Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapci/chipsets/atacyrix/@/dev/cxgbe/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapci/chipsets/atacyrix/@/dev/cxgbe/t4_sge.c |
/*- * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar <np@FreeBSD.org> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/cxgbe/t4_sge.c 238462 2012-07-15 05:24:19Z np $"); #include "opt_inet.h" #include "opt_inet6.h" #include <sys/types.h> #include <sys/mbuf.h> #include <sys/socket.h> #include <sys/kernel.h> #include <sys/kdb.h> #include <sys/malloc.h> #include <sys/queue.h> #include <sys/taskqueue.h> #include <sys/sysctl.h> #include <sys/smp.h> #include <net/bpf.h> #include <net/ethernet.h> #include <net/if.h> #include <net/if_vlan_var.h> #include <netinet/in.h> #include <netinet/ip.h> #include <netinet/ip6.h> #include <netinet/tcp.h> #include "common/common.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4_msg.h" struct fl_buf_info { int size; int type; uma_zone_t zone; }; /* Filled up by t4_sge_modload */ static struct fl_buf_info fl_buf_info[FL_BUF_SIZES]; #define FL_BUF_SIZE(x) (fl_buf_info[x].size) #define FL_BUF_TYPE(x) (fl_buf_info[x].type) #define FL_BUF_ZONE(x) (fl_buf_info[x].zone) enum { FL_PKTSHIFT = 2 }; static int fl_pad = CACHE_LINE_SIZE; static int spg_len = 64; /* Used to track coalesced tx work request */ struct txpkts { uint64_t *flitp; /* ptr to flit where next pkt should start */ uint8_t npkt; /* # of packets in this work request */ uint8_t nflits; /* # of flits used by this work request */ uint16_t plen; /* total payload (sum of all packets) */ }; /* A packet's SGL. This + m_pkthdr has all info needed for tx */ struct sgl { int nsegs; /* # of segments in the SGL, 0 means imm. tx */ int nflits; /* # of flits needed for the SGL */ bus_dma_segment_t seg[TX_SGL_SEGS]; }; static int service_iq(struct sge_iq *, int); static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t, int *); static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *); static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int, int, char *); static inline void init_fl(struct sge_fl *, int, int, char *); static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t, char *); static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *, bus_addr_t *, void **); static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t, void *); static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *, int, int); static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *); static int alloc_fwq(struct adapter *); static int free_fwq(struct adapter *); static int alloc_mgmtq(struct adapter *); static int free_mgmtq(struct adapter *); static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int, struct sysctl_oid *); static int free_rxq(struct port_info *, struct sge_rxq *); #ifdef TCP_OFFLOAD static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int, struct sysctl_oid *); static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *); #endif static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *); #ifdef TCP_OFFLOAD static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *); #endif static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *); static int free_eq(struct adapter *, struct sge_eq *); static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *, struct sysctl_oid *); static int free_wrq(struct adapter *, struct sge_wrq *); static int alloc_txq(struct port_info *, struct sge_txq *, int, struct sysctl_oid *); static int free_txq(struct port_info *, struct sge_txq *); static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **); static inline void iq_next(struct sge_iq *); static inline void ring_fl_db(struct adapter *, struct sge_fl *); static int refill_fl(struct adapter *, struct sge_fl *, int); static void refill_sfl(void *); static int alloc_fl_sdesc(struct sge_fl *); static void free_fl_sdesc(struct sge_fl *); static void set_fl_tag_idx(struct sge_fl *, int); static void add_fl_to_sfl(struct adapter *, struct sge_fl *); static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int); static int free_pkt_sgl(struct sge_txq *, struct sgl *); static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *, struct sgl *); static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *, struct mbuf *, struct sgl *); static void write_txpkts_wr(struct sge_txq *, struct txpkts *); static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *, struct txpkts *, struct mbuf *, struct sgl *); static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *); static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); static inline void ring_eq_db(struct adapter *, struct sge_eq *); static inline int reclaimable(struct sge_eq *); static int reclaim_tx_descs(struct sge_txq *, int, int); static void write_eqflush_wr(struct sge_eq *); static __be64 get_flit(bus_dma_segment_t *, int, int); static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, struct mbuf *); static int handle_fw_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *); static int sysctl_uint16(SYSCTL_HANDLER_ARGS); #if defined(__i386__) || defined(__amd64__) extern u_int cpu_clflush_line_size; #endif /* * Called on MOD_LOAD and fills up fl_buf_info[]. */ void t4_sge_modload(void) { int i; int bufsize[FL_BUF_SIZES] = { MCLBYTES, #if MJUMPAGESIZE != MCLBYTES MJUMPAGESIZE, #endif MJUM9BYTES, MJUM16BYTES }; for (i = 0; i < FL_BUF_SIZES; i++) { FL_BUF_SIZE(i) = bufsize[i]; FL_BUF_TYPE(i) = m_gettype(bufsize[i]); FL_BUF_ZONE(i) = m_getzone(bufsize[i]); } #if defined(__i386__) || defined(__amd64__) fl_pad = max(cpu_clflush_line_size, 32); spg_len = cpu_clflush_line_size > 64 ? 128 : 64; #endif } /** * t4_sge_init - initialize SGE * @sc: the adapter * * Performs SGE initialization needed every time after a chip reset. * We do not initialize any of the queues here, instead the driver * top-level must request them individually. */ int t4_sge_init(struct adapter *sc) { struct sge *s = &sc->sge; int i, rc = 0; uint32_t ctrl_mask, ctrl_val, hpsize, v; ctrl_mask = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | V_INGPADBOUNDARY(M_INGPADBOUNDARY) | F_EGRSTATUSPAGESIZE; ctrl_val = V_PKTSHIFT(FL_PKTSHIFT) | F_RXPKTCPLMODE | V_INGPADBOUNDARY(ilog2(fl_pad) - 5) | V_EGRSTATUSPAGESIZE(spg_len == 128); hpsize = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); if (sc->flags & MASTER_PF) { int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ t4_set_reg_field(sc, A_SGE_CONTROL, ctrl_mask, ctrl_val); t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, hpsize); for (i = 0; i < FL_BUF_SIZES; i++) { t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i), FL_BUF_SIZE(i)); } t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3])); t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]))); t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]))); t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]))); } v = t4_read_reg(sc, A_SGE_CONTROL); if ((v & ctrl_mask) != ctrl_val) { device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", v); rc = EINVAL; } v = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE); if (v != hpsize) { device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", v); rc = EINVAL; } for (i = 0; i < FL_BUF_SIZES; i++) { v = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i)); if (v != FL_BUF_SIZE(i)) { device_printf(sc->dev, "invalid SGE_FL_BUFFER_SIZE[%d](0x%x)\n", i, v); rc = EINVAL; } } v = t4_read_reg(sc, A_SGE_CONM_CTRL); s->fl_starve_threshold = G_EGRTHRESHOLD(v) * 2 + 1; v = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD); sc->sge.counter_val[0] = G_THRESHOLD_0(v); sc->sge.counter_val[1] = G_THRESHOLD_1(v); sc->sge.counter_val[2] = G_THRESHOLD_2(v); sc->sge.counter_val[3] = G_THRESHOLD_3(v); v = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1); sc->sge.timer_val[0] = G_TIMERVALUE0(v) / core_ticks_per_usec(sc); sc->sge.timer_val[1] = G_TIMERVALUE1(v) / core_ticks_per_usec(sc); v = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3); sc->sge.timer_val[2] = G_TIMERVALUE2(v) / core_ticks_per_usec(sc); sc->sge.timer_val[3] = G_TIMERVALUE3(v) / core_ticks_per_usec(sc); v = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5); sc->sge.timer_val[4] = G_TIMERVALUE4(v) / core_ticks_per_usec(sc); sc->sge.timer_val[5] = G_TIMERVALUE5(v) / core_ticks_per_usec(sc); t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_rpl); t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_rpl); t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update); t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx); return (rc); } int t4_create_dma_tag(struct adapter *sc) { int rc; rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->dmat); if (rc != 0) { device_printf(sc->dev, "failed to create main DMA tag: %d\n", rc); } return (rc); } int t4_destroy_dma_tag(struct adapter *sc) { if (sc->dmat) bus_dma_tag_destroy(sc->dmat); return (0); } /* * Allocate and initialize the firmware event queue and the management queue. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. */ int t4_setup_adapter_queues(struct adapter *sc) { int rc; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); sysctl_ctx_init(&sc->ctx); sc->flags |= ADAP_SYSCTL_CTX; /* * Firmware event queue */ rc = alloc_fwq(sc); if (rc != 0) { device_printf(sc->dev, "failed to create firmware event queue: %d\n", rc); return (rc); } /* * Management queue. This is just a control queue that uses the fwq as * its associated iq. */ rc = alloc_mgmtq(sc); if (rc != 0) { device_printf(sc->dev, "failed to create management queue: %d\n", rc); return (rc); } return (rc); } /* * Idempotent */ int t4_teardown_adapter_queues(struct adapter *sc) { ADAPTER_LOCK_ASSERT_NOTOWNED(sc); /* Do this before freeing the queue */ if (sc->flags & ADAP_SYSCTL_CTX) { sysctl_ctx_free(&sc->ctx); sc->flags &= ~ADAP_SYSCTL_CTX; } free_mgmtq(sc); free_fwq(sc); return (0); } static inline int first_vector(struct port_info *pi) { struct adapter *sc = pi->adapter; int rc = T4_EXTRA_INTR, i; if (sc->intr_count == 1) return (0); for_each_port(sc, i) { struct port_info *p = sc->port[i]; if (i == pi->port_id) break; #ifdef TCP_OFFLOAD if (sc->flags & INTR_DIRECT) rc += p->nrxq + p->nofldrxq; else rc += max(p->nrxq, p->nofldrxq); #else /* * Not compiled with offload support and intr_count > 1. Only * NIC queues exist and they'd better be taking direct * interrupts. */ KASSERT(sc->flags & INTR_DIRECT, ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count)); rc += p->nrxq; #endif } return (rc); } /* * Given an arbitrary "index," come up with an iq that can be used by other * queues (of this port) for interrupt forwarding, SGE egress updates, etc. * The iq returned is guaranteed to be something that takes direct interrupts. */ static struct sge_iq * port_intr_iq(struct port_info *pi, int idx) { struct adapter *sc = pi->adapter; struct sge *s = &sc->sge; struct sge_iq *iq = NULL; if (sc->intr_count == 1) return (&sc->sge.fwq); #ifdef TCP_OFFLOAD if (sc->flags & INTR_DIRECT) { idx %= pi->nrxq + pi->nofldrxq; if (idx >= pi->nrxq) { idx -= pi->nrxq; iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; } else iq = &s->rxq[pi->first_rxq + idx].iq; } else { idx %= max(pi->nrxq, pi->nofldrxq); if (pi->nrxq >= pi->nofldrxq) iq = &s->rxq[pi->first_rxq + idx].iq; else iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq; } #else /* * Not compiled with offload support and intr_count > 1. Only NIC * queues exist and they'd better be taking direct interrupts. */ KASSERT(sc->flags & INTR_DIRECT, ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count)); idx %= pi->nrxq; iq = &s->rxq[pi->first_rxq + idx].iq; #endif KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__)); return (iq); } int t4_setup_port_queues(struct port_info *pi) { int rc = 0, i, j, intr_idx, iqid; struct sge_rxq *rxq; struct sge_txq *txq; struct sge_wrq *ctrlq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; struct sge_wrq *ofld_txq; struct sysctl_oid *oid2 = NULL; #endif char name[16]; struct adapter *sc = pi->adapter; struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev); struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD, NULL, "rx queues"); #ifdef TCP_OFFLOAD if (is_offload(sc)) { oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq", CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections"); } #endif /* Interrupt vector to start from (when using multiple vectors) */ intr_idx = first_vector(pi); /* * First pass over all rx queues (NIC and TOE): * a) initialize iq and fl * b) allocate queue iff it will take direct interrupts. */ for_each_rxq(pi, i, rxq) { snprintf(name, sizeof(name), "%s rxq%d-iq", device_get_nameunit(pi->dev), i); init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq, RX_IQ_ESIZE, name); snprintf(name, sizeof(name), "%s rxq%d-fl", device_get_nameunit(pi->dev), i); init_fl(&rxq->fl, pi->qsize_rxq / 8, pi->ifp->if_mtu, name); if (sc->flags & INTR_DIRECT #ifdef TCP_OFFLOAD || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq) #endif ) { rxq->iq.flags |= IQ_INTR; rc = alloc_rxq(pi, rxq, intr_idx, i, oid); if (rc != 0) goto done; intr_idx++; } } #ifdef TCP_OFFLOAD for_each_ofld_rxq(pi, i, ofld_rxq) { snprintf(name, sizeof(name), "%s ofld_rxq%d-iq", device_get_nameunit(pi->dev), i); init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq, RX_IQ_ESIZE, name); snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", device_get_nameunit(pi->dev), i); init_fl(&ofld_rxq->fl, pi->qsize_rxq / 8, MJUM16BYTES, name); if (sc->flags & INTR_DIRECT || (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) { ofld_rxq->iq.flags |= IQ_INTR; rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2); if (rc != 0) goto done; intr_idx++; } } #endif /* * Second pass over all rx queues (NIC and TOE). The queues forwarding * their interrupts are allocated now. */ j = 0; for_each_rxq(pi, i, rxq) { if (rxq->iq.flags & IQ_INTR) continue; intr_idx = port_intr_iq(pi, j)->abs_id; rc = alloc_rxq(pi, rxq, intr_idx, i, oid); if (rc != 0) goto done; j++; } #ifdef TCP_OFFLOAD for_each_ofld_rxq(pi, i, ofld_rxq) { if (ofld_rxq->iq.flags & IQ_INTR) continue; intr_idx = port_intr_iq(pi, j)->abs_id; rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2); if (rc != 0) goto done; j++; } #endif /* * Now the tx queues. Only one pass needed. */ oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD, NULL, "tx queues"); j = 0; for_each_txq(pi, i, txq) { uint16_t iqid; iqid = port_intr_iq(pi, j)->cntxt_id; snprintf(name, sizeof(name), "%s txq%d", device_get_nameunit(pi->dev), i); init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid, name); rc = alloc_txq(pi, txq, i, oid); if (rc != 0) goto done; j++; } #ifdef TCP_OFFLOAD oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq", CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections"); for_each_ofld_txq(pi, i, ofld_txq) { uint16_t iqid; iqid = port_intr_iq(pi, j)->cntxt_id; snprintf(name, sizeof(name), "%s ofld_txq%d", device_get_nameunit(pi->dev), i); init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan, iqid, name); snprintf(name, sizeof(name), "%d", i); oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL, "offload tx queue"); rc = alloc_wrq(sc, pi, ofld_txq, oid2); if (rc != 0) goto done; j++; } #endif /* * Finally, the control queue. */ oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD, NULL, "ctrl queue"); ctrlq = &sc->sge.ctrlq[pi->port_id]; iqid = port_intr_iq(pi, 0)->cntxt_id; snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev)); init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name); rc = alloc_wrq(sc, pi, ctrlq, oid); done: if (rc) t4_teardown_port_queues(pi); return (rc); } /* * Idempotent */ int t4_teardown_port_queues(struct port_info *pi) { int i; struct adapter *sc = pi->adapter; struct sge_rxq *rxq; struct sge_txq *txq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; struct sge_wrq *ofld_txq; #endif /* Do this before freeing the queues */ if (pi->flags & PORT_SYSCTL_CTX) { sysctl_ctx_free(&pi->ctx); pi->flags &= ~PORT_SYSCTL_CTX; } /* * Take down all the tx queues first, as they reference the rx queues * (for egress updates, etc.). */ free_wrq(sc, &sc->sge.ctrlq[pi->port_id]); for_each_txq(pi, i, txq) { free_txq(pi, txq); } #ifdef TCP_OFFLOAD for_each_ofld_txq(pi, i, ofld_txq) { free_wrq(sc, ofld_txq); } #endif /* * Then take down the rx queues that forward their interrupts, as they * reference other rx queues. */ for_each_rxq(pi, i, rxq) { if ((rxq->iq.flags & IQ_INTR) == 0) free_rxq(pi, rxq); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(pi, i, ofld_rxq) { if ((ofld_rxq->iq.flags & IQ_INTR) == 0) free_ofld_rxq(pi, ofld_rxq); } #endif /* * Then take down the rx queues that take direct interrupts. */ for_each_rxq(pi, i, rxq) { if (rxq->iq.flags & IQ_INTR) free_rxq(pi, rxq); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(pi, i, ofld_rxq) { if (ofld_rxq->iq.flags & IQ_INTR) free_ofld_rxq(pi, ofld_rxq); } #endif return (0); } /* * Deals with errors and the firmware event queue. All data rx queues forward * their interrupt to the firmware event queue. */ void t4_intr_all(void *arg) { struct adapter *sc = arg; struct sge_iq *fwq = &sc->sge.fwq; t4_intr_err(arg); if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) { service_iq(fwq, 0); atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE); } } /* Deals with error interrupts */ void t4_intr_err(void *arg) { struct adapter *sc = arg; t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); t4_slow_intr_handler(sc); } void t4_intr_evt(void *arg) { struct sge_iq *iq = arg; if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { service_iq(iq, 0); atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); } } void t4_intr(void *arg) { struct sge_iq *iq = arg; if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { service_iq(iq, 0); atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); } } /* * Deals with anything and everything on the given ingress queue. */ static int service_iq(struct sge_iq *iq, int budget) { struct sge_iq *q; struct sge_rxq *rxq = iq_to_rxq(iq); /* Use iff iq is part of rxq */ struct sge_fl *fl = &rxq->fl; /* Use iff IQ_HAS_FL */ struct adapter *sc = iq->adapter; struct rsp_ctrl *ctrl; const struct rss_header *rss; int ndescs = 0, limit, fl_bufs_used = 0; int rsp_type; uint32_t lq; struct mbuf *m0; STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); limit = budget ? budget : iq->qsize / 8; KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); /* * We always come back and check the descriptor ring for new indirect * interrupts and other responses after running a single handler. */ for (;;) { while (is_new_response(iq, &ctrl)) { rmb(); m0 = NULL; rsp_type = G_RSPD_TYPE(ctrl->u.type_gen); lq = be32toh(ctrl->pldbuflen_qid); rss = (const void *)iq->cdesc; switch (rsp_type) { case X_RSPD_TYPE_FLBUF: KASSERT(iq->flags & IQ_HAS_FL, ("%s: data for an iq (%p) with no freelist", __func__, iq)); m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used); #ifdef T4_PKT_TIMESTAMP /* * 60 bit timestamp for the payload is * *(uint64_t *)m0->m_pktdat. Note that it is * in the leading free-space in the mbuf. The * kernel can clobber it during a pullup, * m_copymdata, etc. You need to make sure that * the mbuf reaches you unmolested if you care * about the timestamp. */ *(uint64_t *)m0->m_pktdat = be64toh(ctrl->u.last_flit) & 0xfffffffffffffff; #endif /* fall through */ case X_RSPD_TYPE_CPL: KASSERT(rss->opcode < NUM_CPL_CMDS, ("%s: bad opcode %02x.", __func__, rss->opcode)); sc->cpl_handler[rss->opcode](iq, rss, m0); break; case X_RSPD_TYPE_INTR: /* * Interrupts should be forwarded only to queues * that are not forwarding their interrupts. * This means service_iq can recurse but only 1 * level deep. */ KASSERT(budget == 0, ("%s: budget %u, rsp_type %u", __func__, budget, rsp_type)); q = sc->sge.iqmap[lq - sc->sge.iq_start]; if (atomic_cmpset_int(&q->state, IQS_IDLE, IQS_BUSY)) { if (service_iq(q, q->qsize / 8) == 0) { atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); } else { STAILQ_INSERT_TAIL(&iql, q, link); } } break; default: sc->an_handler(iq, ctrl); break; } iq_next(iq); if (++ndescs == limit) { t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) | V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); ndescs = 0; if (fl_bufs_used > 0) { FL_LOCK(fl); fl->needed += fl_bufs_used; refill_fl(sc, fl, fl->cap / 8); FL_UNLOCK(fl); fl_bufs_used = 0; } if (budget) return (EINPROGRESS); } } if (STAILQ_EMPTY(&iql)) break; /* * Process the head only, and send it to the back of the list if * it's still not done. */ q = STAILQ_FIRST(&iql); STAILQ_REMOVE_HEAD(&iql, link); if (service_iq(q, q->qsize / 8) == 0) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); else STAILQ_INSERT_TAIL(&iql, q, link); } #if defined(INET) || defined(INET6) if (iq->flags & IQ_LRO_ENABLED) { struct lro_ctrl *lro = &rxq->lro; struct lro_entry *l; while (!SLIST_EMPTY(&lro->lro_active)) { l = SLIST_FIRST(&lro->lro_active); SLIST_REMOVE_HEAD(&lro->lro_active, next); tcp_lro_flush(lro, l); } } #endif t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); if (iq->flags & IQ_HAS_FL) { int starved; FL_LOCK(fl); fl->needed += fl_bufs_used; starved = refill_fl(sc, fl, fl->cap / 4); FL_UNLOCK(fl); if (__predict_false(starved != 0)) add_fl_to_sfl(sc, fl); } return (0); } #ifdef T4_PKT_TIMESTAMP #define RX_COPY_THRESHOLD (MINCLSIZE - 8) #else #define RX_COPY_THRESHOLD MINCLSIZE #endif static struct mbuf * get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf, int *fl_bufs_used) { struct mbuf *m0, *m; struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; unsigned int nbuf, len; /* * No assertion for the fl lock because we don't need it. This routine * is called only from the rx interrupt handler and it only updates * fl->cidx. (Contrast that with fl->pidx/fl->needed which could be * updated in the rx interrupt handler or the starvation helper routine. * That's why code that manipulates fl->pidx/fl->needed needs the fl * lock but this routine does not). */ if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0)) panic("%s: cannot handle packed frames", __func__); len = G_RSPD_LEN(len_newbuf); m0 = sd->m; sd->m = NULL; /* consumed */ bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD); m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR); #ifdef T4_PKT_TIMESTAMP /* Leave room for a timestamp */ m0->m_data += 8; #endif if (len < RX_COPY_THRESHOLD) { /* copy data to mbuf, buffer will be recycled */ bcopy(sd->cl, mtod(m0, caddr_t), len); m0->m_len = len; } else { bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); m_cljset(m0, sd->cl, FL_BUF_TYPE(sd->tag_idx)); sd->cl = NULL; /* consumed */ m0->m_len = min(len, FL_BUF_SIZE(sd->tag_idx)); } m0->m_pkthdr.len = len; sd++; if (__predict_false(++fl->cidx == fl->cap)) { sd = fl->sdesc; fl->cidx = 0; } m = m0; len -= m->m_len; nbuf = 1; /* # of fl buffers used */ while (len > 0) { m->m_next = sd->m; sd->m = NULL; /* consumed */ m = m->m_next; bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD); m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0); if (len <= MLEN) { bcopy(sd->cl, mtod(m, caddr_t), len); m->m_len = len; } else { bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx)); sd->cl = NULL; /* consumed */ m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx)); } sd++; if (__predict_false(++fl->cidx == fl->cap)) { sd = fl->sdesc; fl->cidx = 0; } len -= m->m_len; nbuf++; } (*fl_bufs_used) += nbuf; return (m0); } static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) { struct sge_rxq *rxq = iq_to_rxq(iq); struct ifnet *ifp = rxq->ifp; const struct cpl_rx_pkt *cpl = (const void *)(rss + 1); #if defined(INET) || defined(INET6) struct lro_ctrl *lro = &rxq->lro; #endif KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__, rss->opcode)); m0->m_pkthdr.len -= FL_PKTSHIFT; m0->m_len -= FL_PKTSHIFT; m0->m_data += FL_PKTSHIFT; m0->m_pkthdr.rcvif = ifp; m0->m_flags |= M_FLOWID; m0->m_pkthdr.flowid = rss->hash_val; if (cpl->csum_calc && !cpl->err_vec) { if (ifp->if_capenable & IFCAP_RXCSUM && cpl->l2info & htobe32(F_RXF_IP)) { m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); rxq->rxcsum++; } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 && cpl->l2info & htobe32(F_RXF_IP6)) { m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR); rxq->rxcsum++; } if (__predict_false(cpl->ip_frag)) m0->m_pkthdr.csum_data = be16toh(cpl->csum); else m0->m_pkthdr.csum_data = 0xffff; } if (cpl->vlan_ex) { m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); m0->m_flags |= M_VLANTAG; rxq->vlan_extraction++; } #if defined(INET) || defined(INET6) if (cpl->l2info & htobe32(F_RXF_LRO) && iq->flags & IQ_LRO_ENABLED && tcp_lro_rx(lro, m0, 0) == 0) { /* queued for LRO */ } else #endif ifp->if_input(ifp, m0); return (0); } /* * Doesn't fail. Holds on to work requests it can't send right away. */ void t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) { struct sge_eq *eq = &wrq->eq; int can_reclaim; caddr_t dst; TXQ_LOCK_ASSERT_OWNED(wrq); #ifdef TCP_OFFLOAD KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD || (eq->flags & EQ_TYPEMASK) == EQ_CTRL, ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); #else KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL, ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); #endif if (__predict_true(wr != NULL)) STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); can_reclaim = reclaimable(eq); if (__predict_false(eq->flags & EQ_STALLED)) { if (can_reclaim < tx_resume_threshold(eq)) return; eq->flags &= ~EQ_STALLED; eq->unstalled++; } eq->cidx += can_reclaim; eq->avail += can_reclaim; if (__predict_false(eq->cidx >= eq->cap)) eq->cidx -= eq->cap; while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { int ndesc; if (__predict_false(wr->wr_len < 0 || wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) { #ifdef INVARIANTS panic("%s: work request with length %d", __func__, wr->wr_len); #endif #ifdef KDB kdb_backtrace(); #endif log(LOG_ERR, "%s: %s work request with length %d", device_get_nameunit(sc->dev), __func__, wr->wr_len); STAILQ_REMOVE_HEAD(&wrq->wr_list, link); free_wrqe(wr); continue; } ndesc = howmany(wr->wr_len, EQ_ESIZE); if (eq->avail < ndesc) { wrq->no_desc++; break; } dst = (void *)&eq->desc[eq->pidx]; copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len); eq->pidx += ndesc; eq->avail -= ndesc; if (__predict_false(eq->pidx >= eq->cap)) eq->pidx -= eq->cap; eq->pending += ndesc; if (eq->pending > 16) ring_eq_db(sc, eq); wrq->tx_wrs++; STAILQ_REMOVE_HEAD(&wrq->wr_list, link); free_wrqe(wr); if (eq->avail < 8) { can_reclaim = reclaimable(eq); eq->cidx += can_reclaim; eq->avail += can_reclaim; if (__predict_false(eq->cidx >= eq->cap)) eq->cidx -= eq->cap; } } if (eq->pending) ring_eq_db(sc, eq); if (wr != NULL) { eq->flags |= EQ_STALLED; if (callout_pending(&eq->tx_callout) == 0) callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); } } /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */ #define TXPKTS_PKT_HDR ((\ sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata) + \ sizeof(struct cpl_tx_pkt_core) \ ) / 8) /* Header of a coalesced tx WR, before SGL of first packet (in flits) */ #define TXPKTS_WR_HDR (\ sizeof(struct fw_eth_tx_pkts_wr) / 8 + \ TXPKTS_PKT_HDR) /* Header of a tx WR, before SGL of first packet (in flits) */ #define TXPKT_WR_HDR ((\ sizeof(struct fw_eth_tx_pkt_wr) + \ sizeof(struct cpl_tx_pkt_core) \ ) / 8 ) /* Header of a tx LSO WR, before SGL of first packet (in flits) */ #define TXPKT_LSO_WR_HDR ((\ sizeof(struct fw_eth_tx_pkt_wr) + \ sizeof(struct cpl_tx_pkt_lso_core) + \ sizeof(struct cpl_tx_pkt_core) \ ) / 8 ) int t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m) { struct port_info *pi = (void *)ifp->if_softc; struct adapter *sc = pi->adapter; struct sge_eq *eq = &txq->eq; struct buf_ring *br = txq->br; struct mbuf *next; int rc, coalescing, can_reclaim; struct txpkts txpkts; struct sgl sgl; TXQ_LOCK_ASSERT_OWNED(txq); KASSERT(m, ("%s: called with nothing to do.", __func__)); KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH, ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK)); prefetch(&eq->desc[eq->pidx]); prefetch(&txq->sdesc[eq->pidx]); txpkts.npkt = 0;/* indicates there's nothing in txpkts */ coalescing = 0; can_reclaim = reclaimable(eq); if (__predict_false(eq->flags & EQ_STALLED)) { if (can_reclaim < tx_resume_threshold(eq)) { txq->m = m; return (0); } eq->flags &= ~EQ_STALLED; eq->unstalled++; } if (__predict_false(eq->flags & EQ_DOOMED)) { m_freem(m); while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) m_freem(m); return (ENETDOWN); } if (eq->avail < 8 && can_reclaim) reclaim_tx_descs(txq, can_reclaim, 32); for (; m; m = next ? next : drbr_dequeue(ifp, br)) { if (eq->avail < 8) break; next = m->m_nextpkt; m->m_nextpkt = NULL; if (next || buf_ring_peek(br)) coalescing = 1; rc = get_pkt_sgl(txq, &m, &sgl, coalescing); if (rc != 0) { if (rc == ENOMEM) { /* Short of resources, suspend tx */ m->m_nextpkt = next; break; } /* * Unrecoverable error for this packet, throw it away * and move on to the next. get_pkt_sgl may already * have freed m (it will be NULL in that case and the * m_freem here is still safe). */ m_freem(m); continue; } if (coalescing && add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) { /* Successfully absorbed into txpkts */ write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl); goto doorbell; } /* * We weren't coalescing to begin with, or current frame could * not be coalesced (add_to_txpkts flushes txpkts if a frame * given to it can't be coalesced). Either way there should be * nothing in txpkts. */ KASSERT(txpkts.npkt == 0, ("%s: txpkts not empty: %d", __func__, txpkts.npkt)); /* We're sending out individual packets now */ coalescing = 0; if (eq->avail < 8) reclaim_tx_descs(txq, 0, 8); rc = write_txpkt_wr(pi, txq, m, &sgl); if (rc != 0) { /* Short of hardware descriptors, suspend tx */ /* * This is an unlikely but expensive failure. We've * done all the hard work (DMA mappings etc.) and now we * can't send out the packet. What's worse, we have to * spend even more time freeing up everything in sgl. */ txq->no_desc++; free_pkt_sgl(txq, &sgl); m->m_nextpkt = next; break; } ETHER_BPF_MTAP(ifp, m); if (sgl.nsegs == 0) m_freem(m); doorbell: if (eq->pending >= 64) ring_eq_db(sc, eq); can_reclaim = reclaimable(eq); if (can_reclaim >= 32) reclaim_tx_descs(txq, can_reclaim, 64); } if (txpkts.npkt > 0) write_txpkts_wr(txq, &txpkts); /* * m not NULL means there was an error but we haven't thrown it away. * This can happen when we're short of tx descriptors (no_desc) or maybe * even DMA maps (no_dmamap). Either way, a credit flush and reclaim * will get things going again. */ if (m && !(eq->flags & EQ_CRFLUSHED)) { struct tx_sdesc *txsd = &txq->sdesc[eq->pidx]; /* * If EQ_CRFLUSHED is not set then we know we have at least one * available descriptor because any WR that reduces eq->avail to * 0 also sets EQ_CRFLUSHED. */ KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__)); txsd->desc_used = 1; txsd->credits = 0; write_eqflush_wr(eq); } txq->m = m; if (eq->pending) ring_eq_db(sc, eq); reclaim_tx_descs(txq, 0, 128); if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0) callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq); return (0); } void t4_update_fl_bufsize(struct ifnet *ifp) { struct port_info *pi = ifp->if_softc; struct sge_rxq *rxq; struct sge_fl *fl; int i, bufsize; /* large enough for a frame even when VLAN extraction is disabled */ bufsize = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu; bufsize = roundup(bufsize + FL_PKTSHIFT, fl_pad); for_each_rxq(pi, i, rxq) { fl = &rxq->fl; FL_LOCK(fl); set_fl_tag_idx(fl, bufsize); FL_UNLOCK(fl); } } int can_resume_tx(struct sge_eq *eq) { return (reclaimable(eq) >= tx_resume_threshold(eq)); } static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, int qsize, int esize, char *name) { KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, ("%s: bad tmr_idx %d", __func__, tmr_idx)); KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ ("%s: bad pktc_idx %d", __func__, pktc_idx)); iq->flags = 0; iq->adapter = sc; iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); iq->intr_pktc_idx = SGE_NCOUNTERS - 1; if (pktc_idx >= 0) { iq->intr_params |= F_QINTR_CNT_EN; iq->intr_pktc_idx = pktc_idx; } iq->qsize = roundup(qsize, 16); /* See FW_IQ_CMD/iqsize */ iq->esize = max(esize, 16); /* See FW_IQ_CMD/iqesize */ strlcpy(iq->lockname, name, sizeof(iq->lockname)); } static inline void init_fl(struct sge_fl *fl, int qsize, int bufsize, char *name) { fl->qsize = qsize; strlcpy(fl->lockname, name, sizeof(fl->lockname)); set_fl_tag_idx(fl, bufsize); } static inline void init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan, uint16_t iqid, char *name) { KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan)); KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype)); eq->flags = eqtype & EQ_TYPEMASK; eq->tx_chan = tx_chan; eq->iqid = iqid; eq->qsize = qsize; strlcpy(eq->lockname, name, sizeof(eq->lockname)); TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq); callout_init(&eq->tx_callout, CALLOUT_MPSAFE); } static int alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, bus_dmamap_t *map, bus_addr_t *pa, void **va) { int rc; rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); if (rc != 0) { device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc); goto done; } rc = bus_dmamem_alloc(*tag, va, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); if (rc != 0) { device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc); goto done; } rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); if (rc != 0) { device_printf(sc->dev, "cannot load DMA map: %d\n", rc); goto done; } done: if (rc) free_ring(sc, *tag, *map, *pa, *va); return (rc); } static int free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, bus_addr_t pa, void *va) { if (pa) bus_dmamap_unload(tag, map); if (va) bus_dmamem_free(tag, va, map); if (tag) bus_dma_tag_destroy(tag); return (0); } /* * Allocates the ring for an ingress queue and an optional freelist. If the * freelist is specified it will be allocated and then associated with the * ingress queue. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. * * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then * the intr_idx specifies the vector, starting from 0. Otherwise it specifies * the abs_id of the ingress queue to which its interrupts should be forwarded. */ static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl, int intr_idx, int cong) { int rc, i, cntxt_id; size_t len; struct fw_iq_cmd c; struct adapter *sc = iq->adapter; __be32 v = 0; len = iq->qsize * iq->esize; rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, (void **)&iq->desc); if (rc != 0) return (rc); bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | V_FW_IQ_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | FW_LEN16(c)); /* Special handling for firmware event queue */ if (iq == &sc->sge.fwq) v |= F_FW_IQ_CMD_IQASYNCH; if (iq->flags & IQ_INTR) { KASSERT(intr_idx < sc->intr_count, ("%s: invalid direct intr_idx %d", __func__, intr_idx)); } else v |= F_FW_IQ_CMD_IQANDST; v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx); c.type_to_iqandstindex = htobe32(v | V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | V_FW_IQ_CMD_VIID(pi->viid) | V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | F_FW_IQ_CMD_IQGTSMODE | V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4)); c.iqsize = htobe16(iq->qsize); c.iqaddr = htobe64(iq->ba); if (cong >= 0) c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); if (fl) { mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); for (i = 0; i < FL_BUF_SIZES; i++) { /* * A freelist buffer must be 16 byte aligned as the SGE * uses the low 4 bits of the bus addr to figure out the * buffer size. */ rc = bus_dma_tag_create(sc->dmat, 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW, NULL, NULL, &fl->tag[i]); if (rc != 0) { device_printf(sc->dev, "failed to create fl DMA tag[%d]: %d\n", i, rc); return (rc); } } len = fl->qsize * RX_FL_ESIZE; rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, &fl->ba, (void **)&fl->desc); if (rc) return (rc); /* Allocate space for one software descriptor per buffer. */ fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8; FL_LOCK(fl); rc = alloc_fl_sdesc(fl); FL_UNLOCK(fl); if (rc != 0) { device_printf(sc->dev, "failed to setup fl software descriptors: %d\n", rc); return (rc); } fl->needed = fl->cap; fl->lowat = roundup(sc->sge.fl_starve_threshold, 8); c.iqns_to_fl0congen |= htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | F_FW_IQ_CMD_FL0PADEN); if (cong >= 0) { c.iqns_to_fl0congen |= htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | F_FW_IQ_CMD_FL0CONGCIF | F_FW_IQ_CMD_FL0CONGEN); } c.fl0dcaen_to_fl0cidxfthresh = htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) | V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B)); c.fl0size = htobe16(fl->qsize); c.fl0addr = htobe64(fl->ba); } rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(sc->dev, "failed to create ingress queue: %d\n", rc); return (rc); } iq->cdesc = iq->desc; iq->cidx = 0; iq->gen = 1; iq->intr_next = iq->intr_params; iq->cntxt_id = be16toh(c.iqid); iq->abs_id = be16toh(c.physiqid); iq->flags |= IQ_ALLOCATED; cntxt_id = iq->cntxt_id - sc->sge.iq_start; if (cntxt_id >= sc->sge.niq) { panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.niq - 1); } sc->sge.iqmap[cntxt_id] = iq; if (fl) { fl->cntxt_id = be16toh(c.fl0id); fl->pidx = fl->cidx = 0; cntxt_id = fl->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) { panic("%s: fl->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); } sc->sge.eqmap[cntxt_id] = (void *)fl; FL_LOCK(fl); /* Enough to make sure the SGE doesn't think it's starved */ refill_fl(sc, fl, fl->lowat); FL_UNLOCK(fl); iq->flags |= IQ_HAS_FL; } /* Enable IQ interrupts */ atomic_store_rel_int(&iq->state, IQS_IDLE); t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) | V_INGRESSQID(iq->cntxt_id)); return (0); } static int free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl) { int i, rc; struct adapter *sc = iq->adapter; device_t dev; if (sc == NULL) return (0); /* nothing to do */ dev = pi ? pi->dev : sc->dev; if (iq->flags & IQ_ALLOCATED) { rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff); if (rc != 0) { device_printf(dev, "failed to free queue %p: %d\n", iq, rc); return (rc); } iq->flags &= ~IQ_ALLOCATED; } free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); bzero(iq, sizeof(*iq)); if (fl) { free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc); if (fl->sdesc) { FL_LOCK(fl); free_fl_sdesc(fl); FL_UNLOCK(fl); } if (mtx_initialized(&fl->fl_lock)) mtx_destroy(&fl->fl_lock); for (i = 0; i < FL_BUF_SIZES; i++) { if (fl->tag[i]) bus_dma_tag_destroy(fl->tag[i]); } bzero(fl, sizeof(*fl)); } return (0); } static int alloc_fwq(struct adapter *sc) { int rc, intr_idx; struct sge_iq *fwq = &sc->sge.fwq; char name[16]; struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%s fwq", device_get_nameunit(sc->dev)); init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE, name); fwq->flags |= IQ_INTR; /* always */ intr_idx = sc->intr_count > 1 ? 1 : 0; rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1); if (rc != 0) { device_printf(sc->dev, "failed to create firmware event queue: %d\n", rc); return (rc); } oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD, NULL, "firmware event queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id", CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I", "absolute id of the queue"); SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I", "consumer index"); return (0); } static int free_fwq(struct adapter *sc) { return free_iq_fl(NULL, &sc->sge.fwq, NULL); } static int alloc_mgmtq(struct adapter *sc) { int rc; struct sge_wrq *mgmtq = &sc->sge.mgmtq; char name[16]; struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev); struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD, NULL, "management queue"); snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev)); init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan, sc->sge.fwq.cntxt_id, name); rc = alloc_wrq(sc, NULL, mgmtq, oid); if (rc != 0) { device_printf(sc->dev, "failed to create management queue: %d\n", rc); return (rc); } return (0); } static int free_mgmtq(struct adapter *sc) { return free_wrq(sc, &sc->sge.mgmtq); } static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx, struct sysctl_oid *oid) { int rc; struct sysctl_oid_list *children; char name[16]; rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, 1 << pi->tx_chan); if (rc != 0) return (rc); FL_LOCK(&rxq->fl); refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8); FL_UNLOCK(&rxq->fl); #if defined(INET) || defined(INET6) rc = tcp_lro_init(&rxq->lro); if (rc != 0) return (rc); rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */ if (pi->ifp->if_capenable & IFCAP_LRO) rxq->iq.flags |= IQ_LRO_ENABLED; #endif rxq->ifp = pi->ifp; children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "rx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id", CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I", "absolute id of the queue"); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I", "consumer index"); #if defined(INET) || defined(INET6) SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, &rxq->lro.lro_queued, 0, NULL); SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, &rxq->lro.lro_flushed, 0, NULL); #endif SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, &rxq->rxcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD, &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag"); children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, "freelist"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &rxq->fl.cidx, 0, "consumer index"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &rxq->fl.pidx, 0, "producer index"); return (rc); } static int free_rxq(struct port_info *pi, struct sge_rxq *rxq) { int rc; #if defined(INET) || defined(INET6) if (rxq->lro.ifp) { tcp_lro_free(&rxq->lro); rxq->lro.ifp = NULL; } #endif rc = free_iq_fl(pi, &rxq->iq, &rxq->fl); if (rc == 0) bzero(rxq, sizeof(*rxq)); return (rc); } #ifdef TCP_OFFLOAD static int alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq, int intr_idx, int idx, struct sysctl_oid *oid) { int rc; struct sysctl_oid_list *children; char name[16]; rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 1 << pi->tx_chan); if (rc != 0) return (rc); children = SYSCTL_CHILDREN(oid); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "rx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id", CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16, "I", "absolute id of the queue"); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I", "consumer index"); children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL, "freelist"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16, "I", "SGE context id of the queue"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &ofld_rxq->fl.cidx, 0, "consumer index"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &ofld_rxq->fl.pidx, 0, "producer index"); return (rc); } static int free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq) { int rc; rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl); if (rc == 0) bzero(ofld_rxq, sizeof(*ofld_rxq)); return (rc); } #endif static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_ctrl_cmd c; bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | V_FW_EQ_CTRL_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */ c.physeqid_pkd = htobe32(0); c.fetchszm_to_iqid = htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(sc->dev, "failed to create control queue %d: %d\n", eq->tx_chan, rc); return (rc); } eq->flags |= EQ_ALLOCATED; eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } static int eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_eth_cmd c; bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | V_FW_EQ_ETH_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid)); c.fetchszm_to_iqid = htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(pi->dev, "failed to create Ethernet egress queue: %d\n", rc); return (rc); } eq->flags |= EQ_ALLOCATED; eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } #ifdef TCP_OFFLOAD static int ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_ofld_cmd c; bzero(&c, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | V_FW_EQ_OFLD_CMD_VFN(0)); c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); c.fetchszm_to_iqid = htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) | V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) | V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(pi->dev, "failed to create egress queue for TCP offload: %d\n", rc); return (rc); } eq->flags |= EQ_ALLOCATED; eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.neq) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.neq - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } #endif static int alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq) { int rc; size_t len; mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); len = eq->qsize * EQ_ESIZE; rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba, (void **)&eq->desc); if (rc) return (rc); eq->cap = eq->qsize - spg_len / EQ_ESIZE; eq->spg = (void *)&eq->desc[eq->cap]; eq->avail = eq->cap - 1; /* one less to avoid cidx = pidx */ eq->pidx = eq->cidx = 0; switch (eq->flags & EQ_TYPEMASK) { case EQ_CTRL: rc = ctrl_eq_alloc(sc, eq); break; case EQ_ETH: rc = eth_eq_alloc(sc, pi, eq); break; #ifdef TCP_OFFLOAD case EQ_OFLD: rc = ofld_eq_alloc(sc, pi, eq); break; #endif default: panic("%s: invalid eq type %d.", __func__, eq->flags & EQ_TYPEMASK); } if (rc != 0) { device_printf(sc->dev, "failed to allocate egress queue(%d): %d", eq->flags & EQ_TYPEMASK, rc); } eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus; return (rc); } static int free_eq(struct adapter *sc, struct sge_eq *eq) { int rc; if (eq->flags & EQ_ALLOCATED) { switch (eq->flags & EQ_TYPEMASK) { case EQ_CTRL: rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; case EQ_ETH: rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; #ifdef TCP_OFFLOAD case EQ_OFLD: rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; #endif default: panic("%s: invalid eq type %d.", __func__, eq->flags & EQ_TYPEMASK); } if (rc != 0) { device_printf(sc->dev, "failed to free egress queue (%d): %d\n", eq->flags & EQ_TYPEMASK, rc); return (rc); } eq->flags &= ~EQ_ALLOCATED; } free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); if (mtx_initialized(&eq->eq_lock)) mtx_destroy(&eq->eq_lock); bzero(eq, sizeof(*eq)); return (0); } static int alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq, struct sysctl_oid *oid) { int rc; struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx; struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); rc = alloc_eq(sc, pi, &wrq->eq); if (rc) return (rc); wrq->adapter = sc; STAILQ_INIT(&wrq->wr_list); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &wrq->eq.cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I", "consumer index"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx", CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I", "producer index"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD, &wrq->tx_wrs, "# of work requests"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD, &wrq->no_desc, 0, "# of times queue ran out of hardware descriptors"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD, &wrq->eq.unstalled, 0, "# of times queue recovered after stall"); return (rc); } static int free_wrq(struct adapter *sc, struct sge_wrq *wrq) { int rc; rc = free_eq(sc, &wrq->eq); if (rc) return (rc); bzero(wrq, sizeof(*wrq)); return (0); } static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx, struct sysctl_oid *oid) { int rc; struct adapter *sc = pi->adapter; struct sge_eq *eq = &txq->eq; char name[16]; struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); rc = alloc_eq(sc, pi, eq); if (rc) return (rc); txq->ifp = pi->ifp; txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE, M_ZERO | M_WAITOK); txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock); rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag); if (rc != 0) { device_printf(sc->dev, "failed to create tx DMA tag: %d\n", rc); return (rc); } /* * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE * limit for any WR). txq->no_dmamap events shouldn't occur if maps is * sized for the worst case. */ rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8, M_WAITOK); if (rc != 0) { device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc); return (rc); } snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL, "tx queue"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &eq->cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx", CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I", "consumer index"); SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx", CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I", "producer index"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, &txq->txcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD, &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, &txq->tso_wrs, "# of TSO work requests"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, &txq->imm_wrs, "# of work requests with immediate data"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, &txq->sgl_wrs, "# of work requests with direct SGL"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD, &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)"); SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD, &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD, &txq->no_dmamap, 0, "# of times txq ran out of DMA maps"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD, &txq->no_desc, 0, "# of times txq ran out of hardware descriptors"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD, &eq->egr_update, 0, "egress update notifications from the SGE"); SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD, &eq->unstalled, 0, "# of times txq recovered after stall"); return (rc); } static int free_txq(struct port_info *pi, struct sge_txq *txq) { int rc; struct adapter *sc = pi->adapter; struct sge_eq *eq = &txq->eq; rc = free_eq(sc, eq); if (rc) return (rc); free(txq->sdesc, M_CXGBE); if (txq->txmaps.maps) t4_free_tx_maps(&txq->txmaps, txq->tx_tag); buf_ring_free(txq->br, M_CXGBE); if (txq->tx_tag) bus_dma_tag_destroy(txq->tx_tag); bzero(txq, sizeof(*txq)); return (0); } static void oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *ba = arg; KASSERT(nseg == 1, ("%s meant for single segment mappings only.", __func__)); *ba = error ? 0 : segs->ds_addr; } static inline bool is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl) { *ctrl = (void *)((uintptr_t)iq->cdesc + (iq->esize - sizeof(struct rsp_ctrl))); return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen); } static inline void iq_next(struct sge_iq *iq) { iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize); if (__predict_false(++iq->cidx == iq->qsize - 1)) { iq->cidx = 0; iq->gen ^= 1; iq->cdesc = iq->desc; } } #define FL_HW_IDX(x) ((x) >> 3) static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl) { int ndesc = fl->pending / 8; if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx)) ndesc--; /* hold back one credit */ if (ndesc <= 0) return; /* nothing to do */ wmb(); t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc)); fl->pending -= ndesc * 8; } /* * Fill up the freelist by upto nbufs and maybe ring its doorbell. * * Returns non-zero to indicate that it should be added to the list of starving * freelists. */ static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs) { __be64 *d = &fl->desc[fl->pidx]; struct fl_sdesc *sd = &fl->sdesc[fl->pidx]; bus_dma_tag_t tag; bus_addr_t pa; caddr_t cl; int rc; FL_LOCK_ASSERT_OWNED(fl); if (nbufs > fl->needed) nbufs = fl->needed; while (nbufs--) { if (sd->cl != NULL) { /* * This happens when a frame small enough to fit * entirely in an mbuf was received in cl last time. * We'd held on to cl and can reuse it now. Note that * we reuse a cluster of the old size if fl->tag_idx is * no longer the same as sd->tag_idx. */ KASSERT(*d == sd->ba_tag, ("%s: recyling problem at pidx %d", __func__, fl->pidx)); d++; goto recycled; } if (fl->tag_idx != sd->tag_idx) { bus_dmamap_t map; bus_dma_tag_t newtag = fl->tag[fl->tag_idx]; bus_dma_tag_t oldtag = fl->tag[sd->tag_idx]; /* * An MTU change can get us here. Discard the old map * which was created with the old tag, but only if * we're able to get a new one. */ rc = bus_dmamap_create(newtag, 0, &map); if (rc == 0) { bus_dmamap_destroy(oldtag, sd->map); sd->map = map; sd->tag_idx = fl->tag_idx; } } tag = fl->tag[sd->tag_idx]; cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx)); if (cl == NULL) break; rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx), oneseg_dma_callback, &pa, 0); if (rc != 0 || pa == 0) { fl->dmamap_failed++; uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl); break; } sd->cl = cl; *d++ = htobe64(pa | sd->tag_idx); #ifdef INVARIANTS sd->ba_tag = htobe64(pa | sd->tag_idx); #endif recycled: /* sd->m is never recycled, should always be NULL */ KASSERT(sd->m == NULL, ("%s: stray mbuf", __func__)); sd->m = m_gethdr(M_NOWAIT, MT_NOINIT); if (sd->m == NULL) break; fl->pending++; fl->needed--; sd++; if (++fl->pidx == fl->cap) { fl->pidx = 0; sd = fl->sdesc; d = fl->desc; } } if (fl->pending >= 8) ring_fl_db(sc, fl); return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); } /* * Attempt to refill all starving freelists. */ static void refill_sfl(void *arg) { struct adapter *sc = arg; struct sge_fl *fl, *fl_temp; mtx_lock(&sc->sfl_lock); TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { FL_LOCK(fl); refill_fl(sc, fl, 64); if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { TAILQ_REMOVE(&sc->sfl, fl, link); fl->flags &= ~FL_STARVING; } FL_UNLOCK(fl); } if (!TAILQ_EMPTY(&sc->sfl)) callout_schedule(&sc->sfl_callout, hz / 5); mtx_unlock(&sc->sfl_lock); } static int alloc_fl_sdesc(struct sge_fl *fl) { struct fl_sdesc *sd; bus_dma_tag_t tag; int i, rc; FL_LOCK_ASSERT_OWNED(fl); fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE, M_ZERO | M_WAITOK); tag = fl->tag[fl->tag_idx]; sd = fl->sdesc; for (i = 0; i < fl->cap; i++, sd++) { sd->tag_idx = fl->tag_idx; rc = bus_dmamap_create(tag, 0, &sd->map); if (rc != 0) goto failed; } return (0); failed: while (--i >= 0) { sd--; bus_dmamap_destroy(tag, sd->map); if (sd->m) { m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0); m_free(sd->m); sd->m = NULL; } } KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__)); free(fl->sdesc, M_CXGBE); fl->sdesc = NULL; return (rc); } static void free_fl_sdesc(struct sge_fl *fl) { struct fl_sdesc *sd; int i; FL_LOCK_ASSERT_OWNED(fl); sd = fl->sdesc; for (i = 0; i < fl->cap; i++, sd++) { if (sd->m) { m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0); m_free(sd->m); sd->m = NULL; } if (sd->cl) { bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map); uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl); sd->cl = NULL; } bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map); } free(fl->sdesc, M_CXGBE); fl->sdesc = NULL; } int t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count, int flags) { struct tx_map *txm; int i, rc; txmaps->map_total = txmaps->map_avail = count; txmaps->map_cidx = txmaps->map_pidx = 0; txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE, M_ZERO | flags); txm = txmaps->maps; for (i = 0; i < count; i++, txm++) { rc = bus_dmamap_create(tx_tag, 0, &txm->map); if (rc != 0) goto failed; } return (0); failed: while (--i >= 0) { txm--; bus_dmamap_destroy(tx_tag, txm->map); } KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__)); free(txmaps->maps, M_CXGBE); txmaps->maps = NULL; return (rc); } void t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag) { struct tx_map *txm; int i; txm = txmaps->maps; for (i = 0; i < txmaps->map_total; i++, txm++) { if (txm->m) { bus_dmamap_unload(tx_tag, txm->map); m_freem(txm->m); txm->m = NULL; } bus_dmamap_destroy(tx_tag, txm->map); } free(txmaps->maps, M_CXGBE); txmaps->maps = NULL; } /* * We'll do immediate data tx for non-TSO, but only when not coalescing. We're * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes * of immediate data. */ #define IMM_LEN ( \ 2 * EQ_ESIZE \ - sizeof(struct fw_eth_tx_pkt_wr) \ - sizeof(struct cpl_tx_pkt_core)) /* * Returns non-zero on failure, no need to cleanup anything in that case. * * Note 1: We always try to defrag the mbuf if required and return EFBIG only * if the resulting chain still won't fit in a tx descriptor. * * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf * does not have the TCP header in it. */ static int get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl, int sgl_only) { struct mbuf *m = *fp; struct tx_maps *txmaps; struct tx_map *txm; int rc, defragged = 0, n; TXQ_LOCK_ASSERT_OWNED(txq); if (m->m_pkthdr.tso_segsz) sgl_only = 1; /* Do not allow immediate data with LSO */ start: sgl->nsegs = 0; if (m->m_pkthdr.len <= IMM_LEN && !sgl_only) return (0); /* nsegs = 0 tells caller to use imm. tx */ txmaps = &txq->txmaps; if (txmaps->map_avail == 0) { txq->no_dmamap++; return (ENOMEM); } txm = &txmaps->maps[txmaps->map_pidx]; if (m->m_pkthdr.tso_segsz && m->m_len < 50) { *fp = m_pullup(m, 50); m = *fp; if (m == NULL) return (ENOBUFS); } rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg, &sgl->nsegs, BUS_DMA_NOWAIT); if (rc == EFBIG && defragged == 0) { m = m_defrag(m, M_DONTWAIT); if (m == NULL) return (EFBIG); defragged = 1; *fp = m; goto start; } if (rc != 0) return (rc); txm->m = m; txmaps->map_avail--; if (++txmaps->map_pidx == txmaps->map_total) txmaps->map_pidx = 0; KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS, ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs)); /* * Store the # of flits required to hold this frame's SGL in nflits. An * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by * multiple (len0 + len1, addr0, addr1) tuples. If addr1 is not used * then len1 must be set to 0. */ n = sgl->nsegs - 1; sgl->nflits = (3 * n) / 2 + (n & 1) + 2; return (0); } /* * Releases all the txq resources used up in the specified sgl. */ static int free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl) { struct tx_maps *txmaps; struct tx_map *txm; TXQ_LOCK_ASSERT_OWNED(txq); if (sgl->nsegs == 0) return (0); /* didn't use any map */ txmaps = &txq->txmaps; /* 1 pkt uses exactly 1 map, back it out */ txmaps->map_avail++; if (txmaps->map_pidx > 0) txmaps->map_pidx--; else txmaps->map_pidx = txmaps->map_total - 1; txm = &txmaps->maps[txmaps->map_pidx]; bus_dmamap_unload(txq->tx_tag, txm->map); txm->m = NULL; return (0); } static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m, struct sgl *sgl) { struct sge_eq *eq = &txq->eq; struct fw_eth_tx_pkt_wr *wr; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; /* used in many unrelated places */ uint64_t ctrl1; int nflits, ndesc, pktlen; struct tx_sdesc *txsd; caddr_t dst; TXQ_LOCK_ASSERT_OWNED(txq); pktlen = m->m_pkthdr.len; /* * Do we have enough flits to send this frame out? */ ctrl = sizeof(struct cpl_tx_pkt_core); if (m->m_pkthdr.tso_segsz) { nflits = TXPKT_LSO_WR_HDR; ctrl += sizeof(struct cpl_tx_pkt_lso_core); } else nflits = TXPKT_WR_HDR; if (sgl->nsegs > 0) nflits += sgl->nflits; else { nflits += howmany(pktlen, 8); ctrl += pktlen; } ndesc = howmany(nflits, 8); if (ndesc > eq->avail) return (ENOMEM); /* Firmware work request header */ wr = (void *)&eq->desc[eq->pidx]; wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); ctrl = V_FW_WR_LEN16(howmany(nflits, 2)); if (eq->avail == ndesc) { if (!(eq->flags & EQ_CRFLUSHED)) { ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; eq->flags |= EQ_CRFLUSHED; } eq->flags |= EQ_STALLED; } wr->equiq_to_len16 = htobe32(ctrl); wr->r3 = 0; if (m->m_pkthdr.tso_segsz) { struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); struct ether_header *eh; void *l3hdr; #if defined(INET) || defined(INET6) struct tcphdr *tcp; #endif uint16_t eh_type; ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE; eh = mtod(m, struct ether_header *); eh_type = ntohs(eh->ether_type); if (eh_type == ETHERTYPE_VLAN) { struct ether_vlan_header *evh = (void *)eh; ctrl |= V_LSO_ETHHDR_LEN(1); l3hdr = evh + 1; eh_type = ntohs(evh->evl_proto); } else l3hdr = eh + 1; switch (eh_type) { #ifdef INET6 case ETHERTYPE_IPV6: { struct ip6_hdr *ip6 = l3hdr; /* * XXX-BZ For now we do not pretend to support * IPv6 extension headers. */ KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO " "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt)); tcp = (struct tcphdr *)(ip6 + 1); ctrl |= F_LSO_IPV6; ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) | V_LSO_TCPHDR_LEN(tcp->th_off); break; } #endif #ifdef INET case ETHERTYPE_IP: { struct ip *ip = l3hdr; tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4); ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) | V_LSO_TCPHDR_LEN(tcp->th_off); break; } #endif default: panic("%s: CSUM_TSO but no supported IP version " "(0x%04x)", __func__, eh_type); } lso->lso_ctrl = htobe32(ctrl); lso->ipid_ofst = htobe16(0); lso->mss = htobe16(m->m_pkthdr.tso_segsz); lso->seqno_offset = htobe32(0); lso->len = htobe32(pktlen); cpl = (void *)(lso + 1); txq->tso_wrs++; } else cpl = (void *)(wr + 1); /* Checksum offload */ ctrl1 = 0; if (!(m->m_pkthdr.csum_flags & CSUM_IP)) ctrl1 |= F_TXPKT_IPCSUM_DIS; if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6))) ctrl1 |= F_TXPKT_L4CSUM_DIS; if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (m->m_flags & M_VLANTAG) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); cpl->pack = 0; cpl->len = htobe16(pktlen); cpl->ctrl1 = htobe64(ctrl1); /* Software descriptor */ txsd = &txq->sdesc[eq->pidx]; txsd->desc_used = ndesc; eq->pending += ndesc; eq->avail -= ndesc; eq->pidx += ndesc; if (eq->pidx >= eq->cap) eq->pidx -= eq->cap; /* SGL */ dst = (void *)(cpl + 1); if (sgl->nsegs > 0) { txsd->credits = 1; txq->sgl_wrs++; write_sgl_to_txd(eq, sgl, &dst); } else { txsd->credits = 0; txq->imm_wrs++; for (; m; m = m->m_next) { copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); #ifdef INVARIANTS pktlen -= m->m_len; #endif } #ifdef INVARIANTS KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); #endif } txq->txpkt_wrs++; return (0); } /* * Returns 0 to indicate that m has been accepted into a coalesced tx work * request. It has either been folded into txpkts or txpkts was flushed and m * has started a new coalesced work request (as the first frame in a fresh * txpkts). * * Returns non-zero to indicate a failure - caller is responsible for * transmitting m, if there was anything in txpkts it has been flushed. */ static int add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl) { struct sge_eq *eq = &txq->eq; int can_coalesce; struct tx_sdesc *txsd; int flits; TXQ_LOCK_ASSERT_OWNED(txq); KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__)); if (txpkts->npkt > 0) { flits = TXPKTS_PKT_HDR + sgl->nflits; can_coalesce = m->m_pkthdr.tso_segsz == 0 && txpkts->nflits + flits <= TX_WR_FLITS && txpkts->nflits + flits <= eq->avail * 8 && txpkts->plen + m->m_pkthdr.len < 65536; if (can_coalesce) { txpkts->npkt++; txpkts->nflits += flits; txpkts->plen += m->m_pkthdr.len; txsd = &txq->sdesc[eq->pidx]; txsd->credits++; return (0); } /* * Couldn't coalesce m into txpkts. The first order of business * is to send txpkts on its way. Then we'll revisit m. */ write_txpkts_wr(txq, txpkts); } /* * Check if we can start a new coalesced tx work request with m as * the first packet in it. */ KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__)); flits = TXPKTS_WR_HDR + sgl->nflits; can_coalesce = m->m_pkthdr.tso_segsz == 0 && flits <= eq->avail * 8 && flits <= TX_WR_FLITS; if (can_coalesce == 0) return (EINVAL); /* * Start a fresh coalesced tx WR with m as the first frame in it. */ txpkts->npkt = 1; txpkts->nflits = flits; txpkts->flitp = &eq->desc[eq->pidx].flit[2]; txpkts->plen = m->m_pkthdr.len; txsd = &txq->sdesc[eq->pidx]; txsd->credits = 1; return (0); } /* * Note that write_txpkts_wr can never run out of hardware descriptors (but * write_txpkt_wr can). add_to_txpkts ensures that a frame is accepted for * coalescing only if sufficient hardware descriptors are available. */ static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts) { struct sge_eq *eq = &txq->eq; struct fw_eth_tx_pkts_wr *wr; struct tx_sdesc *txsd; uint32_t ctrl; int ndesc; TXQ_LOCK_ASSERT_OWNED(txq); ndesc = howmany(txpkts->nflits, 8); wr = (void *)&eq->desc[eq->pidx]; wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2)); if (eq->avail == ndesc) { if (!(eq->flags & EQ_CRFLUSHED)) { ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ; eq->flags |= EQ_CRFLUSHED; } eq->flags |= EQ_STALLED; } wr->equiq_to_len16 = htobe32(ctrl); wr->plen = htobe16(txpkts->plen); wr->npkt = txpkts->npkt; wr->r3 = wr->type = 0; /* Everything else already written */ txsd = &txq->sdesc[eq->pidx]; txsd->desc_used = ndesc; KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__)); eq->pending += ndesc; eq->avail -= ndesc; eq->pidx += ndesc; if (eq->pidx >= eq->cap) eq->pidx -= eq->cap; txq->txpkts_pkts += txpkts->npkt; txq->txpkts_wrs++; txpkts->npkt = 0; /* emptied */ } static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl) { struct ulp_txpkt *ulpmc; struct ulptx_idata *ulpsc; struct cpl_tx_pkt_core *cpl; struct sge_eq *eq = &txq->eq; uintptr_t flitp, start, end; uint64_t ctrl; caddr_t dst; KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__)); start = (uintptr_t)eq->desc; end = (uintptr_t)eq->spg; /* Checksum offload */ ctrl = 0; if (!(m->m_pkthdr.csum_flags & CSUM_IP)) ctrl |= F_TXPKT_IPCSUM_DIS; if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))) ctrl |= F_TXPKT_L4CSUM_DIS; if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (m->m_flags & M_VLANTAG) { ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* * The previous packet's SGL must have ended at a 16 byte boundary (this * is required by the firmware/hardware). It follows that flitp cannot * wrap around between the ULPTX master command and ULPTX subcommand (8 * bytes each), and that it can not wrap around in the middle of the * cpl_tx_pkt_core either. */ flitp = (uintptr_t)txpkts->flitp; KASSERT((flitp & 0xf) == 0, ("%s: last SGL did not end at 16 byte boundary: %p", __func__, txpkts->flitp)); /* ULP master command */ ulpmc = (void *)flitp; ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) + sizeof(*cpl) + 8 * sgl->nflits, 16)); /* ULP subcommand */ ulpsc = (void *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) | F_ULP_TX_SC_MORE); ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); flitp += sizeof(*ulpmc) + sizeof(*ulpsc); if (flitp == end) flitp = start; /* CPL_TX_PKT */ cpl = (void *)flitp; cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) | V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf)); cpl->pack = 0; cpl->len = htobe16(m->m_pkthdr.len); cpl->ctrl1 = htobe64(ctrl); flitp += sizeof(*cpl); if (flitp == end) flitp = start; /* SGL for this frame */ dst = (caddr_t)flitp; txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst); txpkts->flitp = (void *)dst; KASSERT(((uintptr_t)dst & 0xf) == 0, ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst)); } /* * If the SGL ends on an address that is not 16 byte aligned, this function will * add a 0 filled flit at the end. It returns 1 in that case. */ static int write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to) { __be64 *flitp, *end; struct ulptx_sgl *usgl; bus_dma_segment_t *seg; int i, padded; KASSERT(sgl->nsegs > 0 && sgl->nflits > 0, ("%s: bad SGL - nsegs=%d, nflits=%d", __func__, sgl->nsegs, sgl->nflits)); KASSERT(((uintptr_t)(*to) & 0xf) == 0, ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); flitp = (__be64 *)(*to); end = flitp + sgl->nflits; seg = &sgl->seg[0]; usgl = (void *)flitp; /* * We start at a 16 byte boundary somewhere inside the tx descriptor * ring, so we're at least 16 bytes away from the status page. There is * no chance of a wrap around in the middle of usgl (which is 16 bytes). */ usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(sgl->nsegs)); usgl->len0 = htobe32(seg->ds_len); usgl->addr0 = htobe64(seg->ds_addr); seg++; if ((uintptr_t)end <= (uintptr_t)eq->spg) { /* Won't wrap around at all */ for (i = 0; i < sgl->nsegs - 1; i++, seg++) { usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len); usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); } else { /* Will wrap somewhere in the rest of the SGL */ /* 2 flits already written, write the rest flit by flit */ flitp = (void *)(usgl + 1); for (i = 0; i < sgl->nflits - 2; i++) { if ((uintptr_t)flitp == (uintptr_t)eq->spg) flitp = (void *)eq->desc; *flitp++ = get_flit(seg, sgl->nsegs - 1, i); } end = flitp; } if ((uintptr_t)end & 0xf) { *(uint64_t *)end = 0; end++; padded = 1; } else padded = 0; if ((uintptr_t)end == (uintptr_t)eq->spg) *to = (void *)eq->desc; else *to = (void *)end; return (padded); } static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) { if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) { bcopy(from, *to, len); (*to) += len; } else { int portion = (uintptr_t)eq->spg - (uintptr_t)(*to); bcopy(from, *to, portion); from += portion; portion = len - portion; /* remaining */ bcopy(from, (void *)eq->desc, portion); (*to) = (caddr_t)eq->desc + portion; } } static inline void ring_eq_db(struct adapter *sc, struct sge_eq *eq) { wmb(); t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), V_QID(eq->cntxt_id) | V_PIDX(eq->pending)); eq->pending = 0; } static inline int reclaimable(struct sge_eq *eq) { unsigned int cidx; cidx = eq->spg->cidx; /* stable snapshot */ cidx = be16toh(cidx); if (cidx >= eq->cidx) return (cidx - eq->cidx); else return (cidx + eq->cap - eq->cidx); } /* * There are "can_reclaim" tx descriptors ready to be reclaimed. Reclaim as * many as possible but stop when there are around "n" mbufs to free. * * The actual number reclaimed is provided as the return value. */ static int reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n) { struct tx_sdesc *txsd; struct tx_maps *txmaps; struct tx_map *txm; unsigned int reclaimed, maps; struct sge_eq *eq = &txq->eq; TXQ_LOCK_ASSERT_OWNED(txq); if (can_reclaim == 0) can_reclaim = reclaimable(eq); maps = reclaimed = 0; while (can_reclaim && maps < n) { int ndesc; txsd = &txq->sdesc[eq->cidx]; ndesc = txsd->desc_used; /* Firmware doesn't return "partial" credits. */ KASSERT(can_reclaim >= ndesc, ("%s: unexpected number of credits: %d, %d", __func__, can_reclaim, ndesc)); maps += txsd->credits; reclaimed += ndesc; can_reclaim -= ndesc; eq->cidx += ndesc; if (__predict_false(eq->cidx >= eq->cap)) eq->cidx -= eq->cap; } txmaps = &txq->txmaps; txm = &txmaps->maps[txmaps->map_cidx]; if (maps) prefetch(txm->m); eq->avail += reclaimed; KASSERT(eq->avail < eq->cap, /* avail tops out at (cap - 1) */ ("%s: too many descriptors available", __func__)); txmaps->map_avail += maps; KASSERT(txmaps->map_avail <= txmaps->map_total, ("%s: too many maps available", __func__)); while (maps--) { struct tx_map *next; next = txm + 1; if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total)) next = txmaps->maps; prefetch(next->m); bus_dmamap_unload(txq->tx_tag, txm->map); m_freem(txm->m); txm->m = NULL; txm = next; if (__predict_false(++txmaps->map_cidx == txmaps->map_total)) txmaps->map_cidx = 0; } return (reclaimed); } static void write_eqflush_wr(struct sge_eq *eq) { struct fw_eq_flush_wr *wr; EQ_LOCK_ASSERT_OWNED(eq); KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__)); KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__)); wr = (void *)&eq->desc[eq->pidx]; bzero(wr, sizeof(*wr)); wr->opcode = FW_EQ_FLUSH_WR; wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) | F_FW_WR_EQUEQ | F_FW_WR_EQUIQ); eq->flags |= (EQ_CRFLUSHED | EQ_STALLED); eq->pending++; eq->avail--; if (++eq->pidx == eq->cap) eq->pidx = 0; } static __be64 get_flit(bus_dma_segment_t *sgl, int nsegs, int idx) { int i = (idx / 3) * 2; switch (idx % 3) { case 0: { __be64 rc; rc = htobe32(sgl[i].ds_len); if (i + 1 < nsegs) rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32; return (rc); } case 1: return htobe64(sgl[i].ds_addr); case 2: return htobe64(sgl[i + 1].ds_addr); } return (0); } static void set_fl_tag_idx(struct sge_fl *fl, int bufsize) { int i; for (i = 0; i < FL_BUF_SIZES - 1; i++) { if (FL_BUF_SIZE(i) >= bufsize) break; } fl->tag_idx = i; } static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) { mtx_lock(&sc->sfl_lock); FL_LOCK(fl); if ((fl->flags & FL_DOOMED) == 0) { fl->flags |= FL_STARVING; TAILQ_INSERT_TAIL(&sc->sfl, fl, link); callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); } FL_UNLOCK(fl); mtx_unlock(&sc->sfl_lock); } static int handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); struct adapter *sc = iq->adapter; struct sge *s = &sc->sge; struct sge_eq *eq; KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); eq = s->eqmap[qid - s->eq_start]; EQ_LOCK(eq); KASSERT(eq->flags & EQ_CRFLUSHED, ("%s: unsolicited egress update", __func__)); eq->flags &= ~EQ_CRFLUSHED; eq->egr_update++; if (__predict_false(eq->flags & EQ_DOOMED)) wakeup_one(eq); else if (eq->flags & EQ_STALLED && can_resume_tx(eq)) taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task); EQ_UNLOCK(eq); return (0); } static int handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); if (cpl->type == FW6_TYPE_CMD_RPL) t4_handle_fw_rpl(iq->adapter, cpl->data); return (0); } static int sysctl_uint16(SYSCTL_HANDLER_ARGS) { uint16_t *id = arg1; int i = *id; return sysctl_handle_int(oidp, &i, 0, req); }