Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapci/chipsets/atacyrix/@/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapci/chipsets/atacyrix/@/contrib/octeon-sdk/cvmx-flash.c |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * @file * * This file provides bootbus flash operations * * <hr>$Revision: 49448 $<hr> * * */ #include "cvmx-config.h" #include "cvmx.h" #include "cvmx-sysinfo.h" #include "cvmx-spinlock.h" #include "cvmx-flash.h" #define MAX_NUM_FLASH_CHIPS 8 /* Maximum number of flash chips */ #define MAX_NUM_REGIONS 8 /* Maximum number of block regions per chip */ #define DEBUG 1 #define CFI_CMDSET_NONE 0 #define CFI_CMDSET_INTEL_EXTENDED 1 #define CFI_CMDSET_AMD_STANDARD 2 #define CFI_CMDSET_INTEL_STANDARD 3 #define CFI_CMDSET_AMD_EXTENDED 4 #define CFI_CMDSET_MITSU_STANDARD 256 #define CFI_CMDSET_MITSU_EXTENDED 257 #define CFI_CMDSET_SST 258 typedef struct { void * base_ptr; /**< Memory pointer to start of flash */ int is_16bit; /**< Chip is 16bits wide in 8bit mode */ uint16_t vendor; /**< Vendor ID of Chip */ int size; /**< Size of the chip in bytes */ uint64_t erase_timeout; /**< Erase timeout in cycles */ uint64_t write_timeout; /**< Write timeout in cycles */ int num_regions; /**< Number of block regions */ cvmx_flash_region_t region[MAX_NUM_REGIONS]; } cvmx_flash_t; static CVMX_SHARED cvmx_flash_t flash_info[MAX_NUM_FLASH_CHIPS]; static CVMX_SHARED cvmx_spinlock_t flash_lock = CVMX_SPINLOCK_UNLOCKED_INITIALIZER; /** * @INTERNAL * Read a byte from flash * * @param chip_id Chip to read from * @param offset Offset into the chip * @return Value read */ static uint8_t __cvmx_flash_read8(int chip_id, int offset) { return *(volatile uint8_t *)(flash_info[chip_id].base_ptr + offset); } /** * @INTERNAL * Read a byte from flash (for commands) * * @param chip_id Chip to read from * @param offset Offset into the chip * @return Value read */ static uint8_t __cvmx_flash_read_cmd(int chip_id, int offset) { if (flash_info[chip_id].is_16bit) offset<<=1; return __cvmx_flash_read8(chip_id, offset); } /** * @INTERNAL * Read 16bits from flash (for commands) * * @param chip_id Chip to read from * @param offset Offset into the chip * @return Value read */ static uint16_t __cvmx_flash_read_cmd16(int chip_id, int offset) { uint16_t v = __cvmx_flash_read_cmd(chip_id, offset); v |= __cvmx_flash_read_cmd(chip_id, offset + 1)<<8; return v; } /** * @INTERNAL * Write a byte to flash * * @param chip_id Chip to write to * @param offset Offset into the chip * @param data Value to write */ static void __cvmx_flash_write8(int chip_id, int offset, uint8_t data) { volatile uint8_t *flash_ptr = (volatile uint8_t *)flash_info[chip_id].base_ptr; flash_ptr[offset] = data; } /** * @INTERNAL * Write a byte to flash (for commands) * * @param chip_id Chip to write to * @param offset Offset into the chip * @param data Value to write */ static void __cvmx_flash_write_cmd(int chip_id, int offset, uint8_t data) { volatile uint8_t *flash_ptr = (volatile uint8_t *)flash_info[chip_id].base_ptr; flash_ptr[offset<<flash_info[chip_id].is_16bit] = data; } /** * @INTERNAL * Query a address and see if a CFI flash chip is there. * * @param chip_id Chip ID data to fill in if the chip is there * @param base_ptr Memory pointer to the start address to query * @return Zero on success, Negative on failure */ static int __cvmx_flash_queury_cfi(int chip_id, void *base_ptr) { int region; cvmx_flash_t *flash = flash_info + chip_id; /* Set the minimum needed for the read and write primitives to work */ flash->base_ptr = base_ptr; flash->is_16bit = 1; /* FIXME: Currently assumes the chip is 16bits */ /* Put flash in CFI query mode */ __cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */ __cvmx_flash_write_cmd(chip_id, 0x55, 0x98); /* Make sure we get the QRY response we should */ if ((__cvmx_flash_read_cmd(chip_id, 0x10) != 'Q') || (__cvmx_flash_read_cmd(chip_id, 0x11) != 'R') || (__cvmx_flash_read_cmd(chip_id, 0x12) != 'Y')) { flash->base_ptr = NULL; return -1; } /* Read the 16bit vendor ID */ flash->vendor = __cvmx_flash_read_cmd16(chip_id, 0x13); /* Read the write timeout. The timeout is microseconds(us) is 2^0x1f typically. The worst case is this value time 2^0x23 */ flash->write_timeout = 1ull << (__cvmx_flash_read_cmd(chip_id, 0x1f) + __cvmx_flash_read_cmd(chip_id, 0x23)); /* Read the erase timeout. The timeout is milliseconds(ms) is 2^0x21 typically. The worst case is this value time 2^0x25 */ flash->erase_timeout = 1ull << (__cvmx_flash_read_cmd(chip_id, 0x21) + __cvmx_flash_read_cmd(chip_id, 0x25)); /* Get the flash size. This is 2^0x27 */ flash->size = 1<<__cvmx_flash_read_cmd(chip_id, 0x27); /* Get the number of different sized block regions from 0x2c */ flash->num_regions = __cvmx_flash_read_cmd(chip_id, 0x2c); int start_offset = 0; /* Loop through all regions get information about each */ for (region=0; region<flash->num_regions; region++) { cvmx_flash_region_t *rgn_ptr = flash->region + region; rgn_ptr->start_offset = start_offset; /* The number of blocks in each region is a 16 bit little endian endian field. It is encoded at 0x2d + region*4 as (blocks-1) */ uint16_t blocks = __cvmx_flash_read_cmd16(chip_id, 0x2d + region*4); rgn_ptr->num_blocks = 1u + blocks; /* The size of each block is a 16 bit little endian endian field. It is encoded at 0x2d + region*4 + 2 as (size/256). Zero is a special case representing 128 */ uint16_t size = __cvmx_flash_read_cmd16(chip_id, 0x2d + region*4 + 2); if (size == 0) rgn_ptr->block_size = 128; else rgn_ptr->block_size = 256u * size; start_offset += rgn_ptr->block_size * rgn_ptr->num_blocks; } /* Take the chip out of CFI query mode */ switch (flash_info[chip_id].vendor) { case CFI_CMDSET_AMD_STANDARD: __cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); case CFI_CMDSET_INTEL_STANDARD: case CFI_CMDSET_INTEL_EXTENDED: __cvmx_flash_write_cmd(chip_id, 0x00, 0xff); break; } /* Convert the timeouts to cycles */ flash->write_timeout *= cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000000; flash->erase_timeout *= cvmx_clock_get_rate(CVMX_CLOCK_CORE) / 1000; #if DEBUG /* Print the information about the chip */ cvmx_dprintf("cvmx-flash: Base pointer: %p\n" " Vendor: 0x%04x\n" " Size: %d bytes\n" " Num regions: %d\n" " Erase timeout: %llu cycles\n" " Write timeout: %llu cycles\n", flash->base_ptr, (unsigned int)flash->vendor, flash->size, flash->num_regions, (unsigned long long)flash->erase_timeout, (unsigned long long)flash->write_timeout); for (region=0; region<flash->num_regions; region++) { cvmx_dprintf(" Region %d: offset 0x%x, %d blocks, %d bytes/block\n", region, flash->region[region].start_offset, flash->region[region].num_blocks, flash->region[region].block_size); } #endif return 0; } /** * Initialize the flash access library */ void cvmx_flash_initialize(void) { int boot_region; int chip_id = 0; memset(flash_info, 0, sizeof(flash_info)); /* Loop through each boot bus chip select region */ for (boot_region=0; boot_region<MAX_NUM_FLASH_CHIPS; boot_region++) { cvmx_mio_boot_reg_cfgx_t region_cfg; region_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFG0 + boot_region*8); /* Only try chip select regions that are enabled. This assumes the bootloader already setup the flash */ if (region_cfg.s.en) { /* Convert the hardware address to a pointer. Note that the bootbus, unlike memory, isn't 1:1 mapped in the simple exec */ void *base_ptr = cvmx_phys_to_ptr((region_cfg.s.base<<16) | 0xffffffff80000000ull); if (__cvmx_flash_queury_cfi(chip_id, base_ptr) == 0) { /* Valid CFI flash chip found */ chip_id++; } } } if (chip_id == 0) cvmx_dprintf("cvmx-flash: No CFI chips found\n"); } /** * Return a pointer to the flash chip * * @param chip_id Chip ID to return * @return NULL if the chip doesn't exist */ void *cvmx_flash_get_base(int chip_id) { return flash_info[chip_id].base_ptr; } /** * Return the number of erasable regions on the chip * * @param chip_id Chip to return info for * @return Number of regions */ int cvmx_flash_get_num_regions(int chip_id) { return flash_info[chip_id].num_regions; } /** * Return information about a flash chips region * * @param chip_id Chip to get info for * @param region Region to get info for * @return Region information */ const cvmx_flash_region_t *cvmx_flash_get_region_info(int chip_id, int region) { return flash_info[chip_id].region + region; } /** * Erase a block on the flash chip * * @param chip_id Chip to erase a block on * @param region Region to erase a block in * @param block Block number to erase * @return Zero on success. Negative on failure */ int cvmx_flash_erase_block(int chip_id, int region, int block) { cvmx_spinlock_lock(&flash_lock); #if DEBUG cvmx_dprintf("cvmx-flash: Erasing chip %d, region %d, block %d\n", chip_id, region, block); #endif int offset = flash_info[chip_id].region[region].start_offset + block * flash_info[chip_id].region[region].block_size; switch (flash_info[chip_id].vendor) { case CFI_CMDSET_AMD_STANDARD: { /* Send the erase sector command sequence */ __cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */ __cvmx_flash_write_cmd(chip_id, 0x555, 0xaa); __cvmx_flash_write_cmd(chip_id, 0x2aa, 0x55); __cvmx_flash_write_cmd(chip_id, 0x555, 0x80); __cvmx_flash_write_cmd(chip_id, 0x555, 0xaa); __cvmx_flash_write_cmd(chip_id, 0x2aa, 0x55); __cvmx_flash_write8(chip_id, offset, 0x30); /* Loop checking status */ uint8_t status = __cvmx_flash_read8(chip_id, offset); uint64_t start_cycle = cvmx_get_cycle(); while (1) { /* Read the status and xor it with the old status so we can find toggling bits */ uint8_t old_status = status; status = __cvmx_flash_read8(chip_id, offset); uint8_t toggle = status ^ old_status; /* Check if the erase in progress bit is toggling */ if (toggle & (1<<6)) { /* Check hardware timeout */ if (status & (1<<5)) { /* Chip has signalled a timeout. Reread the status */ old_status = __cvmx_flash_read8(chip_id, offset); status = __cvmx_flash_read8(chip_id, offset); toggle = status ^ old_status; /* Check if the erase in progress bit is toggling */ if (toggle & (1<<6)) { cvmx_dprintf("cvmx-flash: Hardware timeout erasing block\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } else break; /* Not toggling, erase complete */ } } else break; /* Not toggling, erase complete */ if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].erase_timeout) { cvmx_dprintf("cvmx-flash: Timeout erasing block\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } } __cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */ cvmx_spinlock_unlock(&flash_lock); return 0; } case CFI_CMDSET_INTEL_STANDARD: case CFI_CMDSET_INTEL_EXTENDED: { /* Send the erase sector command sequence */ __cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */ __cvmx_flash_write8(chip_id, offset, 0x20); __cvmx_flash_write8(chip_id, offset, 0xd0); /* Loop checking status */ uint8_t status = __cvmx_flash_read8(chip_id, offset); uint64_t start_cycle = cvmx_get_cycle(); while ((status & 0x80) == 0) { if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].erase_timeout) { cvmx_dprintf("cvmx-flash: Timeout erasing block\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } status = __cvmx_flash_read8(chip_id, offset); } /* Check the final status */ if (status & 0x7f) { cvmx_dprintf("cvmx-flash: Hardware failure erasing block\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } __cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */ cvmx_spinlock_unlock(&flash_lock); return 0; } } cvmx_dprintf("cvmx-flash: Unsupported flash vendor\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } /** * Write a block on the flash chip * * @param chip_id Chip to write a block on * @param region Region to write a block in * @param block Block number to write * @param data Data to write * @return Zero on success. Negative on failure */ int cvmx_flash_write_block(int chip_id, int region, int block, const void *data) { cvmx_spinlock_lock(&flash_lock); #if DEBUG cvmx_dprintf("cvmx-flash: Writing chip %d, region %d, block %d\n", chip_id, region, block); #endif int offset = flash_info[chip_id].region[region].start_offset + block * flash_info[chip_id].region[region].block_size; int len = flash_info[chip_id].region[region].block_size; const uint8_t *ptr = (const uint8_t *)data; switch (flash_info[chip_id].vendor) { case CFI_CMDSET_AMD_STANDARD: { /* Loop through one byte at a time */ while (len--) { /* Send the program sequence */ __cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */ __cvmx_flash_write_cmd(chip_id, 0x555, 0xaa); __cvmx_flash_write_cmd(chip_id, 0x2aa, 0x55); __cvmx_flash_write_cmd(chip_id, 0x555, 0xa0); __cvmx_flash_write8(chip_id, offset, *ptr); /* Loop polling for status */ uint64_t start_cycle = cvmx_get_cycle(); while (1) { uint8_t status = __cvmx_flash_read8(chip_id, offset); if (((status ^ *ptr) & (1<<7)) == 0) break; /* Data matches, this byte is done */ else if (status & (1<<5)) { /* Hardware timeout, recheck status */ status = __cvmx_flash_read8(chip_id, offset); if (((status ^ *ptr) & (1<<7)) == 0) break; /* Data matches, this byte is done */ else { cvmx_dprintf("cvmx-flash: Hardware write timeout\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } } if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].write_timeout) { cvmx_dprintf("cvmx-flash: Timeout writing block\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } } /* Increment to the next byte */ ptr++; offset++; } __cvmx_flash_write_cmd(chip_id, 0x00, 0xf0); /* Reset the flash chip */ cvmx_spinlock_unlock(&flash_lock); return 0; } case CFI_CMDSET_INTEL_STANDARD: case CFI_CMDSET_INTEL_EXTENDED: { cvmx_dprintf("%s:%d len=%d\n", __FUNCTION__, __LINE__, len); /* Loop through one byte at a time */ while (len--) { /* Send the program sequence */ __cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */ __cvmx_flash_write8(chip_id, offset, 0x40); __cvmx_flash_write8(chip_id, offset, *ptr); /* Loop polling for status */ uint8_t status = __cvmx_flash_read8(chip_id, offset); uint64_t start_cycle = cvmx_get_cycle(); while ((status & 0x80) == 0) { if (cvmx_get_cycle() > start_cycle + flash_info[chip_id].write_timeout) { cvmx_dprintf("cvmx-flash: Timeout writing block\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } status = __cvmx_flash_read8(chip_id, offset); } /* Check the final status */ if (status & 0x7f) { cvmx_dprintf("cvmx-flash: Hardware failure erasing block\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } /* Increment to the next byte */ ptr++; offset++; } cvmx_dprintf("%s:%d\n", __FUNCTION__, __LINE__); __cvmx_flash_write_cmd(chip_id, 0x00, 0xff); /* Reset the flash chip */ cvmx_spinlock_unlock(&flash_lock); return 0; } } cvmx_dprintf("cvmx-flash: Unsupported flash vendor\n"); cvmx_spinlock_unlock(&flash_lock); return -1; } /** * Erase and write data to a flash * * @param address Memory address to write to * @param data Data to write * @param len Length of the data * @return Zero on success. Negative on failure */ int cvmx_flash_write(void *address, const void *data, int len) { int chip_id; /* Find which chip controls this address. Don't allow the write to span multiple chips */ for (chip_id=0; chip_id<MAX_NUM_FLASH_CHIPS; chip_id++) { if ((flash_info[chip_id].base_ptr <= address) && (flash_info[chip_id].base_ptr + flash_info[chip_id].size >= address + len)) break; } if (chip_id == MAX_NUM_FLASH_CHIPS) { cvmx_dprintf("cvmx-flash: Unable to find chip that contains address %p\n", address); return -1; } cvmx_flash_t *flash = flash_info + chip_id; /* Determine which block region we need to start writing to */ void *region_base = flash->base_ptr; int region = 0; while (region_base + flash->region[region].num_blocks * flash->region[region].block_size <= address) { region++; region_base = flash->base_ptr + flash->region[region].start_offset; } /* Determine which block in the region to start at */ int block = (address - region_base) / flash->region[region].block_size; /* Require all writes to start on block boundries */ if (address != region_base + block*flash->region[region].block_size) { cvmx_dprintf("cvmx-flash: Write address not aligned on a block boundry\n"); return -1; } /* Loop until we're out of data */ while (len > 0) { /* Erase the current block */ if (cvmx_flash_erase_block(chip_id, region, block)) return -1; /* Write the new data */ if (cvmx_flash_write_block(chip_id, region, block, data)) return -1; /* Increment to the next block */ data += flash->region[region].block_size; len -= flash->region[region].block_size; block++; if (block >= flash->region[region].num_blocks) { block = 0; region++; } } return 0; }