;
	m->m_len = MHLEN;
	resid = m->m_pkthdr.len = totlen;
	top = 0;

	mymp = &top;

	/*
	 * This loop goes through and allocates mbufs for all the data we
	 * will be copying in.	It does not actually do the copying yet.
	 */
	do {			/* while(resid > 0) */
		/*
		 * Try to allocate an mbuf to hold the data that we have.
		 * If we already allocated one, just get another one and
		 * stick it on the end (eventually).  If we don't already
		 * have one, try to allocate an mbuf cluster big enough to
		 * hold the whole packet, if we think it's reasonable, or a
		 * single mbuf which may or may not be big enough. Got that?
		 */
		if (top) {
			MGET(m, M_DONTWAIT, MT_DATA);
			if (!m) {
				m_freem(top);
				ie_drop_packet_buffer(sc);
				return (-1);
			}
			m->m_len = MLEN;
		}
		if (resid >= MINCLSIZE) {
			MCLGET(m, M_DONTWAIT);
			if (m->m_flags & M_EXT)
				m->m_len = min(resid, MCLBYTES);
		} else {
			if (resid < m->m_len) {
				if (!top && resid + max_linkhdr <= m->m_len)
					m->m_data += max_linkhdr;
				m->m_len = resid;
			}
		}
		resid -= m->m_len;
		*mymp = m;
		mymp = &m->m_next;
	} while (resid > 0);

	resid = totlen;					/* remaining data */
	offset = 0;					/* packet offset */
	thismboff = 0;					/* offset in m */

	m = top;					/* current mbuf */
	head = sc->rbhead;				/* current rx buffer */

	/*
	 * Now we take the mbuf chain (hopefully only one mbuf most of the
	 * time) and stuff the data into it.  There are no possible failures
	 * at or after this point.
	 */
	while (resid > 0) {	/* while there's stuff left */
		int	thislen = ie_buflen(sc, head) - offset;

		/*
		 * If too much data for the current mbuf, then fill the
		 * current one up, go to the next one, and try again.
		 */
		if (thislen > m->m_len - thismboff) {
			int	newlen = m->m_len - thismboff;

			bcopy((v_caddr_t) (sc->cbuffs[head] + offset),
			      mtod(m, caddr_t) +thismboff, (unsigned) newlen);
			/* ignore cast-qual warning */
			m = m->m_next;
			thismboff = 0;		/* new mbuf, so no offset */
			offset += newlen;	/* we are now this far into
						 * the packet */
			resid -= newlen;	/* so there is this much left
						 * to get */
			continue;
		}
		/*
		 * If there is more than enough space in the mbuf to hold
		 * the contents of this buffer, copy everything in, advance
		 * pointers, and so on.
		 */
		if (thislen < m->m_len - thismboff) {
			bcopy((v_caddr_t) (sc->cbuffs[head] + offset),
			    mtod(m, caddr_t) +thismboff, (unsigned) thislen);
			thismboff += thislen;	/* we are this far into the
						 * mbuf */
			resid -= thislen;	/* and this much is left */
			goto nextbuf;
		}
		/*
		 * Otherwise, there is exactly enough space to put this
		 * buffer's contents into the current mbuf.  Do the
		 * combination of the above actions.
		 */
		bcopy((v_caddr_t) (sc->cbuffs[head] + offset),
		      mtod(m, caddr_t) + thismboff, (unsigned) thislen);
		m = m->m_next;
		thismboff = 0;		/* new mbuf, start at the beginning */
		resid -= thislen;	/* and we are this far through */

		/*
		 * Advance all the pointers.  We can get here from either of
		 * the last two cases, but never the first.
		 */
nextbuf:
		offset = 0;
		sc->rbuffs[head]->ie_rbd_actual = 0;
		sc->rbuffs[head]->ie_rbd_length |= IE_RBD_LAST;
		sc->rbhead = head = (head + 1) % sc->nrxbufs;
		sc->rbuffs[sc->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
		sc->rbtail = (sc->rbtail + 1) % sc->nrxbufs;
	}

	/*
	 * Unless something changed strangely while we were doing the copy,
	 * we have now copied everything in from the shared memory. This
	 * means that we are done.
	 */
	return (0);
}

/*
 * Read frame NUM from unit UNIT (pre-cached as IE).
 *
 * This routine reads the RFD at NUM, and copies in the buffers from
 * the list of RBD, then rotates the RBD and RFD lists so that the receiver
 * doesn't start complaining.  Trailers are DROPPED---there's no point
 * in wasting time on confusing code to deal with them.	 Hopefully,
 * this machine will never ARP for trailers anyway.
 */
static void
ie_readframe(struct ie_softc *sc, int	num/* frame number to read */)
{
	struct ifnet *ifp = sc->ifp;
	struct ie_recv_frame_desc rfd;
	struct mbuf *m = 0;
#ifdef DEBUG
	struct ether_header *eh;
#endif

	bcopy((v_caddr_t) (sc->rframes[num]), &rfd,
	      sizeof(struct ie_recv_frame_desc));

	/*
	 * Immediately advance the RFD list, since we we have copied ours
	 * now.
	 */
	sc->rframes[num]->ie_fd_status = 0;
	sc->rframes[num]->ie_fd_last |= IE_FD_LAST;
	sc->rframes[sc->rftail]->ie_fd_last &= ~IE_FD_LAST;
	sc->rftail = (sc->rftail + 1) % sc->nframes;
	sc->rfhead = (sc->rfhead + 1) % sc->nframes;

	if (rfd.ie_fd_status & IE_FD_OK) {
		if (ieget(sc, &m)) {
			sc->ifp->if_ierrors++;	/* this counts as an
							 * error */
			return;
		}
	}
#ifdef DEBUG
	eh = mtod(m, struct ether_header *);
	if (ie_debug & IED_READFRAME) {
		if_printf(ifp, "frame from ether %6D type %x\n",
		       eh->ether_shost, ":", (unsigned) eh->ether_type);
	}
	if (ntohs(eh->ether_type) > ETHERTYPE_TRAIL
	    && ntohs(eh->ether_type) < (ETHERTYPE_TRAIL + ETHERTYPE_NTRAILER))
		printf("received trailer!\n");
#endif

	if (!m)
		return;

	/*
	 * Finally pass this packet up to higher layers.
	 */
	IE_UNLOCK(sc);
	(*ifp->if_input)(ifp, m);
	IE_LOCK(sc);
}

static void
ie_drop_packet_buffer(struct ie_softc *sc)
{
	int	i;

	do {
		/*
		 * This means we are somehow out of sync.  So, we reset the
		 * adapter.
		 */
		if (!(sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_USED)) {
#ifdef DEBUG
			print_rbd(sc->rbuffs[sc->rbhead]);
#endif
			log(LOG_ERR, "%s: receive descriptors out of sync at %d\n",
			    sc->ifp->if_xname, sc->rbhead);
			iereset(sc);
			return;
		}
		i = sc->rbuffs[sc->rbhead]->ie_rbd_actual & IE_RBD_LAST;

		sc->rbuffs[sc->rbhead]->ie_rbd_length |= IE_RBD_LAST;
		sc->rbuffs[sc->rbhead]->ie_rbd_actual = 0;
		sc->rbhead = (sc->rbhead + 1) % sc->nrxbufs;
		sc->rbuffs[sc->rbtail]->ie_rbd_length &= ~IE_RBD_LAST;
		sc->rbtail = (sc->rbtail + 1) % sc->nrxbufs;
	} while (!i);
}


/*
 * Start transmission on an interface.
 */
static void
iestart(struct ifnet *ifp)
{
	struct	 ie_softc *sc = ifp->if_softc;

	IE_LOCK(sc);
	iestart_locked(ifp);
	IE_UNLOCK(sc);
}

static void
iestart_locked(struct ifnet *ifp)
{
	struct	 ie_softc *sc = ifp->if_softc;
	struct	 mbuf *m0, *m;
	volatile unsigned char *buffer;
	u_short	 len;

	/*
	 * This is not really volatile, in this routine, but it makes gcc
	 * happy.
	 */
	volatile u_short *bptr = &sc->scb->ie_command_list;

	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
		return;
	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
		return;

	do {
		IF_DEQUEUE(&sc->ifp->if_snd, m);
		if (!m)
			break;

		buffer = sc->xmit_cbuffs[sc->xmit_count];
		len = 0;

		for (m0 = m; m && len < IE_BUF_LEN; m = m->m_next) {
			bcopy(mtod(m, caddr_t), buffer, m->m_len);
			buffer += m->m_len;
			len += m->m_len;
		}

		m_freem(m0);
		len = max(len, ETHER_MIN_LEN);

		/*
		 * See if bpf is listening on this interface, let it see the
		 * packet before we commit it to the wire.
		 */
		BPF_TAP(sc->ifp,
			(void *)sc->xmit_cbuffs[sc->xmit_count], len);

		sc->xmit_buffs[sc->xmit_count]->ie_xmit_flags =
		    IE_XMIT_LAST|len;
		sc->xmit_buffs[sc->xmit_count]->ie_xmit_next = 0xffff;
		sc->xmit_buffs[sc->xmit_count]->ie_xmit_buf =
		    MK_24(sc->iomem, sc->xmit_cbuffs[sc->xmit_count]);

		sc->xmit_cmds[sc->xmit_count]->com.ie_cmd_cmd = IE_CMD_XMIT;
		sc->xmit_cmds[sc->xmit_count]->ie_xmit_status = 0;
		sc->xmit_cmds[sc->xmit_count]->ie_xmit_desc =
		    MK_16(sc->iomem, sc->xmit_buffs[sc->xmit_count]);

		*bptr = MK_16(sc->iomem, sc->xmit_cmds[sc->xmit_count]);
		bptr = &sc->xmit_cmds[sc->xmit_count]->com.ie_cmd_link;
		sc->xmit_count++;
	} while (sc->xmit_count < sc->ntxbufs);

	/*
	 * If we queued up anything for transmission, send it.
	 */
	if (sc->xmit_count) {
		sc->xmit_cmds[sc->xmit_count - 1]->com.ie_cmd_cmd |=
		    IE_CMD_LAST | IE_CMD_INTR;

		/*
		 * By passing the command pointer as a null, we tell
		 * command_and_wait() to pretend that this isn't an action
		 * command.  I wish I understood what was happening here.
		 */
		command_and_wait(sc, IE_CU_START, 0, 0);
		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
	}
	return;
}

/*
 * Check to see if there's an 82586 out there.
 */
int
check_ie_present(struct ie_softc *sc)
{
	volatile struct ie_sys_conf_ptr *scp;
	volatile struct ie_int_sys_conf_ptr *iscp;
	volatile struct ie_sys_ctl_block *scb;
	u_long	realbase;

	realbase = (uintptr_t) sc->iomembot + sc->iosize  - (1 << 24);

	scp = (volatile struct ie_sys_conf_ptr *) (uintptr_t)
	      (realbase + IE_SCP_ADDR);
	bzero((volatile char *) scp, sizeof *scp);

	/*
	 * First we put the ISCP at the bottom of memory; this tests to make
	 * sure that our idea of the size of memory is the same as the
	 * controller's. This is NOT where the ISCP will be in normal
	 * operation.
	 */
	iscp = (volatile struct ie_int_sys_conf_ptr *) sc->iomembot;
	bzero((volatile char *)iscp, sizeof *iscp);

	scb = (volatile struct ie_sys_ctl_block *) sc->iomembot;
	bzero((volatile char *)scb, sizeof *scb);

	scp->ie_bus_use = sc->bus_use;	/* 8-bit or 16-bit */
	scp->ie_iscp_ptr = (caddr_t) (uintptr_t)
	    ((volatile char *) iscp - (volatile char *) (uintptr_t) realbase);

	iscp->ie_busy = 1;
	iscp->ie_scb_offset = MK_16(realbase, scb) + 256;

	(*sc->ie_reset_586) (sc);
	(*sc->ie_chan_attn) (sc);

	DELAY(100);		/* wait a while... */

	if (iscp->ie_busy) {
		return (0);
	}
	/*
	 * Now relocate the ISCP to its real home, and reset the controller
	 * again.
	 */
	iscp = (void *) Align((caddr_t) (uintptr_t)
			      (realbase + IE_SCP_ADDR -
			       sizeof(struct ie_int_sys_conf_ptr)));
	bzero((volatile char *) iscp, sizeof *iscp);	/* ignore cast-qual */

	scp->ie_iscp_ptr = (caddr_t) (uintptr_t)
	    ((volatile char *) iscp - (volatile char *) (uintptr_t) realbase);

	iscp->ie_busy = 1;
	iscp->ie_scb_offset = MK_16(realbase, scb);

	(*sc->ie_reset_586) (sc);
	(*sc->ie_chan_attn) (sc);

	DELAY(100);

	if (iscp->ie_busy) {
		return (0);
	}
	sc->iomem = (caddr_t) (uintptr_t) realbase;

	sc->iscp = iscp;
	sc->scb = scb;

	/*
	 * Acknowledge any interrupts we may have caused...
	 */
	ie_ack(sc, IE_ST_WHENCE);

	return (1);
}

/*
 * Divine the memory size of ie board UNIT.
 * Better hope there's nothing important hiding just below the ie card...
 */
static void
find_ie_mem_size(struct ie_softc *sc)
{
	unsigned size;

	sc->iosize = 0;

	for (size = 65536; size >= 8192; size -= 8192) {
		if (check_ie_present(sc)) {
			return;
		}
	}

	return;
}

void
el_reset_586(struct ie_softc *sc)
{
	outb(PORT(sc) + IE507_CTRL, EL_CTRL_RESET);
	DELAY(100);
	outb(PORT(sc) + IE507_CTRL, EL_CTRL_NORMAL);
	DELAY(100);
}

void
sl_reset_586(struct ie_softc *sc)
{
	outb(PORT(sc) + IEATT_RESET, 0);
}

void
ee16_reset_586(struct ie_softc *sc)
{
	outb(PORT(sc) + IEE16_ECTRL, IEE16_RESET_586);
	DELAY(100);
	outb(PORT(sc) + IEE16_ECTRL, 0);
	DELAY(100);
}

void
el_chan_attn(struct ie_softc *sc)
{
	outb(PORT(sc) + IE507_ATTN, 1);
}

void
sl_chan_attn(struct ie_softc *sc)
{
	outb(PORT(sc) + IEATT_ATTN, 0);
}

void
ee16_chan_attn(struct ie_softc *sc)
{
	outb(PORT(sc) + IEE16_ATTN, 0);
}

u_short
ee16_read_eeprom(struct ie_softc *sc, int location)
{
	int	ectrl, edata;

	ectrl = inb(sc->port + IEE16_ECTRL);
	ectrl &= IEE16_ECTRL_MASK;
	ectrl |= IEE16_ECTRL_EECS;
	outb(sc->port + IEE16_ECTRL, ectrl);

	ee16_eeprom_outbits(sc, IEE16_EEPROM_READ, IEE16_EEPROM_OPSIZE1);
	ee16_eeprom_outbits(sc, location, IEE16_EEPROM_ADDR_SIZE);
	edata = ee16_eeprom_inbits(sc);
	ectrl = inb(sc->port + IEE16_ECTRL);
	ectrl &= ~(IEE16_RESET_ASIC | IEE16_ECTRL_EEDI | IEE16_ECTRL_EECS);
	outb(sc->port + IEE16_ECTRL, ectrl);
	ee16_eeprom_clock(sc, 1);
	ee16_eeprom_clock(sc, 0);
	return edata;
}

static void
ee16_eeprom_outbits(struct ie_softc *sc, int edata, int count)
{
	int	ectrl, i;

	ectrl = inb(sc->port + IEE16_ECTRL);
	ectrl &= ~IEE16_RESET_ASIC;
	for (i = count - 1; i >= 0; i--) {
		ectrl &= ~IEE16_ECTRL_EEDI;
		if (edata & (1 << i)) {
			ectrl |= IEE16_ECTRL_EEDI;
		}
		outb(sc->port + IEE16_ECTRL, ectrl);
		DELAY(1);	/* eeprom data must be setup for 0.4 uSec */
		ee16_eeprom_clock(sc, 1);
		ee16_eeprom_clock(sc, 0);
	}
	ectrl &= ~IEE16_ECTRL_EEDI;
	outb(sc->port + IEE16_ECTRL, ectrl);
	DELAY(1);		/* eeprom data must be held for 0.4 uSec */
}

static int
ee16_eeprom_inbits(struct ie_softc *sc)
{
	int	ectrl, edata, i;

	ectrl = inb(sc->port + IEE16_ECTRL);
	ectrl &= ~IEE16_RESET_ASIC;
	for (edata = 0, i = 0; i < 16; i++) {
		edata = edata << 1;
		ee16_eeprom_clock(sc, 1);
		ectrl = inb(sc->port + IEE16_ECTRL);
		if (ectrl & IEE16_ECTRL_EEDO) {
			edata |= 1;
		}
		ee16_eeprom_clock(sc, 0);
	}
	return (edata);
}

static void
ee16_eeprom_clock(struct ie_softc *sc, int state)
{
	int	ectrl;

	ectrl = inb(sc->port + IEE16_ECTRL);
	ectrl &= ~(IEE16_RESET_ASIC | IEE16_ECTRL_EESK);
	if (state) {
		ectrl |= IEE16_ECTRL_EESK;
	}
	outb(sc->port + IEE16_ECTRL, ectrl);
	DELAY(9);		/* EESK must be stable for 8.38 uSec */
}

static __inline void
ee16_interrupt_enable(struct ie_softc *sc)
{
	DELAY(100);
	outb(sc->port + IEE16_IRQ, sc->irq_encoded | IEE16_IRQ_ENABLE);
	DELAY(100);
}

void
sl_read_ether(struct ie_softc *sc, unsigned char *addr)
{
	int	i;

	for (i = 0; i < 6; i++)
		addr[i] = inb(PORT(sc) + i);
}

static void
iereset(struct ie_softc *sc)
{
	struct ifnet *ifp = sc->ifp;

	if_printf(ifp, "reset\n");
	ie_stop(sc);

	/*
	 * Stop i82586 dead in its tracks.
	 */
	if (command_and_wait(sc, IE_RU_ABORT | IE_CU_ABORT, 0, 0))
		if_printf(ifp, "abort commands timed out\n");

	if (command_and_wait(sc, IE_RU_DISABLE | IE_CU_STOP, 0, 0))
		if_printf(ifp, "disable commands timed out\n");

#ifdef notdef
	if (!check_ie_present(sc))
		panic("ie disappeared!");
#endif

	if (ifp->if_flags & IFF_UP)
		ieinit_locked(sc);

	return;
}

/*
 * Send a command to the controller and wait for it to either
 * complete or be accepted, depending on the command.  If the
 * command pointer is null, then pretend that the command is
 * not an action command.  If the command pointer is not null,
 * and the command is an action command, wait for
 * ((volatile struct ie_cmd_common *)pcmd)->ie_cmd_status & MASK
 * to become true.
 */
static int
command_and_wait(struct ie_softc *sc, int cmd, volatile void *pcmd, int mask)
{
	volatile struct ie_cmd_common *cc = pcmd;
	int i;

	sc->scb->ie_command = (u_short) cmd;

	if (IE_ACTION_COMMAND(cmd) && pcmd) {
		(*sc->ie_chan_attn) (sc);
		
		/*
		 * Now spin-lock waiting for status.  This is not a very
		 * nice thing to do, but I haven't figured out how, or
		 * indeed if, we can put the process waiting for action to
		 * sleep.  (We may be getting called through some other
		 * timeout running in the kernel.)
		 *
		 * According to the packet driver, the minimum timeout
		 * should be .369 seconds, which we round up to .37.
		 */
		for (i = 0; i < 370; i++) {
			if (cc->ie_cmd_status & mask)
				return (0);
			DELAY(1000);
		}

		return (1);
	} else {

		/*
		 * Otherwise, just wait for the command to be accepted.
		 */
		(*sc->ie_chan_attn) (sc);

		while (sc->scb->ie_command);	/* spin lock */

		return (0);
	}
}

/*
 * Run the time-domain reflectometer...
 */
static void
run_tdr(struct ie_softc *sc, volatile struct ie_tdr_cmd *cmd)
{
	int	result;

	cmd->com.ie_cmd_status = 0;
	cmd->com.ie_cmd_cmd = IE_CMD_TDR | IE_CMD_LAST;
	cmd->com.ie_cmd_link = 0xffff;
	cmd->ie_tdr_time = 0;

	sc->scb->ie_command_list = MK_16(MEM(sc), cmd);
	cmd->ie_tdr_time = 0;

	if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL))
		result = 0x2000;
	else
		result = cmd->ie_tdr_time;

	ie_ack(sc, IE_ST_WHENCE);

	if (result & IE_TDR_SUCCESS)
		return;

	if (result & IE_TDR_XCVR) {
		if_printf(sc->ifp, "transceiver problem\n");
	} else if (result & IE_TDR_OPEN) {
		if_printf(sc->ifp, "TDR detected an open %d clocks away\n",
		       result & IE_TDR_TIME);
	} else if (result & IE_TDR_SHORT) {
		if_printf(sc->ifp, "TDR detected a short %d clocks away\n",
		       result & IE_TDR_TIME);
	} else {
		if_printf(sc->ifp, "TDR returned unknown status %x\n", result);
	}
}

static void
start_receiver(struct ie_softc *sc)
{

	sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
	command_and_wait(sc, IE_RU_START, 0, 0);

	ie_ack(sc, IE_ST_WHENCE);
}

/*
 * Here is a helper routine for iernr() and ieinit().  This sets up
 * the RFA.
 */
static v_caddr_t
setup_rfa(struct ie_softc *sc, v_caddr_t ptr)
{
	volatile struct ie_recv_frame_desc *rfd = (volatile void *)ptr;
	volatile struct ie_recv_buf_desc *rbd;
	int	i;

	/* First lay them out */
	for (i = 0; i < sc->nframes; i++) {
		sc->rframes[i] = rfd;
		bzero((volatile char *) rfd, sizeof *rfd);	/* ignore cast-qual */
		rfd++;
	}

	ptr = Alignvol(rfd);		/* ignore cast-qual */

	/* Now link them together */
	for (i = 0; i < sc->nframes; i++) {
		sc->rframes[i]->ie_fd_next =
		    MK_16(MEM(sc), sc->rframes[(i + 1) % sc->nframes]);
	}

	/* Finally, set the EOL bit on the last one. */
	sc->rframes[sc->nframes - 1]->ie_fd_last |= IE_FD_LAST;

	/*
	 * Now lay out some buffers for the incoming frames.  Note that we
	 * set aside a bit of slop in each buffer, to make sure that we have
	 * enough space to hold a single frame in every buffer.
	 */
	rbd = (volatile void *) ptr;

	for (i = 0; i < sc->nrxbufs; i++) {
		sc->rbuffs[i] = rbd;
		bzero((volatile char *)rbd, sizeof *rbd);
		ptr = Alignvol(ptr + sizeof *rbd);
		rbd->ie_rbd_length = IE_RBUF_SIZE;
		rbd->ie_rbd_buffer = MK_24(MEM(sc), ptr);
		sc->cbuffs[i] = (volatile void *) ptr;
		ptr += IE_RBUF_SIZE;
		rbd = (volatile void *) ptr;
	}

	/* Now link them together */
	for (i = 0; i < sc->nrxbufs; i++) {
		sc->rbuffs[i]->ie_rbd_next =
		    MK_16(MEM(sc), sc->rbuffs[(i + 1) % sc->nrxbufs]);
	}

	/* Tag EOF on the last one */
	sc->rbuffs[sc->nrxbufs - 1]->ie_rbd_length |= IE_RBD_LAST;

	/*
	 * We use the head and tail pointers on receive to keep track of the
	 * order in which RFDs and RBDs are used.
	 */
	sc->rfhead = 0;
	sc->rftail = sc->nframes - 1;
	sc->rbhead = 0;
	sc->rbtail = sc->nrxbufs - 1;

	sc->scb->ie_recv_list = MK_16(MEM(sc), sc->rframes[0]);
	sc->rframes[0]->ie_fd_buf_desc = MK_16(MEM(sc), sc->rbuffs[0]);

	ptr = Alignvol(ptr);
	return (ptr);
}

/*
 * Run the multicast setup command.
 */
static int
mc_setup(struct ie_softc *sc)
{
	volatile struct ie_mcast_cmd *cmd = (volatile void *)sc->xmit_cbuffs[0];

	cmd->com.ie_cmd_status = 0;
	cmd->com.ie_cmd_cmd = IE_CMD_MCAST | IE_CMD_LAST;
	cmd->com.ie_cmd_link = 0xffff;

	/* ignore cast-qual */
	bcopy((v_caddr_t) sc->mcast_addrs, (v_caddr_t) cmd->ie_mcast_addrs,
	      sc->mcast_count * sizeof *sc->mcast_addrs);

	cmd->ie_mcast_bytes = sc->mcast_count * 6;	/* grrr... */

	sc->scb->ie_command_list = MK_16(MEM(sc), cmd);
	if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL)
	    || !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
		if_printf(sc->ifp, "multicast address setup command failed\n");
		return (0);
	}
	return (1);
}

/*
 * This routine takes the environment generated by check_ie_present()
 * and adds to it all the other structures we need to operate the adapter.
 * This includes executing the CONFIGURE, IA-SETUP, and MC-SETUP commands,
 * starting the receiver unit, and clearing interrupts.
 */
static void
ieinit(xsc)
	void *xsc;
{
	struct ie_softc *sc = xsc;

	IE_LOCK(sc);
	ieinit_locked(sc);
	IE_UNLOCK(sc);
}

static void
ieinit_locked(struct ie_softc *sc)
{
	struct ifnet *ifp = sc->ifp;
	volatile struct ie_sys_ctl_block *scb = sc->scb;
	caddr_t ptr;
	int	i;

	ptr = Alignvol((volatile char *) scb + sizeof *scb);

	/*
	 * Send the configure command first.
	 */
	{
		volatile struct ie_config_cmd *cmd = (volatile void *) ptr;

		ie_setup_config(cmd, sc->promisc,
				sc->hard_type == IE_STARLAN10);
		cmd->com.ie_cmd_status = 0;
		cmd->com.ie_cmd_cmd = IE_CMD_CONFIG | IE_CMD_LAST;
		cmd->com.ie_cmd_link = 0xffff;

		scb->ie_command_list = MK_16(MEM(sc), cmd);

		if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL)
		 || !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
			if_printf(ifp, "configure command failed\n");
			return;
		}
	}
	/*
	 * Now send the Individual Address Setup command.
	 */
	{
		volatile struct ie_iasetup_cmd *cmd = (volatile void *) ptr;

		cmd->com.ie_cmd_status = 0;
		cmd->com.ie_cmd_cmd = IE_CMD_IASETUP | IE_CMD_LAST;
		cmd->com.ie_cmd_link = 0xffff;

		bcopy((volatile char *)IF_LLADDR(ifp),
		      (volatile char *)&cmd->ie_address, sizeof cmd->ie_address);
		scb->ie_command_list = MK_16(MEM(sc), cmd);
		if (command_and_wait(sc, IE_CU_START, cmd, IE_STAT_COMPL)
		    || !(cmd->com.ie_cmd_status & IE_STAT_OK)) {
			if_printf(ifp, "individual address "
			       "setup command failed\n");
			return;
		}
	}

	/*
	 * Now run the time-domain reflectometer.
	 */
	run_tdr(sc, (volatile void *) ptr);

	/*
	 * Acknowledge any interrupts we have generated thus far.
	 */
	ie_ack(sc, IE_ST_WHENCE);

	/*
	 * Set up the RFA.
	 */
	ptr = setup_rfa(sc, ptr);

	/*
	 * Finally, the transmit command and buffer are the last little bit
	 * of work.
	 */

	/* transmit command buffers */
	for (i = 0; i < sc->ntxbufs; i++) {
		sc->xmit_cmds[i] = (volatile void *) ptr;
		ptr += sizeof *sc->xmit_cmds[i];
		ptr = Alignvol(ptr);
		sc->xmit_buffs[i] = (volatile void *)ptr;
		ptr += sizeof *sc->xmit_buffs[i];
		ptr = Alignvol(ptr);
	}

	/* transmit buffers */
	for (i = 0; i < sc->ntxbufs - 1; i++) {
		sc->xmit_cbuffs[i] = (volatile void *)ptr;
		ptr += IE_BUF_LEN;
		ptr = Alignvol(ptr);
	}
	sc->xmit_cbuffs[sc->ntxbufs - 1] = (volatile void *) ptr;

	for (i = 1; i < sc->ntxbufs; i++) {
		bzero((v_caddr_t) sc->xmit_cmds[i], sizeof *sc->xmit_cmds[i]);
		bzero((v_caddr_t) sc->xmit_buffs[i], sizeof *sc->xmit_buffs[i]);
	}

	/*
	 * This must be coordinated with iestart() and ietint().
	 */
	sc->xmit_cmds[0]->ie_xmit_status = IE_STAT_COMPL;

	/* take the ee16 out of loopback */
	if (sc->hard_type == IE_EE16) {
		u_int8_t bart_config;

		bart_config = inb(PORT(sc) + IEE16_CONFIG);
		bart_config &= ~IEE16_BART_LOOPBACK;
		/* inb doesn't get bit! */
		bart_config |= IEE16_BART_MCS16_TEST;
		outb(PORT(sc) + IEE16_CONFIG, bart_config);
		ee16_interrupt_enable(sc);
		ee16_chan_attn(sc);
	}
	ifp->if_drv_flags |= IFF_DRV_RUNNING;	/* tell higher levels
							 * we're here */
	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;

	start_receiver(sc);

	return;
}

static void
ie_stop(struct ie_softc *sc)
{
	struct ifnet *ifp = sc->ifp;

	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
	command_and_wait(sc, IE_RU_DISABLE, 0, 0);
}

static int
ieioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
	int	error = 0;
	struct	 ie_softc *sc = ifp->if_softc;

	switch (command) {
	case SIOCSIFFLAGS:
		/*
		 * Note that this device doesn't have an "all multicast"
		 * mode, so we must turn on promiscuous mode and do the
		 * filtering manually.
		 */
		IE_LOCK(sc);
		if ((ifp->if_flags & IFF_UP) == 0 &&
		    (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
			ie_stop(sc);
		} else if ((ifp->if_flags & IFF_UP) &&
			   (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
			sc->promisc =
			    ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
			ieinit_locked(sc);
		} else if (sc->promisc ^
			   (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))) {
			sc->promisc =
			    ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI);
			ieinit_locked(sc);
		}
		IE_UNLOCK(sc);
		break;

	case SIOCADDMULTI:
	case SIOCDELMULTI:
		/*
		 * Update multicast listeners
		 */
		/* reset multicast filtering */
		IE_LOCK(sc);
		ie_mc_reset(sc);
		IE_UNLOCK(sc);
		error = 0;
		break;

	default:
		error = ether_ioctl(ifp, command, data);
		break;
	}

	return (error);
}

static void
ie_mc_reset(struct ie_softc *sc)
{
	struct ifmultiaddr *ifma;

	/*
	 * Step through the list of addresses.
	 */
	sc->mcast_count = 0;
	if_maddr_rlock(sc->ifp);
	TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
		if (ifma->ifma_addr->sa_family != AF_LINK)
			continue;

		/* XXX - this is broken... */
		if (sc->mcast_count >= MAXMCAST) {
			sc->ifp->if_flags |= IFF_ALLMULTI;
			if (sc->ifp->if_flags & IFF_UP)
				ieinit_locked(sc);
			goto setflag;
		}
		bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
		      &(sc->mcast_addrs[sc->mcast_count]), 6);
		sc->mcast_count++;
	}
	if_maddr_runlock(sc->ifp);

setflag:
	sc->want_mcsetup = 1;
}


#ifdef DEBUG
static void
print_rbd(volatile struct ie_recv_buf_desc * rbd)
{
	printf("RBD at %p:\n"
	       "actual %04x, next %04x, buffer %p\n"
	       "length %04x, mbz %04x\n",
	       (volatile void *) rbd,
	       rbd->ie_rbd_actual, rbd->ie_rbd_next,
	       (void *) rbd->ie_rbd_buffer,
	       rbd->ie_rbd_length, rbd->mbz);
}

#endif				/* DEBUG */

int
ie_alloc_resources (device_t dev)
{
	struct ie_softc *       sc;
	int                     error;

	error = 0;
	sc = device_get_softc(dev);

	sc->io_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &sc->io_rid,
					    RF_ACTIVE);
	if (!sc->io_res) {
		device_printf(dev, "No I/O space?!\n");
		error = ENOMEM;
		goto bad;
	}
	sc->io_bt = rman_get_bustag(sc->io_res);
	sc->io_bh = rman_get_bushandle(sc->io_res);

	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
					     RF_ACTIVE);
	if (!sc->mem_res) {
                device_printf(dev, "No Memory!\n");
		error = ENOMEM;
		goto bad;
	}
	sc->mem_bt = rman_get_bustag(sc->mem_res);
	sc->mem_bh = rman_get_bushandle(sc->mem_res);

	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
					     RF_ACTIVE);
	if (!sc->irq_res) {
		device_printf(dev, "No IRQ!\n");
		error = ENOMEM;
		goto bad;
	}

	sc->port = rman_get_start(sc->io_res);  /* XXX hack */
	sc->iomembot = rman_get_virtual(sc->mem_res);
	sc->iosize = rman_get_size(sc->mem_res);

	return (0);
bad:
	return (error);
}

void
ie_release_resources (device_t dev)
{
	struct ie_softc *       sc;

	sc = device_get_softc(dev);

	if (sc->irq_ih)
		bus_teardown_intr(dev, sc->irq_res, sc->irq_ih);
	if (sc->rframes)
		free(sc->rframes, M_DEVBUF);
	if (sc->io_res)
		bus_release_resource(dev, SYS_RES_IOPORT,
				     sc->io_rid, sc->io_res);
	if (sc->irq_res)
		bus_release_resource(dev, SYS_RES_IRQ,
				     sc->irq_rid, sc->irq_res);
	if (sc->mem_res)
		bus_release_resource(dev, SYS_RES_MEMORY,
				     sc->mem_rid, sc->mem_res);
	if (sc->ifp)
		if_free(sc->ifp);

	return;
}

int
ie_detach (device_t dev)
{
	struct ie_softc *	sc;
	struct ifnet *		ifp;

	sc = device_get_softc(dev);
	ifp = sc->ifp;

	IE_LOCK(sc);
	if (sc->hard_type == IE_EE16)
		ee16_shutdown(sc);

	ie_stop(sc);
	IE_UNLOCK(sc);
	ether_ifdetach(ifp);
	ie_release_resources(dev);
	mtx_destroy(&sc->lock);

	return (0);
}

Man Man