Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapci/chipsets/atacyrix/@/dev/lmc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapci/chipsets/atacyrix/@/dev/lmc/if_lmc.c |
/* * $FreeBSD: release/9.1.0/sys/dev/lmc/if_lmc.c 233024 2012-03-16 08:46:58Z scottl $ * * Copyright (c) 2002-2004 David Boggs. <boggs@boggs.palo-alto.ca.us> * All rights reserved. * * BSD License: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * GNU General Public License: * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Description: * * This is an open-source Unix device driver for PCI-bus WAN interface cards. * It sends and receives packets in HDLC frames over synchronous links. * A generic PC plus Unix plus some SBE/LMC cards makes an OPEN router. * This driver works with FreeBSD, NetBSD, OpenBSD, BSD/OS and Linux. * It has been tested on i386 (32-bit little-end), Sparc (64-bit big-end), * and Alpha (64-bit little-end) architectures. * * History and Authors: * * Ron Crane had the neat idea to use a Fast Ethernet chip as a PCI * interface and add an Ethernet-to-HDLC gate array to make a WAN card. * David Boggs designed the Ethernet-to-HDLC gate arrays and PC cards. * We did this at our company, LAN Media Corporation (LMC). * SBE Corp acquired LMC and continues to make the cards. * * Since the cards use Tulip Ethernet chips, we started with Matt Thomas' * ubiquitous "de" driver. Michael Graff stripped out the Ethernet stuff * and added HSSI stuff. Basil Gunn ported it to Solaris (lost) and * Rob Braun ported it to Linux. Andrew Stanley-Jones added support * for three more cards and wrote the first version of lmcconfig. * During 2002-5 David Boggs rewrote it and now feels responsible for it. * * Responsible Individual: * * Send bug reports and improvements to <boggs@boggs.palo-alto.ca.us>. */ #ifdef __FreeBSD__ # include <sys/param.h> /* OS version */ # define IFNET 1 # include "opt_inet.h" /* INET */ # include "opt_inet6.h" /* INET6 */ # include "opt_netgraph.h" /* NETGRAPH */ # ifdef HAVE_KERNEL_OPTION_HEADERS # include "opt_device_polling.h" /* DEVICE_POLLING */ # endif # ifndef INET # define INET 0 # endif # ifndef INET6 # define INET6 0 # endif # ifndef NETGRAPH # define NETGRAPH 0 # endif # define P2P 0 /* not in FreeBSD */ # if (__FreeBSD_version >= 500000) # define NSPPP 1 /* No count devices in FreeBSD 5 */ # include "opt_bpf.h" /* DEV_BPF */ # define NBPFILTER DEV_BPF # else /* FreeBSD-4 */ # include "sppp.h" /* NSPPP */ # include "bpf.h" /* NBPF */ # define NBPFILTER NBPF # endif # define GEN_HDLC 0 /* not in FreeBSD */ # # include <sys/systm.h> # include <sys/kernel.h> # include <sys/malloc.h> # include <sys/mbuf.h> # include <sys/socket.h> # include <sys/sockio.h> # include <sys/module.h> # include <sys/bus.h> # include <sys/lock.h> # include <net/if.h> # include <net/if_types.h> # include <net/if_media.h> # include <net/netisr.h> # include <net/route.h> # include <machine/bus.h> # include <machine/resource.h> # include <sys/rman.h> # include <vm/vm.h> # include <vm/pmap.h> # if (__FreeBSD_version >= 700000) # include <sys/priv.h> # endif # if (__FreeBSD_version >= 500000) # include <sys/mutex.h> # include <dev/pci/pcivar.h> # else /* FreeBSD-4 */ # include <sys/proc.h> # include <pci/pcivar.h> # endif # if NETGRAPH # include <netgraph/ng_message.h> # include <netgraph/netgraph.h> # endif # if (INET || INET6) # include <netinet/in.h> # include <netinet/in_var.h> # endif # if NSPPP # include <net/if_sppp.h> # endif # if NBPFILTER # include <net/bpf.h> # endif /* and finally... */ # include <dev/lmc/if_lmc.h> #endif /*__FreeBSD__*/ #ifdef __NetBSD__ # include <sys/param.h> /* OS version */ # define IFNET 1 # include "opt_inet.h" /* INET6, INET */ # define NETGRAPH 0 /* not in NetBSD */ # include "sppp.h" /* NSPPP */ # define P2P 0 /* not in NetBSD */ # include "opt_altq_enabled.h" /* ALTQ */ # include "bpfilter.h" /* NBPFILTER */ # define GEN_HDLC 0 /* not in NetBSD */ # # include <sys/systm.h> # include <sys/kernel.h> # include <sys/lkm.h> # include <sys/mbuf.h> # include <sys/socket.h> # include <sys/sockio.h> # include <sys/device.h> # include <sys/lock.h> # include <net/if.h> # include <net/if_types.h> # include <net/if_media.h> # include <net/netisr.h> # include <machine/bus.h> # include <machine/intr.h> # include <dev/pci/pcivar.h> # if (__NetBSD_Version__ >= 106000000) # include <uvm/uvm_extern.h> # else # include <vm/vm.h> # endif # if (INET || INET6) # include <netinet/in.h> # include <netinet/in_var.h> # endif # if NSPPP # if (__NetBSD_Version__ >= 106000000) # include <net/if_spppvar.h> # else # include <net/if_sppp.h> # endif # endif # if NBPFILTER # include <net/bpf.h> # endif /* and finally... */ # include "if_lmc.h" #endif /*__NetBSD__*/ #ifdef __OpenBSD__ # include <sys/param.h> /* OS version */ # define IFNET 1 /* -DINET is passed on the compiler command line */ /* -DINET6 is passed on the compiler command line */ # define NETGRAPH 0 /* not in OpenBSD */ # include "sppp.h" /* NSPPP */ # define P2P 0 /* not in OpenBSD */ /* -DALTQ is passed on the compiler command line */ # include "bpfilter.h" /* NBPFILTER */ # define GEN_HDLC 0 /* not in OpenBSD */ # # include <sys/systm.h> # include <sys/kernel.h> # include <sys/conf.h> # include <sys/exec.h> # include <sys/lkm.h> # include <sys/mbuf.h> # include <sys/socket.h> # include <sys/sockio.h> # include <sys/device.h> # include <sys/lock.h> # include <net/if.h> # include <net/if_types.h> # include <net/if_media.h> # include <net/netisr.h> # include <machine/bus.h> # include <machine/intr.h> # include <dev/pci/pcivar.h> # if (OpenBSD >= 200206) # include <uvm/uvm_extern.h> # else # include <vm/vm.h> # endif # if (INET || INET6) # include <netinet/in.h> # include <netinet/in_var.h> # endif # if NSPPP # include <net/if_sppp.h> # endif # if NBPFILTER # include <net/bpf.h> # endif /* and finally... */ # include "if_lmc.h" #endif /*__OpenBSD__*/ #ifdef __bsdi__ # include <sys/param.h> /* OS version */ # define IFNET 1 /* -DINET is passed on the compiler command line */ /* -DINET6 is passed on the compiler command line */ # define NETGRAPH 0 /* not in BSD/OS */ # define NSPPP 0 /* not in BSD/OS */ /* -DPPP is passed on the compiler command line */ /* -DCISCO_HDLC is passed on the compiler command line */ /* -DFR is passed on the compiler command line */ # if (PPP || CISCO_HDLC || FR) # define P2P 1 # else # define P2P 0 # endif # define ALTQ 0 /* not in BSD/OS */ # include "bpfilter.h" /* NBPFILTER */ # define GEN_HDLC 0 /* not in BSD/OS */ # # include <sys/kernel.h> # include <sys/malloc.h> # include <sys/mbuf.h> # include <sys/socket.h> # include <sys/sockio.h> # include <sys/device.h> # include <sys/lock.h> # include <net/if.h> # include <net/if_types.h> # include <net/if_media.h> # include <net/netisr.h> # include <vm/vm.h> # include <i386/isa/dma.h> # include <i386/isa/isavar.h> # include <i386/include/cpu.h> # include <i386/pci/pci.h> # if (INET || INET6) # include <netinet/in.h> # include <netinet/in_var.h> # endif # if P2P # include <net/if_p2p.h> # include <sys/ttycom.h> # endif # if NBPFILTER # include <net/bpf.h> # endif /* and finally... */ # include "if_lmc.h" #endif /*__bsdi__*/ #ifdef __linux__ # include <linux/config.h> # if (CONFIG_HDLC || CONFIG_HDLC_MODULE) # define GEN_HDLC 1 # else # define GEN_HDLC 0 # endif # define IFNET 0 /* different in Linux */ # define NETGRAPH 0 /* not in Linux */ # define NSPPP 0 /* different in Linux */ # define P2P 0 /* not in Linux */ # define ALTQ 0 /* different in Linux */ # define NBPFILTER 0 /* different in Linux */ # # include <linux/pci.h> # include <linux/delay.h> # include <linux/netdevice.h> # include <linux/if_arp.h> # if GEN_HDLC # include <linux/hdlc.h> # endif /* and finally... */ # include "if_lmc.h" #endif /* __linux__ */ /* The SROM is a generic 93C46 serial EEPROM (64 words by 16 bits). */ /* Data is set up before the RISING edge of CLK; CLK is parked low. */ static void shift_srom_bits(softc_t *sc, u_int32_t data, u_int32_t len) { u_int32_t csr = READ_CSR(TLP_SROM_MII); for (; len>0; len--) { /* MSB first */ if (data & (1<<(len-1))) csr |= TLP_SROM_DIN; /* DIN setup */ else csr &= ~TLP_SROM_DIN; /* DIN setup */ WRITE_CSR(TLP_SROM_MII, csr); csr |= TLP_SROM_CLK; /* CLK rising edge */ WRITE_CSR(TLP_SROM_MII, csr); csr &= ~TLP_SROM_CLK; /* CLK falling edge */ WRITE_CSR(TLP_SROM_MII, csr); } } /* Data is sampled on the RISING edge of CLK; CLK is parked low. */ static u_int16_t read_srom(softc_t *sc, u_int8_t addr) { int i; u_int32_t csr; u_int16_t data; /* Enable SROM access. */ csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE); WRITE_CSR(TLP_SROM_MII, csr); /* CS rising edge prepares SROM for a new cycle. */ csr |= TLP_SROM_CS; WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */ shift_srom_bits(sc, 6, 4); /* issue read cmd */ shift_srom_bits(sc, addr, 6); /* issue address */ for (data=0, i=16; i>=0; i--) /* read ->17<- bits of data */ { /* MSB first */ csr = READ_CSR(TLP_SROM_MII); /* DOUT sampled */ data = (data<<1) | ((csr & TLP_SROM_DOUT) ? 1:0); csr |= TLP_SROM_CLK; /* CLK rising edge */ WRITE_CSR(TLP_SROM_MII, csr); csr &= ~TLP_SROM_CLK; /* CLK falling edge */ WRITE_CSR(TLP_SROM_MII, csr); } /* Disable SROM access. */ WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE); return data; } /* The SROM is formatted by the mfgr and should NOT be written! */ /* But lmcconfig can rewrite it in case it gets overwritten somehow. */ /* IOCTL SYSCALL: can sleep. */ static void write_srom(softc_t *sc, u_int8_t addr, u_int16_t data) { u_int32_t csr; int i; /* Enable SROM access. */ csr = (TLP_SROM_SEL | TLP_SROM_RD | TLP_MII_MDOE); WRITE_CSR(TLP_SROM_MII, csr); /* Issue write-enable command. */ csr |= TLP_SROM_CS; WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */ shift_srom_bits(sc, 4, 4); /* issue write enable cmd */ shift_srom_bits(sc, 63, 6); /* issue address */ csr &= ~TLP_SROM_CS; WRITE_CSR(TLP_SROM_MII, csr); /* deassert CS */ /* Issue erase command. */ csr |= TLP_SROM_CS; WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */ shift_srom_bits(sc, 7, 4); /* issue erase cmd */ shift_srom_bits(sc, addr, 6); /* issue address */ csr &= ~TLP_SROM_CS; WRITE_CSR(TLP_SROM_MII, csr); /* deassert CS */ /* Issue write command. */ csr |= TLP_SROM_CS; WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */ for (i=0; i<10; i++) /* 100 ms max wait */ if ((READ_CSR(TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000); shift_srom_bits(sc, 5, 4); /* issue write cmd */ shift_srom_bits(sc, addr, 6); /* issue address */ shift_srom_bits(sc, data, 16); /* issue data */ csr &= ~TLP_SROM_CS; WRITE_CSR(TLP_SROM_MII, csr); /* deassert CS */ /* Issue write-disable command. */ csr |= TLP_SROM_CS; WRITE_CSR(TLP_SROM_MII, csr); /* assert CS */ for (i=0; i<10; i++) /* 100 ms max wait */ if ((READ_CSR(TLP_SROM_MII) & TLP_SROM_DOUT)==0) SLEEP(10000); shift_srom_bits(sc, 4, 4); /* issue write disable cmd */ shift_srom_bits(sc, 0, 6); /* issue address */ csr &= ~TLP_SROM_CS; WRITE_CSR(TLP_SROM_MII, csr); /* deassert CS */ /* Disable SROM access. */ WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE); } /* Not all boards have BIOS roms. */ /* The BIOS ROM is an AMD 29F010 1Mbit (128K by 8) EEPROM. */ static u_int8_t read_bios(softc_t *sc, u_int32_t addr) { u_int32_t srom_mii; /* Load the BIOS rom address register. */ WRITE_CSR(TLP_BIOS_ROM, addr); /* Enable the BIOS rom. */ srom_mii = TLP_BIOS_SEL | TLP_BIOS_RD | TLP_MII_MDOE; WRITE_CSR(TLP_SROM_MII, srom_mii); /* Wait at least 20 PCI cycles. */ DELAY(20); /* Read the BIOS rom data. */ srom_mii = READ_CSR(TLP_SROM_MII); /* Disable the BIOS rom. */ WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE); return (u_int8_t)srom_mii & 0xFF; } static void write_bios_phys(softc_t *sc, u_int32_t addr, u_int8_t data) { u_int32_t srom_mii; /* Load the BIOS rom address register. */ WRITE_CSR(TLP_BIOS_ROM, addr); /* Enable the BIOS rom. */ srom_mii = TLP_BIOS_SEL | TLP_BIOS_WR | TLP_MII_MDOE; /* Load the data into the data register. */ srom_mii = (srom_mii & 0xFFFFFF00) | (data & 0xFF); WRITE_CSR(TLP_SROM_MII, srom_mii); /* Wait at least 20 PCI cycles. */ DELAY(20); /* Disable the BIOS rom. */ WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE); } /* IOCTL SYSCALL: can sleep. */ static void write_bios(softc_t *sc, u_int32_t addr, u_int8_t data) { u_int8_t read_data; /* this sequence enables writing */ write_bios_phys(sc, 0x5555, 0xAA); write_bios_phys(sc, 0x2AAA, 0x55); write_bios_phys(sc, 0x5555, 0xA0); write_bios_phys(sc, addr, data); /* Wait for the write operation to complete. */ for (;;) /* interruptable syscall */ { for (;;) { read_data = read_bios(sc, addr); if ((read_data & 0x80) == (data & 0x80)) break; if (read_data & 0x20) { /* Data sheet says read it again. */ read_data = read_bios(sc, addr); if ((read_data & 0x80) == (data & 0x80)) break; if (DRIVER_DEBUG) printf("%s: write_bios() failed; rom addr=0x%x\n", NAME_UNIT, addr); return; } } read_data = read_bios(sc, addr); if (read_data == data) break; } } /* IOCTL SYSCALL: can sleep. */ static void erase_bios(softc_t *sc) { unsigned char read_data; /* This sequence enables erasing: */ write_bios_phys(sc, 0x5555, 0xAA); write_bios_phys(sc, 0x2AAA, 0x55); write_bios_phys(sc, 0x5555, 0x80); write_bios_phys(sc, 0x5555, 0xAA); write_bios_phys(sc, 0x2AAA, 0x55); write_bios_phys(sc, 0x5555, 0x10); /* Wait for the erase operation to complete. */ for (;;) /* interruptable syscall */ { for (;;) { read_data = read_bios(sc, 0); if (read_data & 0x80) break; if (read_data & 0x20) { /* Data sheet says read it again. */ read_data = read_bios(sc, 0); if (read_data & 0x80) break; if (DRIVER_DEBUG) printf("%s: erase_bios() failed\n", NAME_UNIT); return; } } read_data = read_bios(sc, 0); if (read_data == 0xFF) break; } } /* MDIO is 3-stated between tranactions. */ /* MDIO is set up before the RISING edge of MDC; MDC is parked low. */ static void shift_mii_bits(softc_t *sc, u_int32_t data, u_int32_t len) { u_int32_t csr = READ_CSR(TLP_SROM_MII); for (; len>0; len--) { /* MSB first */ if (data & (1<<(len-1))) csr |= TLP_MII_MDOUT; /* MDOUT setup */ else csr &= ~TLP_MII_MDOUT; /* MDOUT setup */ WRITE_CSR(TLP_SROM_MII, csr); csr |= TLP_MII_MDC; /* MDC rising edge */ WRITE_CSR(TLP_SROM_MII, csr); csr &= ~TLP_MII_MDC; /* MDC falling edge */ WRITE_CSR(TLP_SROM_MII, csr); } } /* The specification for the MII is IEEE Std 802.3 clause 22. */ /* MDIO is sampled on the RISING edge of MDC; MDC is parked low. */ static u_int16_t read_mii(softc_t *sc, u_int8_t regad) { int i; u_int32_t csr; u_int16_t data = 0; WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOUT); shift_mii_bits(sc, 0xFFFFF, 20); /* preamble */ shift_mii_bits(sc, 0xFFFFF, 20); /* preamble */ shift_mii_bits(sc, 1, 2); /* start symbol */ shift_mii_bits(sc, 2, 2); /* read op */ shift_mii_bits(sc, 0, 5); /* phyad=0 */ shift_mii_bits(sc, regad, 5); /* regad */ csr = READ_CSR(TLP_SROM_MII); csr |= TLP_MII_MDOE; WRITE_CSR(TLP_SROM_MII, csr); shift_mii_bits(sc, 0, 2); /* turn-around */ for (i=15; i>=0; i--) /* data */ { /* MSB first */ csr = READ_CSR(TLP_SROM_MII); /* MDIN sampled */ data = (data<<1) | ((csr & TLP_MII_MDIN) ? 1:0); csr |= TLP_MII_MDC; /* MDC rising edge */ WRITE_CSR(TLP_SROM_MII, csr); csr &= ~TLP_MII_MDC; /* MDC falling edge */ WRITE_CSR(TLP_SROM_MII, csr); } return data; } static void write_mii(softc_t *sc, u_int8_t regad, u_int16_t data) { WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOUT); shift_mii_bits(sc, 0xFFFFF, 20); /* preamble */ shift_mii_bits(sc, 0xFFFFF, 20); /* preamble */ shift_mii_bits(sc, 1, 2); /* start symbol */ shift_mii_bits(sc, 1, 2); /* write op */ shift_mii_bits(sc, 0, 5); /* phyad=0 */ shift_mii_bits(sc, regad, 5); /* regad */ shift_mii_bits(sc, 2, 2); /* turn-around */ shift_mii_bits(sc, data, 16); /* data */ WRITE_CSR(TLP_SROM_MII, TLP_MII_MDOE); if (regad == 16) sc->led_state = data; /* a small optimization */ } static void set_mii16_bits(softc_t *sc, u_int16_t bits) { u_int16_t mii16 = read_mii(sc, 16); mii16 |= bits; write_mii(sc, 16, mii16); } static void clr_mii16_bits(softc_t *sc, u_int16_t bits) { u_int16_t mii16 = read_mii(sc, 16); mii16 &= ~bits; write_mii(sc, 16, mii16); } static void set_mii17_bits(softc_t *sc, u_int16_t bits) { u_int16_t mii17 = read_mii(sc, 17); mii17 |= bits; write_mii(sc, 17, mii17); } static void clr_mii17_bits(softc_t *sc, u_int16_t bits) { u_int16_t mii17 = read_mii(sc, 17); mii17 &= ~bits; write_mii(sc, 17, mii17); } /* * Watchdog code is more readable if it refreshes LEDs * once a second whether they need it or not. * But MII refs take 150 uSecs each, so remember the last value * written to MII16 and avoid LED writes that do nothing. */ static void led_off(softc_t *sc, u_int16_t led) { if ((led & sc->led_state) == led) return; set_mii16_bits(sc, led); } static void led_on(softc_t *sc, u_int16_t led) { if ((led & sc->led_state) == 0) return; clr_mii16_bits(sc, led); } static void led_inv(softc_t *sc, u_int16_t led) { u_int16_t mii16 = read_mii(sc, 16); mii16 ^= led; write_mii(sc, 16, mii16); } /* * T1 & T3 framer registers are accessed through MII regs 17 & 18. * Write the address to MII reg 17 then R/W data through MII reg 18. * The hardware interface is an Intel-style 8-bit muxed A/D bus. */ static void write_framer(softc_t *sc, u_int16_t addr, u_int8_t data) { write_mii(sc, 17, addr); write_mii(sc, 18, data); } static u_int8_t read_framer(softc_t *sc, u_int16_t addr) { write_mii(sc, 17, addr); return (u_int8_t)read_mii(sc, 18); } /* Tulip's hardware implementation of General Purpose IO * (GPIO) pins makes life difficult for software. * Bits 7-0 in the Tulip GPIO CSR are used for two purposes * depending on the state of bit 8. * If bit 8 is 0 then bits 7-0 are "data" bits. * If bit 8 is 1 then bits 7-0 are "direction" bits. * If a direction bit is one, the data bit is an output. * The problem is that the direction bits are WRITE-ONLY. * Software must remember the direction bits in a shadow copy. * (sc->gpio_dir) in order to change some but not all of the bits. * All accesses to the Tulip GPIO register use these five procedures. */ static void make_gpio_input(softc_t *sc, u_int32_t bits) { sc->gpio_dir &= ~bits; WRITE_CSR(TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir)); } static void make_gpio_output(softc_t *sc, u_int32_t bits) { sc->gpio_dir |= bits; WRITE_CSR(TLP_GPIO, TLP_GPIO_DIR | (sc->gpio_dir)); } static u_int32_t read_gpio(softc_t *sc) { return READ_CSR(TLP_GPIO); } static void set_gpio_bits(softc_t *sc, u_int32_t bits) { WRITE_CSR(TLP_GPIO, (read_gpio(sc) | bits) & 0xFF); } static void clr_gpio_bits(softc_t *sc, u_int32_t bits) { WRITE_CSR(TLP_GPIO, (read_gpio(sc) & ~bits) & 0xFF); } /* Reset ALL of the flip-flops in the gate array to zero. */ /* This does NOT change the gate array programming. */ /* Called during initialization so it must not sleep. */ static void reset_xilinx(softc_t *sc) { /* Drive RESET low to force initialization. */ clr_gpio_bits(sc, GPIO_RESET); make_gpio_output(sc, GPIO_RESET); /* Hold RESET low for more than 10 uSec. */ DELAY(50); /* Done with RESET; make it an input. */ make_gpio_input(sc, GPIO_RESET); } /* Load Xilinx gate array program from on-board rom. */ /* This changes the gate array programming. */ /* IOCTL SYSCALL: can sleep. */ static void load_xilinx_from_rom(softc_t *sc) { int i; /* Drive MODE low to load from ROM rather than GPIO. */ clr_gpio_bits(sc, GPIO_MODE); make_gpio_output(sc, GPIO_MODE); /* Drive DP & RESET low to force configuration. */ clr_gpio_bits(sc, GPIO_RESET | GPIO_DP); make_gpio_output(sc, GPIO_RESET | GPIO_DP); /* Hold RESET & DP low for more than 10 uSec. */ DELAY(50); /* Done with RESET & DP; make them inputs. */ make_gpio_input(sc, GPIO_DP | GPIO_RESET); /* BUSY-WAIT for Xilinx chip to configure itself from ROM bits. */ for (i=0; i<100; i++) /* 1 sec max delay */ if ((read_gpio(sc) & GPIO_DP) == 0) SLEEP(10000); /* Done with MODE; make it an input. */ make_gpio_input(sc, GPIO_MODE); } /* Load the Xilinx gate array program from userland bits. */ /* This changes the gate array programming. */ /* IOCTL SYSCALL: can sleep. */ static int load_xilinx_from_file(softc_t *sc, char *addr, u_int32_t len) { char *data; int i, j, error; /* Get some pages to hold the Xilinx bits; biggest file is < 6 KB. */ if (len > 8192) return EFBIG; /* too big */ data = malloc(len, M_DEVBUF, M_WAITOK); if (data == NULL) return ENOMEM; /* Copy the Xilinx bits from userland. */ if ((error = copyin(addr, data, len))) { free(data, M_DEVBUF); return error; } /* Drive MODE high to load from GPIO rather than ROM. */ set_gpio_bits(sc, GPIO_MODE); make_gpio_output(sc, GPIO_MODE); /* Drive DP & RESET low to force configuration. */ clr_gpio_bits(sc, GPIO_RESET | GPIO_DP); make_gpio_output(sc, GPIO_RESET | GPIO_DP); /* Hold RESET & DP low for more than 10 uSec. */ DELAY(50); /* Done with RESET & DP; make them inputs. */ make_gpio_input(sc, GPIO_RESET | GPIO_DP); /* BUSY-WAIT for Xilinx chip to clear its config memory. */ make_gpio_input(sc, GPIO_INIT); for (i=0; i<10000; i++) /* 1 sec max delay */ if ((read_gpio(sc) & GPIO_INIT)==0) SLEEP(10000); /* Configure CLK and DATA as outputs. */ set_gpio_bits(sc, GPIO_CLK); /* park CLK high */ make_gpio_output(sc, GPIO_CLK | GPIO_DATA); /* Write bits to Xilinx; CLK is parked HIGH. */ /* DATA is set up before the RISING edge of CLK. */ for (i=0; i<len; i++) for (j=0; j<8; j++) { /* LSB first */ if ((data[i] & (1<<j)) != 0) set_gpio_bits(sc, GPIO_DATA); /* DATA setup */ else clr_gpio_bits(sc, GPIO_DATA); /* DATA setup */ clr_gpio_bits(sc, GPIO_CLK); /* CLK falling edge */ set_gpio_bits(sc, GPIO_CLK); /* CLK rising edge */ } /* Stop driving all Xilinx-related signals. */ /* Pullup and pulldown resistors take over. */ make_gpio_input(sc, GPIO_CLK | GPIO_DATA | GPIO_MODE); free(data, M_DEVBUF); return 0; } /* Write fragments of a command into the synthesized oscillator. */ /* DATA is set up before the RISING edge of CLK. CLK is parked low. */ static void shift_synth_bits(softc_t *sc, u_int32_t data, u_int32_t len) { int i; for (i=0; i<len; i++) { /* LSB first */ if ((data & (1<<i)) != 0) set_gpio_bits(sc, GPIO_DATA); /* DATA setup */ else clr_gpio_bits(sc, GPIO_DATA); /* DATA setup */ set_gpio_bits(sc, GPIO_CLK); /* CLK rising edge */ clr_gpio_bits(sc, GPIO_CLK); /* CLK falling edge */ } } /* Write a command to the synthesized oscillator on SSI and HSSIc. */ static void write_synth(softc_t *sc, struct synth *synth) { /* SSI cards have a programmable prescaler */ if (sc->status.card_type == TLP_CSID_SSI) { if (synth->prescale == 9) /* divide by 512 */ set_mii17_bits(sc, MII17_SSI_PRESCALE); else /* divide by 32 */ clr_mii17_bits(sc, MII17_SSI_PRESCALE); } clr_gpio_bits(sc, GPIO_DATA | GPIO_CLK); make_gpio_output(sc, GPIO_DATA | GPIO_CLK); /* SYNTH is a low-true chip enable for the AV9110 chip. */ set_gpio_bits(sc, GPIO_SSI_SYNTH); make_gpio_output(sc, GPIO_SSI_SYNTH); clr_gpio_bits(sc, GPIO_SSI_SYNTH); /* Serially shift the command into the AV9110 chip. */ shift_synth_bits(sc, synth->n, 7); shift_synth_bits(sc, synth->m, 7); shift_synth_bits(sc, synth->v, 1); shift_synth_bits(sc, synth->x, 2); shift_synth_bits(sc, synth->r, 2); shift_synth_bits(sc, 0x16, 5); /* enable clk/x output */ /* SYNTH (chip enable) going high ends the command. */ set_gpio_bits(sc, GPIO_SSI_SYNTH); make_gpio_input(sc, GPIO_SSI_SYNTH); /* Stop driving serial-related signals; pullups/pulldowns take over. */ make_gpio_input(sc, GPIO_DATA | GPIO_CLK); /* remember the new synthesizer parameters */ if (&sc->config.synth != synth) sc->config.synth = *synth; } /* Write a command to the DAC controlling the VCXO on some T3 adapters. */ /* The DAC is a TI-TLV5636: 12-bit resolution and a serial interface. */ /* DATA is set up before the FALLING edge of CLK. CLK is parked HIGH. */ static void write_dac(softc_t *sc, u_int16_t data) { int i; /* Prepare to use DATA and CLK. */ set_gpio_bits(sc, GPIO_DATA | GPIO_CLK); make_gpio_output(sc, GPIO_DATA | GPIO_CLK); /* High-to-low transition prepares DAC for new value. */ set_gpio_bits(sc, GPIO_T3_DAC); make_gpio_output(sc, GPIO_T3_DAC); clr_gpio_bits(sc, GPIO_T3_DAC); /* Serially shift command bits into DAC. */ for (i=0; i<16; i++) { /* MSB first */ if ((data & (1<<(15-i))) != 0) set_gpio_bits(sc, GPIO_DATA); /* DATA setup */ else clr_gpio_bits(sc, GPIO_DATA); /* DATA setup */ clr_gpio_bits(sc, GPIO_CLK); /* CLK falling edge */ set_gpio_bits(sc, GPIO_CLK); /* CLK rising edge */ } /* Done with DAC; make it an input; loads new value into DAC. */ set_gpio_bits(sc, GPIO_T3_DAC); make_gpio_input(sc, GPIO_T3_DAC); /* Stop driving serial-related signals; pullups/pulldowns take over. */ make_gpio_input(sc, GPIO_DATA | GPIO_CLK); } /* begin HSSI card code */ /* Must not sleep. */ static void hssi_config(softc_t *sc) { if (sc->status.card_type == 0) { /* defaults */ sc->status.card_type = READ_PCI_CFG(sc, TLP_CSID); sc->config.crc_len = CFG_CRC_16; sc->config.loop_back = CFG_LOOP_NONE; sc->config.tx_clk_src = CFG_CLKMUX_ST; sc->config.dte_dce = CFG_DTE; sc->config.synth.n = 52; /* 52.000 Mbs */ sc->config.synth.m = 5; sc->config.synth.v = 0; sc->config.synth.x = 0; sc->config.synth.r = 0; sc->config.synth.prescale = 2; } /* set CRC length */ if (sc->config.crc_len == CFG_CRC_32) set_mii16_bits(sc, MII16_HSSI_CRC32); else clr_mii16_bits(sc, MII16_HSSI_CRC32); /* Assert pin LA in HSSI conn: ask modem for local loop. */ if (sc->config.loop_back == CFG_LOOP_LL) set_mii16_bits(sc, MII16_HSSI_LA); else clr_mii16_bits(sc, MII16_HSSI_LA); /* Assert pin LB in HSSI conn: ask modem for remote loop. */ if (sc->config.loop_back == CFG_LOOP_RL) set_mii16_bits(sc, MII16_HSSI_LB); else clr_mii16_bits(sc, MII16_HSSI_LB); if (sc->status.card_type == TLP_CSID_HSSI) { /* set TXCLK src */ if (sc->config.tx_clk_src == CFG_CLKMUX_ST) set_gpio_bits(sc, GPIO_HSSI_TXCLK); else clr_gpio_bits(sc, GPIO_HSSI_TXCLK); make_gpio_output(sc, GPIO_HSSI_TXCLK); } else if (sc->status.card_type == TLP_CSID_HSSIc) { /* cPCI HSSI rev C has extra features */ /* Set TXCLK source. */ u_int16_t mii16 = read_mii(sc, 16); mii16 &= ~MII16_HSSI_CLKMUX; mii16 |= (sc->config.tx_clk_src&3)<<13; write_mii(sc, 16, mii16); /* cPCI HSSI implements loopback towards the net. */ if (sc->config.loop_back == CFG_LOOP_LINE) set_mii16_bits(sc, MII16_HSSI_LOOP); else clr_mii16_bits(sc, MII16_HSSI_LOOP); /* Set DTE/DCE mode. */ if (sc->config.dte_dce == CFG_DCE) set_gpio_bits(sc, GPIO_HSSI_DCE); else clr_gpio_bits(sc, GPIO_HSSI_DCE); make_gpio_output(sc, GPIO_HSSI_DCE); /* Program the synthesized oscillator. */ write_synth(sc, &sc->config.synth); } } static void hssi_ident(softc_t *sc) { } /* Called once a second; must not sleep. */ static int hssi_watchdog(softc_t *sc) { u_int16_t mii16 = read_mii(sc, 16) & MII16_HSSI_MODEM; int link_status = STATUS_UP; led_inv(sc, MII16_HSSI_LED_UL); /* Software is alive. */ led_on(sc, MII16_HSSI_LED_LL); /* always on (SSI cable) */ /* Check the transmit clock. */ if (sc->status.tx_speed == 0) { led_on(sc, MII16_HSSI_LED_UR); link_status = STATUS_DOWN; } else led_off(sc, MII16_HSSI_LED_UR); /* Is the modem ready? */ if ((mii16 & MII16_HSSI_CA) == 0) { led_off(sc, MII16_HSSI_LED_LR); link_status = STATUS_DOWN; } else led_on(sc, MII16_HSSI_LED_LR); /* Print the modem control signals if they changed. */ if ((DRIVER_DEBUG) && (mii16 != sc->last_mii16)) { char *on = "ON ", *off = "OFF"; printf("%s: TA=%s CA=%s LA=%s LB=%s LC=%s TM=%s\n", NAME_UNIT, (mii16 & MII16_HSSI_TA) ? on : off, (mii16 & MII16_HSSI_CA) ? on : off, (mii16 & MII16_HSSI_LA) ? on : off, (mii16 & MII16_HSSI_LB) ? on : off, (mii16 & MII16_HSSI_LC) ? on : off, (mii16 & MII16_HSSI_TM) ? on : off); } /* SNMP one-second-report */ sc->status.snmp.hssi.sigs = mii16 & MII16_HSSI_MODEM; /* Remember this state until next time. */ sc->last_mii16 = mii16; /* If a loop back is in effect, link status is UP */ if (sc->config.loop_back != CFG_LOOP_NONE) link_status = STATUS_UP; return link_status; } /* IOCTL SYSCALL: can sleep (but doesn't). */ static int hssi_ioctl(softc_t *sc, struct ioctl *ioctl) { int error = 0; if (ioctl->cmd == IOCTL_SNMP_SIGS) { u_int16_t mii16 = read_mii(sc, 16); mii16 &= ~MII16_HSSI_MODEM; mii16 |= (MII16_HSSI_MODEM & ioctl->data); write_mii(sc, 16, mii16); } else if (ioctl->cmd == IOCTL_SET_STATUS) { if (ioctl->data != 0) set_mii16_bits(sc, MII16_HSSI_TA); else clr_mii16_bits(sc, MII16_HSSI_TA); } else error = EINVAL; return error; } /* begin DS3 card code */ /* Must not sleep. */ static void t3_config(softc_t *sc) { int i; u_int8_t ctl1; if (sc->status.card_type == 0) { /* defaults */ sc->status.card_type = TLP_CSID_T3; sc->config.crc_len = CFG_CRC_16; sc->config.loop_back = CFG_LOOP_NONE; sc->config.format = CFG_FORMAT_T3CPAR; sc->config.cable_len = 10; /* meters */ sc->config.scrambler = CFG_SCRAM_DL_KEN; sc->config.tx_clk_src = CFG_CLKMUX_INT; /* Center the VCXO -- get within 20 PPM of 44736000. */ write_dac(sc, 0x9002); /* set Vref = 2.048 volts */ write_dac(sc, 2048); /* range is 0..4095 */ } /* Set cable length. */ if (sc->config.cable_len > 30) clr_mii16_bits(sc, MII16_DS3_ZERO); else set_mii16_bits(sc, MII16_DS3_ZERO); /* Set payload scrambler polynomial. */ if (sc->config.scrambler == CFG_SCRAM_LARS) set_mii16_bits(sc, MII16_DS3_POLY); else clr_mii16_bits(sc, MII16_DS3_POLY); /* Set payload scrambler on/off. */ if (sc->config.scrambler == CFG_SCRAM_OFF) clr_mii16_bits(sc, MII16_DS3_SCRAM); else set_mii16_bits(sc, MII16_DS3_SCRAM); /* Set CRC length. */ if (sc->config.crc_len == CFG_CRC_32) set_mii16_bits(sc, MII16_DS3_CRC32); else clr_mii16_bits(sc, MII16_DS3_CRC32); /* Loopback towards host thru the line interface. */ if (sc->config.loop_back == CFG_LOOP_OTHER) set_mii16_bits(sc, MII16_DS3_TRLBK); else clr_mii16_bits(sc, MII16_DS3_TRLBK); /* Loopback towards network thru the line interface. */ if (sc->config.loop_back == CFG_LOOP_LINE) set_mii16_bits(sc, MII16_DS3_LNLBK); else if (sc->config.loop_back == CFG_LOOP_DUAL) set_mii16_bits(sc, MII16_DS3_LNLBK); else clr_mii16_bits(sc, MII16_DS3_LNLBK); /* Configure T3 framer chip; write EVERY writeable register. */ ctl1 = CTL1_SER | CTL1_XTX; if (sc->config.loop_back == CFG_LOOP_INWARD) ctl1 |= CTL1_3LOOP; if (sc->config.loop_back == CFG_LOOP_DUAL) ctl1 |= CTL1_3LOOP; if (sc->config.format == CFG_FORMAT_T3M13) ctl1 |= CTL1_M13MODE; write_framer(sc, T3CSR_CTL1, ctl1); write_framer(sc, T3CSR_TX_FEAC, CTL5_EMODE); write_framer(sc, T3CSR_CTL8, CTL8_FBEC); write_framer(sc, T3CSR_CTL12, CTL12_DLCB1 | CTL12_C21 | CTL12_MCB1); write_framer(sc, T3CSR_DBL_FEAC, 0); write_framer(sc, T3CSR_CTL14, CTL14_RGCEN | CTL14_TGCEN); write_framer(sc, T3CSR_INTEN, 0); write_framer(sc, T3CSR_CTL20, CTL20_CVEN); /* Clear error counters and latched error bits */ /* that may have happened while initializing. */ for (i=0; i<21; i++) read_framer(sc, i); } static void t3_ident(softc_t *sc) { printf(", TXC03401 rev B"); } /* Called once a second; must not sleep. */ static int t3_watchdog(softc_t *sc) { u_int16_t CV; u_int8_t CERR, PERR, MERR, FERR, FEBE; u_int8_t ctl1, stat16, feac; int link_status = STATUS_UP; u_int16_t mii16; /* Read the alarm registers. */ ctl1 = read_framer(sc, T3CSR_CTL1); stat16 = read_framer(sc, T3CSR_STAT16); mii16 = read_mii(sc, 16); /* Always ignore the RTLOC alarm bit. */ stat16 &= ~STAT16_RTLOC; /* Software is alive. */ led_inv(sc, MII16_DS3_LED_GRN); /* Receiving Alarm Indication Signal (AIS). */ if ((stat16 & STAT16_RAIS) != 0) /* receiving ais */ led_on(sc, MII16_DS3_LED_BLU); else if (ctl1 & CTL1_TXAIS) /* sending ais */ led_inv(sc, MII16_DS3_LED_BLU); else led_off(sc, MII16_DS3_LED_BLU); /* Receiving Remote Alarm Indication (RAI). */ if ((stat16 & STAT16_XERR) != 0) /* receiving rai */ led_on(sc, MII16_DS3_LED_YEL); else if ((ctl1 & CTL1_XTX) == 0) /* sending rai */ led_inv(sc, MII16_DS3_LED_YEL); else led_off(sc, MII16_DS3_LED_YEL); /* If certain status bits are set then the link is 'down'. */ /* The bad bits are: rxlos rxoof rxais rxidl xerr. */ if ((stat16 & ~(STAT16_FEAC | STAT16_SEF)) != 0) link_status = STATUS_DOWN; /* Declare local Red Alarm if the link is down. */ if (link_status == STATUS_DOWN) led_on(sc, MII16_DS3_LED_RED); else if (sc->loop_timer != 0) /* loopback is active */ led_inv(sc, MII16_DS3_LED_RED); else led_off(sc, MII16_DS3_LED_RED); /* Print latched error bits if they changed. */ if ((DRIVER_DEBUG) && ((stat16 & ~STAT16_FEAC) != sc->last_stat16)) { char *on = "ON ", *off = "OFF"; printf("%s: RLOS=%s ROOF=%s RAIS=%s RIDL=%s SEF=%s XERR=%s\n", NAME_UNIT, (stat16 & STAT16_RLOS) ? on : off, (stat16 & STAT16_ROOF) ? on : off, (stat16 & STAT16_RAIS) ? on : off, (stat16 & STAT16_RIDL) ? on : off, (stat16 & STAT16_SEF) ? on : off, (stat16 & STAT16_XERR) ? on : off); } /* Check and print error counters if non-zero. */ CV = read_framer(sc, T3CSR_CVHI)<<8; CV += read_framer(sc, T3CSR_CVLO); PERR = read_framer(sc, T3CSR_PERR); CERR = read_framer(sc, T3CSR_CERR); FERR = read_framer(sc, T3CSR_FERR); MERR = read_framer(sc, T3CSR_MERR); FEBE = read_framer(sc, T3CSR_FEBE); /* CV is invalid during LOS. */ if ((stat16 & STAT16_RLOS)!=0) CV = 0; /* CERR & FEBE are invalid in M13 mode */ if (sc->config.format == CFG_FORMAT_T3M13) CERR = FEBE = 0; /* FEBE is invalid during AIS. */ if ((stat16 & STAT16_RAIS)!=0) FEBE = 0; if (DRIVER_DEBUG && (CV || PERR || CERR || FERR || MERR || FEBE)) printf("%s: CV=%u PERR=%u CERR=%u FERR=%u MERR=%u FEBE=%u\n", NAME_UNIT, CV, PERR, CERR, FERR, MERR, FEBE); /* Driver keeps crude link-level error counters (SNMP is better). */ sc->status.cntrs.lcv_errs += CV; sc->status.cntrs.par_errs += PERR; sc->status.cntrs.cpar_errs += CERR; sc->status.cntrs.frm_errs += FERR; sc->status.cntrs.mfrm_errs += MERR; sc->status.cntrs.febe_errs += FEBE; /* Check for FEAC messages (FEAC not defined in M13 mode). */ if (FORMAT_T3CPAR && (stat16 & STAT16_FEAC)) do { feac = read_framer(sc, T3CSR_FEAC_STK); if ((feac & FEAC_STK_VALID)==0) break; /* Ignore RxFEACs while a far end loopback has been requested. */ if ((sc->status.snmp.t3.line & TLOOP_FAR_LINE)!=0) continue; switch (feac & FEAC_STK_FEAC) { case T3BOP_LINE_UP: break; case T3BOP_LINE_DOWN: break; case T3BOP_LOOP_DS3: { if (sc->last_FEAC == T3BOP_LINE_DOWN) { if (DRIVER_DEBUG) printf("%s: Received a 'line loopback deactivate' FEAC msg\n", NAME_UNIT); clr_mii16_bits(sc, MII16_DS3_LNLBK); sc->loop_timer = 0; } if (sc->last_FEAC == T3BOP_LINE_UP) { if (DRIVER_DEBUG) printf("%s: Received a 'line loopback activate' FEAC msg\n", NAME_UNIT); set_mii16_bits(sc, MII16_DS3_LNLBK); sc->loop_timer = 300; } break; } case T3BOP_OOF: { if (DRIVER_DEBUG) printf("%s: Received a 'far end LOF' FEAC msg\n", NAME_UNIT); break; } case T3BOP_IDLE: { if (DRIVER_DEBUG) printf("%s: Received a 'far end IDL' FEAC msg\n", NAME_UNIT); break; } case T3BOP_AIS: { if (DRIVER_DEBUG) printf("%s: Received a 'far end AIS' FEAC msg\n", NAME_UNIT); break; } case T3BOP_LOS: { if (DRIVER_DEBUG) printf("%s: Received a 'far end LOS' FEAC msg\n", NAME_UNIT); break; } default: { if (DRIVER_DEBUG) printf("%s: Received a 'type 0x%02X' FEAC msg\n", NAME_UNIT, feac & FEAC_STK_FEAC); break; } } sc->last_FEAC = feac & FEAC_STK_FEAC; } while ((feac & FEAC_STK_MORE) != 0); stat16 &= ~STAT16_FEAC; /* Send Service-Affecting priority FEAC messages */ if (((sc->last_stat16 ^ stat16) & 0xF0) && (FORMAT_T3CPAR)) { /* Transmit continuous FEACs */ write_framer(sc, T3CSR_CTL14, read_framer(sc, T3CSR_CTL14) & ~CTL14_FEAC10); if ((stat16 & STAT16_RLOS)!=0) write_framer(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_LOS); else if ((stat16 & STAT16_ROOF)!=0) write_framer(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_OOF); else if ((stat16 & STAT16_RAIS)!=0) write_framer(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_AIS); else if ((stat16 & STAT16_RIDL)!=0) write_framer(sc, T3CSR_TX_FEAC, 0xC0 + T3BOP_IDLE); else write_framer(sc, T3CSR_TX_FEAC, CTL5_EMODE); } /* Start sending RAI, Remote Alarm Indication. */ if (((stat16 & STAT16_ROOF)!=0) && ((stat16 & STAT16_RLOS)==0) && ((sc->last_stat16 & STAT16_ROOF)==0)) write_framer(sc, T3CSR_CTL1, ctl1 &= ~CTL1_XTX); /* Stop sending RAI, Remote Alarm Indication. */ else if (((stat16 & STAT16_ROOF)==0) && ((sc->last_stat16 & STAT16_ROOF)!=0)) write_framer(sc, T3CSR_CTL1, ctl1 |= CTL1_XTX); /* Start sending AIS, Alarm Indication Signal */ if (((stat16 & STAT16_RLOS)!=0) && ((sc->last_stat16 & STAT16_RLOS)==0)) { set_mii16_bits(sc, MII16_DS3_FRAME); write_framer(sc, T3CSR_CTL1, ctl1 | CTL1_TXAIS); } /* Stop sending AIS, Alarm Indication Signal */ else if (((stat16 & STAT16_RLOS)==0) && ((sc->last_stat16 & STAT16_RLOS)!=0)) { clr_mii16_bits(sc, MII16_DS3_FRAME); write_framer(sc, T3CSR_CTL1, ctl1 & ~CTL1_TXAIS); } /* Time out loopback requests. */ if (sc->loop_timer != 0) if (--sc->loop_timer == 0) if ((mii16 & MII16_DS3_LNLBK)!=0) { if (DRIVER_DEBUG) printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT); clr_mii16_bits(sc, MII16_DS3_LNLBK); /* line loopback off */ } /* SNMP error counters */ sc->status.snmp.t3.lcv = CV; sc->status.snmp.t3.pcv = PERR; sc->status.snmp.t3.ccv = CERR; sc->status.snmp.t3.febe = FEBE; /* SNMP Line Status */ sc->status.snmp.t3.line = 0; if ((ctl1 & CTL1_XTX)==0) sc->status.snmp.t3.line |= TLINE_TX_RAI; if (stat16 & STAT16_XERR) sc->status.snmp.t3.line |= TLINE_RX_RAI; if (ctl1 & CTL1_TXAIS) sc->status.snmp.t3.line |= TLINE_TX_AIS; if (stat16 & STAT16_RAIS) sc->status.snmp.t3.line |= TLINE_RX_AIS; if (stat16 & STAT16_ROOF) sc->status.snmp.t3.line |= TLINE_LOF; if (stat16 & STAT16_RLOS) sc->status.snmp.t3.line |= TLINE_LOS; if (stat16 & STAT16_SEF) sc->status.snmp.t3.line |= T3LINE_SEF; /* SNMP Loopback Status */ sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE; if (sc->config.loop_back == CFG_LOOP_TULIP) sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER; if (ctl1 & CTL1_3LOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_INWARD; if (mii16 & MII16_DS3_TRLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_OTHER; if (mii16 & MII16_DS3_LNLBK) sc->status.snmp.t3.loop |= TLOOP_NEAR_LINE; /*if (ctl12 & CTL12_RTPLOOP) sc->status.snmp.t3.loop |= TLOOP_NEAR_PAYLOAD; */ /* Remember this state until next time. */ sc->last_stat16 = stat16; /* If an INWARD loopback is in effect, link status is UP */ if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */ link_status = STATUS_UP; return link_status; } /* IOCTL SYSCALL: can sleep. */ static void t3_send_dbl_feac(softc_t *sc, int feac1, int feac2) { u_int8_t tx_feac; int i; /* The FEAC transmitter could be sending a continuous */ /* FEAC msg when told to send a double FEAC message. */ /* So save the current state of the FEAC transmitter. */ tx_feac = read_framer(sc, T3CSR_TX_FEAC); /* Load second FEAC code and stop FEAC transmitter. */ write_framer(sc, T3CSR_TX_FEAC, CTL5_EMODE + feac2); /* FEAC transmitter sends 10 more FEACs and then stops. */ SLEEP(20000); /* sending one FEAC takes 1700 uSecs */ /* Load first FEAC code and start FEAC transmitter. */ write_framer(sc, T3CSR_DBL_FEAC, CTL13_DFEXEC + feac1); /* Wait for double FEAC sequence to complete -- about 70 ms. */ for (i=0; i<10; i++) /* max delay 100 ms */ if (read_framer(sc, T3CSR_DBL_FEAC) & CTL13_DFEXEC) SLEEP(10000); /* Flush received FEACS; don't respond to our own loop cmd! */ while (read_framer(sc, T3CSR_FEAC_STK) & FEAC_STK_VALID) DELAY(1); /* XXX HANG */ /* Restore previous state of the FEAC transmitter. */ /* If it was sending a continous FEAC, it will resume. */ write_framer(sc, T3CSR_TX_FEAC, tx_feac); } /* IOCTL SYSCALL: can sleep. */ static int t3_ioctl(softc_t *sc, struct ioctl *ioctl) { int error = 0; switch (ioctl->cmd) { case IOCTL_SNMP_SEND: /* set opstatus? */ { if (sc->config.format != CFG_FORMAT_T3CPAR) error = EINVAL; else if (ioctl->data == TSEND_LINE) { sc->status.snmp.t3.loop |= TLOOP_FAR_LINE; t3_send_dbl_feac(sc, T3BOP_LINE_UP, T3BOP_LOOP_DS3); } else if (ioctl->data == TSEND_RESET) { t3_send_dbl_feac(sc, T3BOP_LINE_DOWN, T3BOP_LOOP_DS3); sc->status.snmp.t3.loop &= ~TLOOP_FAR_LINE; } else error = EINVAL; break; } case IOCTL_SNMP_LOOP: /* set opstatus = test? */ { if (ioctl->data == CFG_LOOP_NONE) { clr_mii16_bits(sc, MII16_DS3_FRAME); clr_mii16_bits(sc, MII16_DS3_TRLBK); clr_mii16_bits(sc, MII16_DS3_LNLBK); write_framer(sc, T3CSR_CTL1, read_framer(sc, T3CSR_CTL1) & ~CTL1_3LOOP); write_framer(sc, T3CSR_CTL12, read_framer(sc, T3CSR_CTL12) & ~(CTL12_RTPLOOP | CTL12_RTPLLEN)); } else if (ioctl->data == CFG_LOOP_LINE) set_mii16_bits(sc, MII16_DS3_LNLBK); else if (ioctl->data == CFG_LOOP_OTHER) set_mii16_bits(sc, MII16_DS3_TRLBK); else if (ioctl->data == CFG_LOOP_INWARD) write_framer(sc, T3CSR_CTL1, read_framer(sc, T3CSR_CTL1) | CTL1_3LOOP); else if (ioctl->data == CFG_LOOP_DUAL) { set_mii16_bits(sc, MII16_DS3_LNLBK); write_framer(sc, T3CSR_CTL1, read_framer(sc, T3CSR_CTL1) | CTL1_3LOOP); } else if (ioctl->data == CFG_LOOP_PAYLOAD) { set_mii16_bits(sc, MII16_DS3_FRAME); write_framer(sc, T3CSR_CTL12, read_framer(sc, T3CSR_CTL12) | CTL12_RTPLOOP); write_framer(sc, T3CSR_CTL12, read_framer(sc, T3CSR_CTL12) | CTL12_RTPLLEN); DELAY(25); /* at least two frames (22 uS) */ write_framer(sc, T3CSR_CTL12, read_framer(sc, T3CSR_CTL12) & ~CTL12_RTPLLEN); } else error = EINVAL; break; } default: error = EINVAL; break; } return error; } /* begin SSI card code */ /* Must not sleep. */ static void ssi_config(softc_t *sc) { if (sc->status.card_type == 0) { /* defaults */ sc->status.card_type = TLP_CSID_SSI; sc->config.crc_len = CFG_CRC_16; sc->config.loop_back = CFG_LOOP_NONE; sc->config.tx_clk_src = CFG_CLKMUX_ST; sc->config.dte_dce = CFG_DTE; sc->config.synth.n = 51; /* 1.536 MHz */ sc->config.synth.m = 83; sc->config.synth.v = 1; sc->config.synth.x = 1; sc->config.synth.r = 1; sc->config.synth.prescale = 4; } /* Disable the TX clock driver while programming the oscillator. */ clr_gpio_bits(sc, GPIO_SSI_DCE); make_gpio_output(sc, GPIO_SSI_DCE); /* Program the synthesized oscillator. */ write_synth(sc, &sc->config.synth); /* Set DTE/DCE mode. */ /* If DTE mode then DCD & TXC are received. */ /* If DCE mode then DCD & TXC are driven. */ /* Boards with MII rev=4.0 don't drive DCD. */ if (sc->config.dte_dce == CFG_DCE) set_gpio_bits(sc, GPIO_SSI_DCE); else clr_gpio_bits(sc, GPIO_SSI_DCE); make_gpio_output(sc, GPIO_SSI_DCE); /* Set CRC length. */ if (sc->config.crc_len == CFG_CRC_32) set_mii16_bits(sc, MII16_SSI_CRC32); else clr_mii16_bits(sc, MII16_SSI_CRC32); /* Loop towards host thru cable drivers and receivers. */ /* Asserts DCD at the far end of a null modem cable. */ if (sc->config.loop_back == CFG_LOOP_PINS) set_mii16_bits(sc, MII16_SSI_LOOP); else clr_mii16_bits(sc, MII16_SSI_LOOP); /* Assert pin LL in modem conn: ask modem for local loop. */ /* Asserts TM at the far end of a null modem cable. */ if (sc->config.loop_back == CFG_LOOP_LL) set_mii16_bits(sc, MII16_SSI_LL); else clr_mii16_bits(sc, MII16_SSI_LL); /* Assert pin RL in modem conn: ask modem for remote loop. */ if (sc->config.loop_back == CFG_LOOP_RL) set_mii16_bits(sc, MII16_SSI_RL); else clr_mii16_bits(sc, MII16_SSI_RL); } static void ssi_ident(softc_t *sc) { printf(", LTC1343/44"); } /* Called once a second; must not sleep. */ static int ssi_watchdog(softc_t *sc) { u_int16_t cable; u_int16_t mii16 = read_mii(sc, 16) & MII16_SSI_MODEM; int link_status = STATUS_UP; /* Software is alive. */ led_inv(sc, MII16_SSI_LED_UL); /* Check the transmit clock. */ if (sc->status.tx_speed == 0) { led_on(sc, MII16_SSI_LED_UR); link_status = STATUS_DOWN; } else led_off(sc, MII16_SSI_LED_UR); /* Check the external cable. */ cable = read_mii(sc, 17); cable = cable & MII17_SSI_CABLE_MASK; cable = cable >> MII17_SSI_CABLE_SHIFT; if (cable == 7) { led_off(sc, MII16_SSI_LED_LL); /* no cable */ link_status = STATUS_DOWN; } else led_on(sc, MII16_SSI_LED_LL); /* The unit at the other end of the cable is ready if: */ /* DTE mode and DCD pin is asserted */ /* DCE mode and DSR pin is asserted */ if (((sc->config.dte_dce == CFG_DTE) && ((mii16 & MII16_SSI_DCD)==0)) || ((sc->config.dte_dce == CFG_DCE) && ((mii16 & MII16_SSI_DSR)==0))) { led_off(sc, MII16_SSI_LED_LR); link_status = STATUS_DOWN; } else led_on(sc, MII16_SSI_LED_LR); if (DRIVER_DEBUG && (cable != sc->status.cable_type)) printf("%s: SSI cable type changed to '%s'\n", NAME_UNIT, ssi_cables[cable]); sc->status.cable_type = cable; /* Print the modem control signals if they changed. */ if ((DRIVER_DEBUG) && (mii16 != sc->last_mii16)) { char *on = "ON ", *off = "OFF"; printf("%s: DTR=%s DSR=%s RTS=%s CTS=%s DCD=%s RI=%s LL=%s RL=%s TM=%s\n", NAME_UNIT, (mii16 & MII16_SSI_DTR) ? on : off, (mii16 & MII16_SSI_DSR) ? on : off, (mii16 & MII16_SSI_RTS) ? on : off, (mii16 & MII16_SSI_CTS) ? on : off, (mii16 & MII16_SSI_DCD) ? on : off, (mii16 & MII16_SSI_RI) ? on : off, (mii16 & MII16_SSI_LL) ? on : off, (mii16 & MII16_SSI_RL) ? on : off, (mii16 & MII16_SSI_TM) ? on : off); } /* SNMP one-second report */ sc->status.snmp.ssi.sigs = mii16 & MII16_SSI_MODEM; /* Remember this state until next time. */ sc->last_mii16 = mii16; /* If a loop back is in effect, link status is UP */ if (sc->config.loop_back != CFG_LOOP_NONE) link_status = STATUS_UP; return link_status; } /* IOCTL SYSCALL: can sleep (but doesn't). */ static int ssi_ioctl(softc_t *sc, struct ioctl *ioctl) { int error = 0; if (ioctl->cmd == IOCTL_SNMP_SIGS) { u_int16_t mii16 = read_mii(sc, 16); mii16 &= ~MII16_SSI_MODEM; mii16 |= (MII16_SSI_MODEM & ioctl->data); write_mii(sc, 16, mii16); } else if (ioctl->cmd == IOCTL_SET_STATUS) { if (ioctl->data != 0) set_mii16_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD)); else clr_mii16_bits(sc, (MII16_SSI_DTR | MII16_SSI_RTS | MII16_SSI_DCD)); } else error = EINVAL; return error; } /* begin T1E1 card code */ /* Must not sleep. */ static void t1_config(softc_t *sc) { int i; u_int8_t pulse, lbo, gain; if (sc->status.card_type == 0) { /* defaults */ sc->status.card_type = TLP_CSID_T1E1; sc->config.crc_len = CFG_CRC_16; sc->config.loop_back = CFG_LOOP_NONE; sc->config.tx_clk_src = CFG_CLKMUX_INT; sc->config.format = CFG_FORMAT_T1ESF; sc->config.cable_len = 10; sc->config.time_slots = 0x01FFFFFE; sc->config.tx_pulse = CFG_PULSE_AUTO; sc->config.rx_gain = CFG_GAIN_AUTO; sc->config.tx_lbo = CFG_LBO_AUTO; /* Bt8370 occasionally powers up in a loopback mode. */ /* Data sheet says zero LOOP reg and do a s/w reset. */ write_framer(sc, Bt8370_LOOP, 0x00); /* no loopback */ write_framer(sc, Bt8370_CR0, 0x80); /* s/w reset */ for (i=0; i<10; i++) /* max delay 10 ms */ if (read_framer(sc, Bt8370_CR0) & 0x80) DELAY(1000); } /* Set CRC length. */ if (sc->config.crc_len == CFG_CRC_32) set_mii16_bits(sc, MII16_T1_CRC32); else clr_mii16_bits(sc, MII16_T1_CRC32); /* Invert HDLC payload data in SF/AMI mode. */ /* HDLC stuff bits satisfy T1 pulse density. */ if (FORMAT_T1SF) set_mii16_bits(sc, MII16_T1_INVERT); else clr_mii16_bits(sc, MII16_T1_INVERT); /* Set the transmitter output impedance. */ if (FORMAT_E1ANY) set_mii16_bits(sc, MII16_T1_Z); /* 001:CR0 -- Control Register 0 - T1/E1 and frame format */ write_framer(sc, Bt8370_CR0, sc->config.format); /* 002:JAT_CR -- Jitter Attenuator Control Register */ if (sc->config.tx_clk_src == CFG_CLKMUX_RT) /* loop timing */ write_framer(sc, Bt8370_JAT_CR, 0xA3); /* JAT in RX path */ else { /* 64-bit elastic store; free-running JCLK and CLADO */ write_framer(sc, Bt8370_JAT_CR, 0x4B); /* assert jcenter */ write_framer(sc, Bt8370_JAT_CR, 0x43); /* release jcenter */ } /* 00C-013:IERn -- Interrupt Enable Registers */ for (i=Bt8370_IER7; i<=Bt8370_IER0; i++) write_framer(sc, i, 0); /* no interrupts; polled */ /* 014:LOOP -- loopbacks */ if (sc->config.loop_back == CFG_LOOP_PAYLOAD) write_framer(sc, Bt8370_LOOP, LOOP_PAYLOAD); else if (sc->config.loop_back == CFG_LOOP_LINE) write_framer(sc, Bt8370_LOOP, LOOP_LINE); else if (sc->config.loop_back == CFG_LOOP_OTHER) write_framer(sc, Bt8370_LOOP, LOOP_ANALOG); else if (sc->config.loop_back == CFG_LOOP_INWARD) write_framer(sc, Bt8370_LOOP, LOOP_FRAMER); else if (sc->config.loop_back == CFG_LOOP_DUAL) write_framer(sc, Bt8370_LOOP, LOOP_DUAL); else write_framer(sc, Bt8370_LOOP, 0x00); /* no loopback */ /* 015:DL3_TS -- Data Link 3 */ write_framer(sc, Bt8370_DL3_TS, 0x00); /* disabled */ /* 018:PIO -- Programmable I/O */ write_framer(sc, Bt8370_PIO, 0xFF); /* all pins are outputs */ /* 019:POE -- Programmable Output Enable */ write_framer(sc, Bt8370_POE, 0x00); /* all outputs are enabled */ /* 01A;CMUX -- Clock Input Mux */ if (sc->config.tx_clk_src == CFG_CLKMUX_EXT) write_framer(sc, Bt8370_CMUX, 0x0C); /* external timing */ else write_framer(sc, Bt8370_CMUX, 0x0F); /* internal timing */ /* 020:LIU_CR -- Line Interface Unit Config Register */ write_framer(sc, Bt8370_LIU_CR, 0xC1); /* reset LIU, squelch */ /* 022:RLIU_CR -- RX Line Interface Unit Config Reg */ /* Errata sheet says don't use freeze-short, but we do anyway! */ write_framer(sc, Bt8370_RLIU_CR, 0xB1); /* AGC=2048, Long Eye */ /* Select Rx sensitivity based on cable length. */ if ((gain = sc->config.rx_gain) == CFG_GAIN_AUTO) { if (sc->config.cable_len > 2000) gain = CFG_GAIN_EXTEND; else if (sc->config.cable_len > 1000) gain = CFG_GAIN_LONG; else if (sc->config.cable_len > 100) gain = CFG_GAIN_MEDIUM; else gain = CFG_GAIN_SHORT; } /* 024:VGA_MAX -- Variable Gain Amplifier Max gain */ write_framer(sc, Bt8370_VGA_MAX, gain); /* 028:PRE_EQ -- Pre Equalizer */ if (gain == CFG_GAIN_EXTEND) write_framer(sc, Bt8370_PRE_EQ, 0xE6); /* ON; thresh 6 */ else write_framer(sc, Bt8370_PRE_EQ, 0xA6); /* OFF; thresh 6 */ /* 038-03C:GAINn -- RX Equalizer gain thresholds */ write_framer(sc, Bt8370_GAIN0, 0x24); write_framer(sc, Bt8370_GAIN1, 0x28); write_framer(sc, Bt8370_GAIN2, 0x2C); write_framer(sc, Bt8370_GAIN3, 0x30); write_framer(sc, Bt8370_GAIN4, 0x34); /* 040:RCR0 -- Receiver Control Register 0 */ if (FORMAT_T1ESF) write_framer(sc, Bt8370_RCR0, 0x05); /* B8ZS, 2/5 FErrs */ else if (FORMAT_T1SF) write_framer(sc, Bt8370_RCR0, 0x84); /* AMI, 2/5 FErrs */ else if (FORMAT_E1NONE) write_framer(sc, Bt8370_RCR0, 0x41); /* HDB3, rabort */ else if (FORMAT_E1CRC) write_framer(sc, Bt8370_RCR0, 0x09); /* HDB3, 3 FErrs or 915 CErrs */ else /* E1 no CRC */ write_framer(sc, Bt8370_RCR0, 0x19); /* HDB3, 3 FErrs */ /* 041:RPATT -- Receive Test Pattern configuration */ write_framer(sc, Bt8370_RPATT, 0x3E); /* looking for framed QRSS */ /* 042:RLB -- Receive Loop Back code detector config */ write_framer(sc, Bt8370_RLB, 0x09); /* 6 bits down; 5 bits up */ /* 043:LBA -- Loop Back Activate code */ write_framer(sc, Bt8370_LBA, 0x08); /* 10000 10000 10000 ... */ /* 044:LBD -- Loop Back Deactivate code */ write_framer(sc, Bt8370_LBD, 0x24); /* 100100 100100 100100 ... */ /* 045:RALM -- Receive Alarm signal configuration */ write_framer(sc, Bt8370_RALM, 0x0C); /* yel_intg rlof_intg */ /* 046:LATCH -- Alarm/Error/Counter Latch register */ write_framer(sc, Bt8370_LATCH, 0x1F); /* stop_cnt latch_{cnt,err,alm} */ /* Select Pulse Shape based on cable length (T1 only). */ if ((pulse = sc->config.tx_pulse) == CFG_PULSE_AUTO) { if (FORMAT_T1ANY) { if (sc->config.cable_len > 200) pulse = CFG_PULSE_T1CSU; else if (sc->config.cable_len > 160) pulse = CFG_PULSE_T1DSX4; else if (sc->config.cable_len > 120) pulse = CFG_PULSE_T1DSX3; else if (sc->config.cable_len > 80) pulse = CFG_PULSE_T1DSX2; else if (sc->config.cable_len > 40) pulse = CFG_PULSE_T1DSX1; else pulse = CFG_PULSE_T1DSX0; } else pulse = CFG_PULSE_E1TWIST; } /* Select Line Build Out based on cable length (T1CSU only). */ if ((lbo = sc->config.tx_lbo) == CFG_LBO_AUTO) { if (pulse == CFG_PULSE_T1CSU) { if (sc->config.cable_len > 1500) lbo = CFG_LBO_0DB; else if (sc->config.cable_len > 1000) lbo = CFG_LBO_7DB; else if (sc->config.cable_len > 500) lbo = CFG_LBO_15DB; else lbo = CFG_LBO_22DB; } else lbo = 0; } /* 068:TLIU_CR -- Transmit LIU Control Register */ write_framer(sc, Bt8370_TLIU_CR, (0x40 | (lbo & 0x30) | (pulse & 0x0E))); /* 070:TCR0 -- Transmit Framer Configuration */ write_framer(sc, Bt8370_TCR0, sc->config.format>>1); /* 071:TCR1 -- Transmitter Configuration */ if (FORMAT_T1SF) write_framer(sc, Bt8370_TCR1, 0x43); /* tabort, AMI PDV enforced */ else write_framer(sc, Bt8370_TCR1, 0x41); /* tabort, B8ZS or HDB3 */ /* 072:TFRM -- Transmit Frame format MYEL YEL MF FE CRC FBIT */ if (sc->config.format == CFG_FORMAT_T1ESF) write_framer(sc, Bt8370_TFRM, 0x0B); /* - YEL MF - CRC FBIT */ else if (sc->config.format == CFG_FORMAT_T1SF) write_framer(sc, Bt8370_TFRM, 0x19); /* - YEL MF - - FBIT */ else if (sc->config.format == CFG_FORMAT_E1FAS) write_framer(sc, Bt8370_TFRM, 0x11); /* - YEL - - - FBIT */ else if (sc->config.format == CFG_FORMAT_E1FASCRC) write_framer(sc, Bt8370_TFRM, 0x1F); /* - YEL MF FE CRC FBIT */ else if (sc->config.format == CFG_FORMAT_E1FASCAS) write_framer(sc, Bt8370_TFRM, 0x31); /* MYEL YEL - - - FBIT */ else if (sc->config.format == CFG_FORMAT_E1FASCRCCAS) write_framer(sc, Bt8370_TFRM, 0x3F); /* MYEL YEL MF FE CRC FBIT */ else if (sc->config.format == CFG_FORMAT_E1NONE) write_framer(sc, Bt8370_TFRM, 0x00); /* NO FRAMING BITS AT ALL! */ /* 073:TERROR -- Transmit Error Insert */ write_framer(sc, Bt8370_TERROR, 0x00); /* no errors, please! */ /* 074:TMAN -- Transmit Manual Sa-byte/FEBE configuration */ write_framer(sc, Bt8370_TMAN, 0x00); /* none */ /* 075:TALM -- Transmit Alarm Signal Configuration */ if (FORMAT_E1ANY) write_framer(sc, Bt8370_TALM, 0x38); /* auto_myel auto_yel auto_ais */ else if (FORMAT_T1ANY) write_framer(sc, Bt8370_TALM, 0x18); /* auto_yel auto_ais */ /* 076:TPATT -- Transmit Test Pattern Configuration */ write_framer(sc, Bt8370_TPATT, 0x00); /* disabled */ /* 077:TLB -- Transmit Inband Loopback Code Configuration */ write_framer(sc, Bt8370_TLB, 0x00); /* disabled */ /* 090:CLAD_CR -- Clack Rate Adapter Configuration */ if (FORMAT_T1ANY) write_framer(sc, Bt8370_CLAD_CR, 0x06); /* loop filter gain 1/2^6 */ else write_framer(sc, Bt8370_CLAD_CR, 0x08); /* loop filter gain 1/2^8 */ /* 091:CSEL -- CLAD frequency Select */ if (FORMAT_T1ANY) write_framer(sc, Bt8370_CSEL, 0x55); /* 1544 kHz */ else write_framer(sc, Bt8370_CSEL, 0x11); /* 2048 kHz */ /* 092:CPHASE -- CLAD Phase detector */ if (FORMAT_T1ANY) write_framer(sc, Bt8370_CPHASE, 0x22); /* phase compare @ 386 kHz */ else write_framer(sc, Bt8370_CPHASE, 0x00); /* phase compare @ 2048 kHz */ if (FORMAT_T1ESF) /* BOP & PRM are enabled in T1ESF mode only. */ { /* 0A0:BOP -- Bit Oriented Protocol messages */ write_framer(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF); /* 0A4:DL1_TS -- Data Link 1 Time Slot Enable */ write_framer(sc, Bt8370_DL1_TS, 0x40); /* FDL bits in odd frames */ /* 0A6:DL1_CTL -- Data Link 1 Control */ write_framer(sc, Bt8370_DL1_CTL, 0x03); /* FCS mode, TX on, RX on */ /* 0A7:RDL1_FFC -- Rx Data Link 1 Fifo Fill Control */ write_framer(sc, Bt8370_RDL1_FFC, 0x30); /* assert "near full" at 48 */ /* 0AA:PRM -- Performance Report Messages */ write_framer(sc, Bt8370_PRM, 0x80); } /* 0D0:SBI_CR -- System Bus Interface Configuration Register */ if (FORMAT_T1ANY) write_framer(sc, Bt8370_SBI_CR, 0x47); /* 1.544 with 24 TS +Fbits */ else write_framer(sc, Bt8370_SBI_CR, 0x46); /* 2.048 with 32 TS */ /* 0D1:RSB_CR -- Receive System Bus Configuration Register */ /* Change RINDO & RFSYNC on falling edge of RSBCLKI. */ write_framer(sc, Bt8370_RSB_CR, 0x70); /* 0D2,0D3:RSYNC_{TS,BIT} -- Receive frame Sync offset */ write_framer(sc, Bt8370_RSYNC_BIT, 0x00); write_framer(sc, Bt8370_RSYNC_TS, 0x00); /* 0D4:TSB_CR -- Transmit System Bus Configuration Register */ /* Change TINDO & TFSYNC on falling edge of TSBCLKI. */ write_framer(sc, Bt8370_TSB_CR, 0x30); /* 0D5,0D6:TSYNC_{TS,BIT} -- Transmit frame Sync offset */ write_framer(sc, Bt8370_TSYNC_BIT, 0x00); write_framer(sc, Bt8370_TSYNC_TS, 0x00); /* 0D7:RSIG_CR -- Receive SIGnalling Configuratin Register */ write_framer(sc, Bt8370_RSIG_CR, 0x00); /* Assign and configure 64Kb TIME SLOTS. */ /* TS24..TS1 must be assigned for T1, TS31..TS0 for E1. */ /* Timeslots with no user data have RINDO and TINDO off. */ for (i=0; i<32; i++) { /* 0E0-0FF:SBCn -- System Bus Per-Channel Control */ if (FORMAT_T1ANY && (i==0 || i>24)) write_framer(sc, Bt8370_SBCn +i, 0x00); /* not assigned in T1 mode */ else if (FORMAT_E1ANY && (i==0) && !FORMAT_E1NONE) write_framer(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS0 o/h bits */ else if (FORMAT_E1CAS && (i==16) && !FORMAT_E1NONE) write_framer(sc, Bt8370_SBCn +i, 0x01); /* assigned, TS16 o/h bits */ else if ((sc->config.time_slots & (1<<i)) != 0) write_framer(sc, Bt8370_SBCn +i, 0x0D); /* assigned, RINDO, TINDO */ else write_framer(sc, Bt8370_SBCn +i, 0x01); /* assigned, idle */ /* 100-11F:TPCn -- Transmit Per-Channel Control */ if (FORMAT_E1CAS && (i==0)) write_framer(sc, Bt8370_TPCn +i, 0x30); /* tidle, sig=0000 (MAS) */ else if (FORMAT_E1CAS && (i==16)) write_framer(sc, Bt8370_TPCn +i, 0x3B); /* tidle, sig=1011 (XYXX) */ else if ((sc->config.time_slots & (1<<i)) == 0) write_framer(sc, Bt8370_TPCn +i, 0x20); /* tidle: use TSLIP_LOn */ else write_framer(sc, Bt8370_TPCn +i, 0x00); /* nothing special */ /* 140-15F:TSLIP_LOn -- Transmit PCM Slip Buffer */ write_framer(sc, Bt8370_TSLIP_LOn +i, 0x7F); /* idle chan data */ /* 180-19F:RPCn -- Receive Per-Channel Control */ write_framer(sc, Bt8370_RPCn +i, 0x00); /* nothing special */ } /* Enable transmitter output drivers. */ set_mii16_bits(sc, MII16_T1_XOE); } static void t1_ident(softc_t *sc) { printf(", Bt837%x rev %x", read_framer(sc, Bt8370_DID)>>4, read_framer(sc, Bt8370_DID)&0x0F); } /* Called once a second; must not sleep. */ static int t1_watchdog(softc_t *sc) { u_int16_t LCV = 0, FERR = 0, CRC = 0, FEBE = 0; u_int8_t alm1, alm3, loop, isr0; int link_status = STATUS_UP; int i; /* Read the alarm registers */ alm1 = read_framer(sc, Bt8370_ALM1); alm3 = read_framer(sc, Bt8370_ALM3); loop = read_framer(sc, Bt8370_LOOP); isr0 = read_framer(sc, Bt8370_ISR0); /* Always ignore the SIGFRZ alarm bit, */ alm1 &= ~ALM1_SIGFRZ; if (FORMAT_T1ANY) /* ignore RYEL in T1 modes */ alm1 &= ~ALM1_RYEL; else if (FORMAT_E1NONE) /* ignore all alarms except LOS */ alm1 &= ALM1_RLOS; /* Software is alive. */ led_inv(sc, MII16_T1_LED_GRN); /* Receiving Alarm Indication Signal (AIS). */ if ((alm1 & ALM1_RAIS)!=0) /* receiving ais */ led_on(sc, MII16_T1_LED_BLU); else if ((alm1 & ALM1_RLOS)!=0) /* sending ais */ led_inv(sc, MII16_T1_LED_BLU); else led_off(sc, MII16_T1_LED_BLU); /* Receiving Remote Alarm Indication (RAI). */ if ((alm1 & (ALM1_RMYEL | ALM1_RYEL))!=0) /* receiving rai */ led_on(sc, MII16_T1_LED_YEL); else if ((alm1 & ALM1_RLOF)!=0) /* sending rai */ led_inv(sc, MII16_T1_LED_YEL); else led_off(sc, MII16_T1_LED_YEL); /* If any alarm bits are set then the link is 'down'. */ /* The bad bits are: rmyel ryel rais ralos rlos rlof. */ /* Some alarm bits have been masked by this point. */ if (alm1 != 0) link_status = STATUS_DOWN; /* Declare local Red Alarm if the link is down. */ if (link_status == STATUS_DOWN) led_on(sc, MII16_T1_LED_RED); else if (sc->loop_timer != 0) /* loopback is active */ led_inv(sc, MII16_T1_LED_RED); else led_off(sc, MII16_T1_LED_RED); /* Print latched error bits if they changed. */ if ((DRIVER_DEBUG) && (alm1 != sc->last_alm1)) { char *on = "ON ", *off = "OFF"; printf("%s: RLOF=%s RLOS=%s RALOS=%s RAIS=%s RYEL=%s RMYEL=%s\n", NAME_UNIT, (alm1 & ALM1_RLOF) ? on : off, (alm1 & ALM1_RLOS) ? on : off, (alm1 & ALM1_RALOS) ? on : off, (alm1 & ALM1_RAIS) ? on : off, (alm1 & ALM1_RYEL) ? on : off, (alm1 & ALM1_RMYEL) ? on : off); } /* Check and print error counters if non-zero. */ LCV = read_framer(sc, Bt8370_LCV_LO) + (read_framer(sc, Bt8370_LCV_HI)<<8); if (!FORMAT_E1NONE) FERR = read_framer(sc, Bt8370_FERR_LO) + (read_framer(sc, Bt8370_FERR_HI)<<8); if (FORMAT_E1CRC || FORMAT_T1ESF) CRC = read_framer(sc, Bt8370_CRC_LO) + (read_framer(sc, Bt8370_CRC_HI)<<8); if (FORMAT_E1CRC) FEBE = read_framer(sc, Bt8370_FEBE_LO) + (read_framer(sc, Bt8370_FEBE_HI)<<8); /* Only LCV is valid if Out-Of-Frame */ if (FORMAT_E1NONE) FERR = CRC = FEBE = 0; if ((DRIVER_DEBUG) && (LCV || FERR || CRC || FEBE)) printf("%s: LCV=%u FERR=%u CRC=%u FEBE=%u\n", NAME_UNIT, LCV, FERR, CRC, FEBE); /* Driver keeps crude link-level error counters (SNMP is better). */ sc->status.cntrs.lcv_errs += LCV; sc->status.cntrs.frm_errs += FERR; sc->status.cntrs.crc_errs += CRC; sc->status.cntrs.febe_errs += FEBE; /* Check for BOP messages in the ESF Facility Data Link. */ if ((FORMAT_T1ESF) && (read_framer(sc, Bt8370_ISR1) & 0x80)) { u_int8_t bop_code = read_framer(sc, Bt8370_RBOP) & 0x3F; switch (bop_code) { case T1BOP_OOF: { if ((DRIVER_DEBUG) && ((sc->last_alm1 & ALM1_RMYEL)==0)) printf("%s: Receiving a 'yellow alarm' BOP msg\n", NAME_UNIT); break; } case T1BOP_LINE_UP: { if (DRIVER_DEBUG) printf("%s: Received a 'line loopback activate' BOP msg\n", NAME_UNIT); write_framer(sc, Bt8370_LOOP, LOOP_LINE); sc->loop_timer = 305; break; } case T1BOP_LINE_DOWN: { if (DRIVER_DEBUG) printf("%s: Received a 'line loopback deactivate' BOP msg\n", NAME_UNIT); write_framer(sc, Bt8370_LOOP, read_framer(sc, Bt8370_LOOP) & ~LOOP_LINE); sc->loop_timer = 0; break; } case T1BOP_PAY_UP: { if (DRIVER_DEBUG) printf("%s: Received a 'payload loopback activate' BOP msg\n", NAME_UNIT); write_framer(sc, Bt8370_LOOP, LOOP_PAYLOAD); sc->loop_timer = 305; break; } case T1BOP_PAY_DOWN: { if (DRIVER_DEBUG) printf("%s: Received a 'payload loopback deactivate' BOP msg\n", NAME_UNIT); write_framer(sc, Bt8370_LOOP, read_framer(sc, Bt8370_LOOP) & ~LOOP_PAYLOAD); sc->loop_timer = 0; break; } default: { if (DRIVER_DEBUG) printf("%s: Received a type 0x%02X BOP msg\n", NAME_UNIT, bop_code); break; } } } /* Check for HDLC pkts in the ESF Facility Data Link. */ if ((FORMAT_T1ESF) && (read_framer(sc, Bt8370_ISR2) & 0x70)) { /* while (not fifo-empty && not start-of-msg) flush fifo */ while ((read_framer(sc, Bt8370_RDL1_STAT) & 0x0C) == 0) read_framer(sc, Bt8370_RDL1); /* If (not fifo-empty), then begin processing fifo contents. */ if ((read_framer(sc, Bt8370_RDL1_STAT) & 0x0C) == 0x08) { u_int8_t msg[64]; u_int8_t stat = read_framer(sc, Bt8370_RDL1); sc->status.cntrs.fdl_pkts++; for (i=0; i<(stat & 0x3F); i++) msg[i] = read_framer(sc, Bt8370_RDL1); /* Is this FDL message a T1.403 performance report? */ if (((stat & 0x3F)==11) && ((msg[0]==0x38) || (msg[0]==0x3A)) && (msg[1]==1) && (msg[2]==3)) /* Copy 4 PRs from FDL pkt to SNMP struct. */ memcpy(sc->status.snmp.t1.prm, msg+3, 8); } } /* Check for inband loop up/down commands. */ if (FORMAT_T1ANY) { u_int8_t isr6 = read_framer(sc, Bt8370_ISR6); u_int8_t alarm2 = read_framer(sc, Bt8370_ALM2); u_int8_t tlb = read_framer(sc, Bt8370_TLB); /* Inband Code == Loop Up && On Transition && Inband Tx Inactive */ if ((isr6 & 0x40) && (alarm2 & 0x40) && ((tlb & 1)==0)) { /* CSU loop up is 10000 10000 ... */ if (DRIVER_DEBUG) printf("%s: Received a 'CSU Loop Up' inband msg\n", NAME_UNIT); write_framer(sc, Bt8370_LOOP, LOOP_LINE); /* Loop up */ sc->loop_timer = 305; } /* Inband Code == Loop Down && On Transition && Inband Tx Inactive */ if ((isr6 & 0x80) && (alarm2 & 0x80) && ((tlb & 1)==0)) { /* CSU loop down is 100 100 100 ... */ if (DRIVER_DEBUG) printf("%s: Received a 'CSU Loop Down' inband msg\n", NAME_UNIT); write_framer(sc, Bt8370_LOOP, read_framer(sc, Bt8370_LOOP) & ~LOOP_LINE); /* loop down */ sc->loop_timer = 0; } } /* Manually send Yellow Alarm BOP msgs. */ if (FORMAT_T1ESF) { u_int8_t isr7 = read_framer(sc, Bt8370_ISR7); if ((isr7 & 0x02) && (alm1 & 0x02)) /* RLOF on-transition */ { /* Start sending continuous Yellow Alarm BOP messages. */ write_framer(sc, Bt8370_BOP, RBOP_25 | TBOP_CONT); write_framer(sc, Bt8370_TBOP, 0x00); /* send BOP; order matters */ } else if ((isr7 & 0x02) && ((alm1 & 0x02)==0)) /* RLOF off-transition */ { /* Stop sending continuous Yellow Alarm BOP messages. */ write_framer(sc, Bt8370_BOP, RBOP_25 | TBOP_OFF); } } /* Time out loopback requests. */ if (sc->loop_timer != 0) if (--sc->loop_timer == 0) if (loop != 0) { if (DRIVER_DEBUG) printf("%s: Timeout: Loop Down after 300 seconds\n", NAME_UNIT); write_framer(sc, Bt8370_LOOP, loop & ~(LOOP_PAYLOAD | LOOP_LINE)); } /* RX Test Pattern status */ if ((DRIVER_DEBUG) && (isr0 & 0x10)) printf("%s: RX Test Pattern Sync\n", NAME_UNIT); /* SNMP Error Counters */ sc->status.snmp.t1.lcv = LCV; sc->status.snmp.t1.fe = FERR; sc->status.snmp.t1.crc = CRC; sc->status.snmp.t1.febe = FEBE; /* SNMP Line Status */ sc->status.snmp.t1.line = 0; if (alm1 & ALM1_RMYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI; if (alm1 & ALM1_RYEL) sc->status.snmp.t1.line |= TLINE_RX_RAI; if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_TX_RAI; if (alm1 & ALM1_RAIS) sc->status.snmp.t1.line |= TLINE_RX_AIS; if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_TX_AIS; if (alm1 & ALM1_RLOF) sc->status.snmp.t1.line |= TLINE_LOF; if (alm1 & ALM1_RLOS) sc->status.snmp.t1.line |= TLINE_LOS; if (alm3 & ALM3_RMAIS) sc->status.snmp.t1.line |= T1LINE_RX_TS16_AIS; if (alm3 & ALM3_SRED) sc->status.snmp.t1.line |= T1LINE_TX_TS16_LOMF; if (alm3 & ALM3_SEF) sc->status.snmp.t1.line |= T1LINE_SEF; if (isr0 & 0x10) sc->status.snmp.t1.line |= T1LINE_RX_TEST; if ((alm1 & ALM1_RMYEL) && (FORMAT_E1CAS)) sc->status.snmp.t1.line |= T1LINE_RX_TS16_LOMF; /* SNMP Loopback Status */ sc->status.snmp.t1.loop &= ~(TLOOP_FAR_LINE | TLOOP_FAR_PAYLOAD); if (sc->config.loop_back == CFG_LOOP_TULIP) sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER; if (loop & LOOP_PAYLOAD) sc->status.snmp.t1.loop |= TLOOP_NEAR_PAYLOAD; if (loop & LOOP_LINE) sc->status.snmp.t1.loop |= TLOOP_NEAR_LINE; if (loop & LOOP_ANALOG) sc->status.snmp.t1.loop |= TLOOP_NEAR_OTHER; if (loop & LOOP_FRAMER) sc->status.snmp.t1.loop |= TLOOP_NEAR_INWARD; /* Remember this state until next time. */ sc->last_alm1 = alm1; /* If an INWARD loopback is in effect, link status is UP */ if (sc->config.loop_back != CFG_LOOP_NONE) /* XXX INWARD ONLY */ link_status = STATUS_UP; return link_status; } /* IOCTL SYSCALL: can sleep. */ static void t1_send_bop(softc_t *sc, int bop_code) { u_int8_t bop; int i; /* The BOP transmitter could be sending a continuous */ /* BOP msg when told to send this BOP_25 message. */ /* So save and restore the state of the BOP machine. */ bop = read_framer(sc, Bt8370_BOP); write_framer(sc, Bt8370_BOP, RBOP_OFF | TBOP_OFF); for (i=0; i<40; i++) /* max delay 400 ms. */ if (read_framer(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000); /* send 25 repetitions of bop_code */ write_framer(sc, Bt8370_BOP, RBOP_OFF | TBOP_25); write_framer(sc, Bt8370_TBOP, bop_code); /* order matters */ /* wait for tx to stop */ for (i=0; i<40; i++) /* max delay 400 ms. */ if (read_framer(sc, Bt8370_BOP_STAT) & 0x80) SLEEP(10000); /* Restore previous state of the BOP machine. */ write_framer(sc, Bt8370_BOP, bop); } /* IOCTL SYSCALL: can sleep. */ static int t1_ioctl(softc_t *sc, struct ioctl *ioctl) { int error = 0; switch (ioctl->cmd) { case IOCTL_SNMP_SEND: /* set opstatus? */ { switch (ioctl->data) { case TSEND_NORMAL: { write_framer(sc, Bt8370_TPATT, 0x00); /* tx pattern generator off */ write_framer(sc, Bt8370_RPATT, 0x00); /* rx pattern detector off */ write_framer(sc, Bt8370_TLB, 0x00); /* tx inband generator off */ break; } case TSEND_LINE: { if (FORMAT_T1ESF) t1_send_bop(sc, T1BOP_LINE_UP); else if (FORMAT_T1SF) { write_framer(sc, Bt8370_LBP, 0x08); /* 10000 10000 ... */ write_framer(sc, Bt8370_TLB, 0x05); /* 5 bits, framed, start */ } sc->status.snmp.t1.loop |= TLOOP_FAR_LINE; break; } case TSEND_PAYLOAD: { t1_send_bop(sc, T1BOP_PAY_UP); sc->status.snmp.t1.loop |= TLOOP_FAR_PAYLOAD; break; } case TSEND_RESET: { if (sc->status.snmp.t1.loop == TLOOP_FAR_LINE) { if (FORMAT_T1ESF) t1_send_bop(sc, T1BOP_LINE_DOWN); else if (FORMAT_T1SF) { write_framer(sc, Bt8370_LBP, 0x24); /* 100100 100100 ... */ write_framer(sc, Bt8370_TLB, 0x09); /* 6 bits, framed, start */ } sc->status.snmp.t1.loop &= ~TLOOP_FAR_LINE; } if (sc->status.snmp.t1.loop == TLOOP_FAR_PAYLOAD) { t1_send_bop(sc, T1BOP_PAY_DOWN); sc->status.snmp.t1.loop &= ~TLOOP_FAR_PAYLOAD; } break; } case TSEND_QRS: { write_framer(sc, Bt8370_TPATT, 0x1E); /* framed QRSS */ break; } default: { error = EINVAL; break; } } break; } case IOCTL_SNMP_LOOP: /* set opstatus = test? */ { u_int8_t new_loop = 0; if (ioctl->data == CFG_LOOP_NONE) new_loop = 0; else if (ioctl->data == CFG_LOOP_PAYLOAD) new_loop = LOOP_PAYLOAD; else if (ioctl->data == CFG_LOOP_LINE) new_loop = LOOP_LINE; else if (ioctl->data == CFG_LOOP_OTHER) new_loop = LOOP_ANALOG; else if (ioctl->data == CFG_LOOP_INWARD) new_loop = LOOP_FRAMER; else if (ioctl->data == CFG_LOOP_DUAL) new_loop = LOOP_DUAL; else error = EINVAL; if (error == 0) { write_framer(sc, Bt8370_LOOP, new_loop); sc->config.loop_back = ioctl->data; } break; } default: error = EINVAL; break; } return error; } static struct card hssi_card = { .config = hssi_config, .ident = hssi_ident, .watchdog = hssi_watchdog, .ioctl = hssi_ioctl, }; static struct card t3_card = { .config = t3_config, .ident = t3_ident, .watchdog = t3_watchdog, .ioctl = t3_ioctl, }; static struct card ssi_card = { .config = ssi_config, .ident = ssi_ident, .watchdog = ssi_watchdog, .ioctl = ssi_ioctl, }; static struct card t1_card = { .config = t1_config, .ident = t1_ident, .watchdog = t1_watchdog, .ioctl = t1_ioctl, }; /* RAWIP is raw IP packets (v4 or v6) in HDLC frames with NO HEADERS. */ /* No HDLC Address/Control fields! No line control protocol at all! */ /* This code is BSD/ifnet-specific; Linux and Netgraph also do RAWIP. */ #if IFNET # if ((defined(__FreeBSD__) && (__FreeBSD_version < 500000)) ||\ defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__)) static void netisr_dispatch(int isr, struct mbuf *mbuf) { struct ifqueue *intrq = NULL; int qfull = 0; #if INET if (isr == NETISR_IP) intrq = &ipintrq; #endif #if INET6 if (isr == NETISR_IPV6) intrq = &ip6intrq; #endif if ((intrq != NULL) && ((qfull = IF_QFULL(intrq)) == 0)) { /* rxintr_cleanup() ENQUEUES in a hard interrupt. */ /* networking code DEQUEUES in a soft interrupt. */ /* Some BSD QUEUE routines are not interrupt-safe. */ DISABLE_INTR; /* noop in FreeBSD */ IF_ENQUEUE(intrq, mbuf); ENABLE_INTR; schednetisr(isr); /* schedule a soft interrupt */ } else { m_freem(mbuf); if ((intrq != NULL) && (qfull != 0)) IF_DROP(intrq); } } # endif /* ((__FreeBSD__ && (__FreeBSD_version < 500000)) || */ /* __NetBSD__ || __OpenBSD__ || __bsdi__) */ /* rxintr_cleanup calls this to give a newly arrived pkt to higher levels. */ static void lmc_raw_input(struct ifnet *ifp, struct mbuf *mbuf) { softc_t *sc = IFP2SC(ifp); M_SETFIB(mbuf, ifp->if_fib); # if INET if (mbuf->m_data[0]>>4 == 4) netisr_dispatch(NETISR_IP, mbuf); else # endif # if INET6 if (mbuf->m_data[0]>>4 == 6) netisr_dispatch(NETISR_IPV6, mbuf); else # endif { m_freem(mbuf); sc->status.cntrs.idiscards++; if (DRIVER_DEBUG) printf("%s: lmc_raw_input: rx pkt discarded: not IPv4 or IPv6\n", NAME_UNIT); } } #endif /* IFNET */ /* There are TWO VERSIONS of interrupt/DMA code: Linux & BSD. * Handling Linux and the BSDs with CPP directives would * make the code unreadable, so there are two versions. * Conceptually, the two versions do the same thing and * core_interrupt() doesn't know they are different. * * We are "standing on the head of a pin" in these routines. * Tulip CSRs can be accessed, but nothing else is interrupt-safe! * Do NOT access: MII, GPIO, SROM, BIOSROM, XILINX, SYNTH, or DAC. */ #if BSD /* BSD version of interrupt/DMA code */ /* Singly-linked tail-queues hold mbufs with active DMA. * For RX, single mbuf clusters; for TX, mbuf chains are queued. * NB: mbufs are linked through their m_nextpkt field. * Callers must hold sc->bottom_lock; not otherwise locked. */ /* Put an mbuf (chain) on the tail of the descriptor ring queue. */ static void /* BSD version */ mbuf_enqueue(struct desc_ring *ring, struct mbuf *m) { m->m_nextpkt = NULL; if (ring->tail == NULL) ring->head = m; else ring->tail->m_nextpkt = m; ring->tail = m; } /* Get an mbuf (chain) from the head of the descriptor ring queue. */ static struct mbuf* /* BSD version */ mbuf_dequeue(struct desc_ring *ring) { struct mbuf *m = ring->head; if (m != NULL) if ((ring->head = m->m_nextpkt) == NULL) ring->tail = NULL; return m; } # ifdef __FreeBSD__ static void /* *** FreeBSD ONLY *** Callout from bus_dmamap_load() */ fbsd_dmamap_load(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct desc_ring *ring = arg; ring->nsegs = error ? 0 : nsegs; ring->segs[0] = segs[0]; ring->segs[1] = segs[1]; } # endif /* Initialize a DMA descriptor ring. */ static int /* BSD version */ create_ring(softc_t *sc, struct desc_ring *ring, int num_descs) { struct dma_desc *descs; int size_descs = sizeof(struct dma_desc)*num_descs; int i, error = 0; /* The DMA descriptor array must not cross a page boundary. */ if (size_descs > PAGE_SIZE) { printf("%s: DMA descriptor array > PAGE_SIZE (%d)\n", NAME_UNIT, (u_int)PAGE_SIZE); return EINVAL; } #ifdef __FreeBSD__ /* Create a DMA tag for descriptors and buffers. */ if ((error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 2, PAGE_SIZE, BUS_DMA_ALLOCNOW, # if (__FreeBSD_version >= 502000) NULL, NULL, # endif &ring->tag))) { printf("%s: bus_dma_tag_create() failed: error %d\n", NAME_UNIT, error); return error; } /* Allocate wired physical memory for DMA descriptor array */ /* and map physical address to kernel virtual address. */ if ((error = bus_dmamem_alloc(ring->tag, (void**)&ring->first, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &ring->map))) { printf("%s: bus_dmamem_alloc() failed; error %d\n", NAME_UNIT, error); return error; } descs = ring->first; /* Map kernel virtual address to PCI address for DMA descriptor array. */ if ((error = bus_dmamap_load(ring->tag, ring->map, descs, size_descs, fbsd_dmamap_load, ring, 0))) { printf("%s: bus_dmamap_load() failed; error %d\n", NAME_UNIT, error); return error; } ring->dma_addr = ring->segs[0].ds_addr; /* Allocate dmamaps for each DMA descriptor. */ for (i=0; i<num_descs; i++) if ((error = bus_dmamap_create(ring->tag, 0, &descs[i].map))) { printf("%s: bus_dmamap_create() failed; error %d\n", NAME_UNIT, error); return error; } #elif (defined(__NetBSD__) || defined(__OpenBSD__)) /* Use the DMA tag passed to attach() for descriptors and buffers. */ ring->tag = sc->pa_dmat; /* Allocate wired physical memory for DMA descriptor array. */ if ((error = bus_dmamem_alloc(ring->tag, size_descs, PAGE_SIZE, 0, ring->segs, 1, &ring->nsegs, BUS_DMA_NOWAIT))) { printf("%s: bus_dmamem_alloc() failed; error %d\n", NAME_UNIT, error); return error; } /* Map physical address to kernel virtual address. */ if ((error = bus_dmamem_map(ring->tag, ring->segs, ring->nsegs, size_descs, (caddr_t *)&ring->first, BUS_DMA_NOWAIT | BUS_DMA_COHERENT))) { printf("%s: bus_dmamem_map() failed; error %d\n", NAME_UNIT, error); return error; } descs = ring->first; /* suppress compiler warning about aliasing */ memset(descs, 0, size_descs); /* Allocate dmamap for PCI access to DMA descriptor array. */ if ((error = bus_dmamap_create(ring->tag, size_descs, 1, size_descs, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ring->map))) { printf("%s: bus_dmamap_create() failed; error %d\n", NAME_UNIT, error); return error; } /* Map kernel virtual address to PCI address for DMA descriptor array. */ if ((error = bus_dmamap_load(ring->tag, ring->map, descs, size_descs, 0, BUS_DMA_NOWAIT))) { printf("%s: bus_dmamap_load() failed; error %d\n", NAME_UNIT, error); return error; } ring->dma_addr = ring->map->dm_segs[0].ds_addr; /* Allocate dmamaps for each DMA descriptor. */ for (i=0; i<num_descs; i++) if ((error = bus_dmamap_create(ring->tag, MAX_DESC_LEN, 2, MAX_CHUNK_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &descs[i].map))) { printf("%s: bus_dmamap_create() failed; error %d\n", NAME_UNIT, error); return error; } #elif defined(__bsdi__) /* Allocate wired physical memory for DMA descriptor array. */ if ((ring->first = malloc(size_descs, M_DEVBUF, M_NOWAIT)) == NULL) { printf("%s: malloc() failed for DMA descriptor array\n", NAME_UNIT); return ENOMEM; } descs = ring->first; memset(descs, 0, size_descs); /* Map kernel virtual address to PCI address for DMA descriptor array. */ ring->dma_addr = vtophys(descs); /* Relax! BSD/OS only. */ #endif ring->read = descs; ring->write = descs; ring->first = descs; ring->last = descs + num_descs -1; ring->last->control = TLP_DCTL_END_RING; ring->num_descs = num_descs; ring->size_descs = size_descs; ring->head = NULL; ring->tail = NULL; return 0; } /* Destroy a DMA descriptor ring */ static void /* BSD version */ destroy_ring(softc_t *sc, struct desc_ring *ring) { struct dma_desc *desc; struct mbuf *m; /* Free queued mbufs. */ while ((m = mbuf_dequeue(ring)) != NULL) m_freem(m); /* TX may have one pkt that is not on any queue. */ if (sc->tx_mbuf != NULL) { m_freem(sc->tx_mbuf); sc->tx_mbuf = NULL; } /* Unmap active DMA descriptors. */ while (ring->read != ring->write) { bus_dmamap_unload(ring->tag, ring->read->map); if (ring->read++ == ring->last) ring->read = ring->first; } #ifdef __FreeBSD__ /* Free the dmamaps of all DMA descriptors. */ for (desc=ring->first; desc!=ring->last+1; desc++) if (desc->map != NULL) bus_dmamap_destroy(ring->tag, desc->map); /* Unmap PCI address for DMA descriptor array. */ if (ring->dma_addr != 0) bus_dmamap_unload(ring->tag, ring->map); /* Free kernel memory for DMA descriptor array. */ if (ring->first != NULL) bus_dmamem_free(ring->tag, ring->first, ring->map); /* Free the DMA tag created for this ring. */ if (ring->tag != NULL) bus_dma_tag_destroy(ring->tag); #elif (defined(__NetBSD__) || defined(__OpenBSD__)) /* Free the dmamaps of all DMA descriptors. */ for (desc=ring->first; desc!=ring->last+1; desc++) if (desc->map != NULL) bus_dmamap_destroy(ring->tag, desc->map); /* Unmap PCI address for DMA descriptor array. */ if (ring->dma_addr != 0) bus_dmamap_unload(ring->tag, ring->map); /* Free dmamap for DMA descriptor array. */ if (ring->map != NULL) bus_dmamap_destroy(ring->tag, ring->map); /* Unmap kernel address for DMA descriptor array. */ if (ring->first != NULL) bus_dmamem_unmap(ring->tag, (caddr_t)ring->first, ring->size_descs); /* Free kernel memory for DMA descriptor array. */ if (ring->segs[0].ds_addr != 0) bus_dmamem_free(ring->tag, ring->segs, ring->nsegs); #elif defined(__bsdi__) /* Free kernel memory for DMA descriptor array. */ if (ring->first != NULL) free(ring->first, M_DEVBUF); #endif } /* Clean up after a packet has been received. */ static int /* BSD version */ rxintr_cleanup(softc_t *sc) { struct desc_ring *ring = &sc->rxring; struct dma_desc *first_desc, *last_desc; struct mbuf *first_mbuf=NULL, *last_mbuf=NULL; struct mbuf *new_mbuf; int pkt_len, desc_len; #if (defined(__FreeBSD__) && defined(DEVICE_POLLING)) /* Input packet flow control (livelock prevention): */ /* Give pkts to higher levels only if quota is > 0. */ if (sc->quota <= 0) return 0; #endif /* This looks complicated, but remember: typically packets up */ /* to 2048 bytes long fit in one mbuf and use one descriptor. */ first_desc = last_desc = ring->read; /* ASSERTION: If there is a descriptor in the ring and the hardware has */ /* finished with it, then that descriptor will have RX_FIRST_DESC set. */ if ((ring->read != ring->write) && /* descriptor ring not empty */ ((ring->read->status & TLP_DSTS_OWNER) == 0) && /* hardware done */ ((ring->read->status & TLP_DSTS_RX_FIRST_DESC) == 0)) /* should be set */ panic("%s: rxintr_cleanup: rx-first-descriptor not set.\n", NAME_UNIT); /* First decide if a complete packet has arrived. */ /* Run down DMA descriptors looking for one marked "last". */ /* Bail out if an active descriptor is encountered. */ /* Accumulate most significant bits of packet length. */ pkt_len = 0; for (;;) { if (last_desc == ring->write) return 0; /* no more descs */ if (last_desc->status & TLP_DSTS_OWNER) return 0; /* still active */ if (last_desc->status & TLP_DSTS_RX_LAST_DESC) break; /* end of packet */ pkt_len += last_desc->length1 + last_desc->length2; /* entire desc filled */ if (last_desc++->control & TLP_DCTL_END_RING) last_desc = ring->first; /* ring wrap */ } /* A complete packet has arrived; how long is it? */ /* H/w ref man shows RX pkt length as a 14-bit field. */ /* An experiment found that only the 12 LSBs work. */ if (((last_desc->status>>16)&0xFFF) == 0) pkt_len += 4096; /* carry-bit */ pkt_len = (pkt_len & 0xF000) + ((last_desc->status>>16) & 0x0FFF); /* Subtract the CRC length unless doing so would underflow. */ if (pkt_len >= sc->config.crc_len) pkt_len -= sc->config.crc_len; /* Run down DMA descriptors again doing the following: * 1) put pkt info in pkthdr of first mbuf, * 2) link mbufs, * 3) set mbuf lengths. */ first_desc = ring->read; do { /* Read a DMA descriptor from the ring. */ last_desc = ring->read; /* Advance the ring read pointer. */ if (ring->read++ == ring->last) ring->read = ring->first; /* Dequeue the corresponding cluster mbuf. */ new_mbuf = mbuf_dequeue(ring); if (new_mbuf == NULL) panic("%s: rxintr_cleanup: expected an mbuf\n", NAME_UNIT); desc_len = last_desc->length1 + last_desc->length2; /* If bouncing, copy bounce buf to mbuf. */ DMA_SYNC(last_desc->map, desc_len, BUS_DMASYNC_POSTREAD); /* Unmap kernel virtual address to PCI address. */ bus_dmamap_unload(ring->tag, last_desc->map); /* 1) Put pkt info in pkthdr of first mbuf. */ if (last_desc == first_desc) { first_mbuf = new_mbuf; first_mbuf->m_pkthdr.len = pkt_len; /* total pkt length */ #if IFNET first_mbuf->m_pkthdr.rcvif = sc->ifp; /* how it got here */ #else first_mbuf->m_pkthdr.rcvif = NULL; #endif } else /* 2) link mbufs. */ { last_mbuf->m_next = new_mbuf; /* M_PKTHDR should be set in the first mbuf only. */ new_mbuf->m_flags &= ~M_PKTHDR; } last_mbuf = new_mbuf; /* 3) Set mbuf lengths. */ new_mbuf->m_len = (pkt_len >= desc_len) ? desc_len : pkt_len; pkt_len -= new_mbuf->m_len; } while ((last_desc->status & TLP_DSTS_RX_LAST_DESC) == 0); /* Decide whether to accept or to discard this packet. */ /* RxHDLC sets MIIERR for bad CRC, abort and partial byte at pkt end. */ if (((last_desc->status & TLP_DSTS_RX_BAD) == 0) && (sc->status.oper_status == STATUS_UP) && (first_mbuf->m_pkthdr.len > 0)) { /* Optimization: copy a small pkt into a small mbuf. */ if (first_mbuf->m_pkthdr.len <= COPY_BREAK) { MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA); if (new_mbuf != NULL) { new_mbuf->m_pkthdr.rcvif = first_mbuf->m_pkthdr.rcvif; new_mbuf->m_pkthdr.len = first_mbuf->m_pkthdr.len; new_mbuf->m_len = first_mbuf->m_len; memcpy(new_mbuf->m_data, first_mbuf->m_data, first_mbuf->m_pkthdr.len); m_freem(first_mbuf); first_mbuf = new_mbuf; } } /* Include CRC and one flag byte in input byte count. */ sc->status.cntrs.ibytes += first_mbuf->m_pkthdr.len + sc->config.crc_len +1; sc->status.cntrs.ipackets++; #if IFNET sc->ifp->if_ipackets++; LMC_BPF_MTAP(first_mbuf); #endif #if (defined(__FreeBSD__) && defined(DEVICE_POLLING)) sc->quota--; #endif /* Give this good packet to the network stacks. */ #if NETGRAPH if (sc->ng_hook != NULL) /* is hook connected? */ { # if (__FreeBSD_version >= 500000) int error; /* ignore error */ NG_SEND_DATA_ONLY(error, sc->ng_hook, first_mbuf); # else /* FreeBSD-4 */ ng_queue_data(sc->ng_hook, first_mbuf, NULL); # endif return 1; /* did something */ } #endif /* NETGRAPH */ if (sc->config.line_pkg == PKG_RAWIP) lmc_raw_input(sc->ifp, first_mbuf); else { #if NSPPP sppp_input(sc->ifp, first_mbuf); #elif P2P new_mbuf = first_mbuf; while (new_mbuf != NULL) { sc->p2p->p2p_hdrinput(sc->p2p, new_mbuf->m_data, new_mbuf->m_len); new_mbuf = new_mbuf->m_next; } sc->p2p->p2p_input(sc->p2p, NULL); m_freem(first_mbuf); #else m_freem(first_mbuf); sc->status.cntrs.idiscards++; #endif } } else if (sc->status.oper_status != STATUS_UP) { /* If the link is down, this packet is probably noise. */ m_freem(first_mbuf); sc->status.cntrs.idiscards++; if (DRIVER_DEBUG) printf("%s: rxintr_cleanup: rx pkt discarded: link down\n", NAME_UNIT); } else /* Log and discard this bad packet. */ { if (DRIVER_DEBUG) printf("%s: RX bad pkt; len=%d %s%s%s%s\n", NAME_UNIT, first_mbuf->m_pkthdr.len, (last_desc->status & TLP_DSTS_RX_MII_ERR) ? " miierr" : "", (last_desc->status & TLP_DSTS_RX_DRIBBLE) ? " dribble" : "", (last_desc->status & TLP_DSTS_RX_DESC_ERR) ? " descerr" : "", (last_desc->status & TLP_DSTS_RX_OVERRUN) ? " overrun" : ""); if (last_desc->status & TLP_DSTS_RX_OVERRUN) sc->status.cntrs.fifo_over++; else sc->status.cntrs.ierrors++; m_freem(first_mbuf); } return 1; /* did something */ } /* Setup (prepare) to receive a packet. */ /* Try to keep the RX descriptor ring full of empty buffers. */ static int /* BSD version */ rxintr_setup(softc_t *sc) { struct desc_ring *ring = &sc->rxring; struct dma_desc *desc; struct mbuf *m; int desc_len; int error; /* Ring is full if (wrap(write+1)==read) */ if (((ring->write == ring->last) ? ring->first : ring->write+1) == ring->read) return 0; /* ring is full; nothing to do */ /* Allocate a small mbuf and attach an mbuf cluster. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { sc->status.cntrs.rxdma++; if (DRIVER_DEBUG) printf("%s: rxintr_setup: MGETHDR() failed\n", NAME_UNIT); return 0; } MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); sc->status.cntrs.rxdma++; if (DRIVER_DEBUG) printf("%s: rxintr_setup: MCLGET() failed\n", NAME_UNIT); return 0; } /* Queue the mbuf for later processing by rxintr_cleanup. */ mbuf_enqueue(ring, m); /* Write a DMA descriptor into the ring. */ /* Hardware won't see it until the OWNER bit is set. */ desc = ring->write; /* Advance the ring write pointer. */ if (ring->write++ == ring->last) ring->write = ring->first; desc_len = (MCLBYTES < MAX_DESC_LEN) ? MCLBYTES : MAX_DESC_LEN; /* Map kernel virtual address to PCI address. */ if ((error = DMA_LOAD(desc->map, m->m_data, desc_len))) printf("%s: bus_dmamap_load(rx) failed; error %d\n", NAME_UNIT, error); /* Invalidate the cache for this mbuf. */ DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREREAD); /* Set up the DMA descriptor. */ #ifdef __FreeBSD__ desc->address1 = ring->segs[0].ds_addr; #elif (defined(__NetBSD__) || defined(__OpenBSD__)) desc->address1 = desc->map->dm_segs[0].ds_addr; #elif defined(__bsdi__) desc->address1 = vtophys(m->m_data); /* Relax! BSD/OS only. */ #endif desc->length1 = desc_len>>1; desc->address2 = desc->address1 + desc->length1; desc->length2 = desc_len>>1; /* Before setting the OWNER bit, flush the cache (memory barrier). */ DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE); /* Commit the DMA descriptor to the hardware. */ desc->status = TLP_DSTS_OWNER; /* Notify the receiver that there is another buffer available. */ WRITE_CSR(TLP_RX_POLL, 1); return 1; /* did something */ } /* Clean up after a packet has been transmitted. */ /* Free the mbuf chain and update the DMA descriptor ring. */ static int /* BSD version */ txintr_cleanup(softc_t *sc) { struct desc_ring *ring = &sc->txring; struct dma_desc *desc; while ((ring->read != ring->write) && /* while ring is not empty */ ((ring->read->status & TLP_DSTS_OWNER) == 0)) { /* Read a DMA descriptor from the ring. */ desc = ring->read; /* Advance the ring read pointer. */ if (ring->read++ == ring->last) ring->read = ring->first; /* This is a no-op on most architectures. */ DMA_SYNC(desc->map, desc->length1 + desc->length2, BUS_DMASYNC_POSTWRITE); /* Unmap kernel virtual address to PCI address. */ bus_dmamap_unload(ring->tag, desc->map); /* If this descriptor is the last segment of a packet, */ /* then dequeue and free the corresponding mbuf chain. */ if ((desc->control & TLP_DCTL_TX_LAST_SEG) != 0) { struct mbuf *m; if ((m = mbuf_dequeue(ring)) == NULL) panic("%s: txintr_cleanup: expected an mbuf\n", NAME_UNIT); /* Include CRC and one flag byte in output byte count. */ sc->status.cntrs.obytes += m->m_pkthdr.len + sc->config.crc_len +1; sc->status.cntrs.opackets++; #if IFNET sc->ifp->if_opackets++; LMC_BPF_MTAP(m); #endif /* The only bad TX status is fifo underrun. */ if ((desc->status & TLP_DSTS_TX_UNDERRUN) != 0) sc->status.cntrs.fifo_under++; m_freem(m); return 1; /* did something */ } } return 0; } /* Build DMA descriptors for a transmit packet mbuf chain. */ static int /* 0=success; 1=error */ /* BSD version */ txintr_setup_mbuf(softc_t *sc, struct mbuf *m) { struct desc_ring *ring = &sc->txring; struct dma_desc *desc; unsigned int desc_len; /* build DMA descriptors for a chain of mbufs. */ while (m != NULL) { char *data = m->m_data; int length = m->m_len; /* zero length mbufs happen! */ /* Build DMA descriptors for one mbuf. */ while (length > 0) { int error; /* Ring is full if (wrap(write+1)==read) */ if (((ring->temp==ring->last) ? ring->first : ring->temp+1) == ring->read) { /* Not enough DMA descriptors; try later. */ for (; ring->temp!=ring->write; ring->temp = (ring->temp==ring->first)? ring->last : ring->temp-1) bus_dmamap_unload(ring->tag, ring->temp->map); sc->status.cntrs.txdma++; return 1; } /* Provisionally, write a descriptor into the ring. */ /* But don't change the REAL ring write pointer. */ /* Hardware won't see it until the OWNER bit is set. */ desc = ring->temp; /* Advance the temporary ring write pointer. */ if (ring->temp++ == ring->last) ring->temp = ring->first; /* Clear all control bits except the END_RING bit. */ desc->control &= TLP_DCTL_END_RING; /* Don't pad short packets up to 64 bytes. */ desc->control |= TLP_DCTL_TX_NO_PAD; /* Use Tulip's CRC-32 generator, if appropriate. */ if (sc->config.crc_len != CFG_CRC_32) desc->control |= TLP_DCTL_TX_NO_CRC; /* Set the OWNER bit, except in the first descriptor. */ if (desc != ring->write) desc->status = TLP_DSTS_OWNER; desc_len = (length > MAX_CHUNK_LEN) ? MAX_CHUNK_LEN : length; /* Map kernel virtual address to PCI address. */ if ((error = DMA_LOAD(desc->map, data, desc_len))) printf("%s: bus_dmamap_load(tx) failed; error %d\n", NAME_UNIT, error); /* Flush the cache and if bouncing, copy mbuf to bounce buf. */ DMA_SYNC(desc->map, desc_len, BUS_DMASYNC_PREWRITE); /* Prevent wild fetches if mapping fails (nsegs==0). */ desc->length1 = desc->length2 = 0; desc->address1 = desc->address2 = 0; #if (defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) { # ifdef __FreeBSD__ bus_dma_segment_t *segs = ring->segs; int nsegs = ring->nsegs; # elif (defined(__NetBSD__) || defined(__OpenBSD__)) bus_dma_segment_t *segs = desc->map->dm_segs; int nsegs = desc->map->dm_nsegs; # endif if (nsegs >= 1) { desc->address1 = segs[0].ds_addr; desc->length1 = segs[0].ds_len; } if (nsegs == 2) { desc->address2 = segs[1].ds_addr; desc->length2 = segs[1].ds_len; } } #elif defined(__bsdi__) desc->address1 = vtophys(data); /* Relax! BSD/OS only. */ desc->length1 = desc_len; #endif data += desc_len; length -= desc_len; } /* while (length > 0) */ m = m->m_next; } /* while (m != NULL) */ return 0; /* success */ } /* Setup (prepare) to transmit a packet. */ /* Select a packet, build DMA descriptors and give packet to hardware. */ /* If DMA descriptors run out, abandon the attempt and return 0. */ static int /* BSD version */ txintr_setup(softc_t *sc) { struct desc_ring *ring = &sc->txring; struct dma_desc *first_desc, *last_desc; /* Protect against half-up links: Don't transmit */ /* if the receiver can't hear the far end. */ if (sc->status.oper_status != STATUS_UP) return 0; /* Pick a packet to transmit. */ #if NETGRAPH if ((sc->ng_hook != NULL) && (sc->tx_mbuf == NULL)) { if (!IFQ_IS_EMPTY(&sc->ng_fastq)) IFQ_DEQUEUE(&sc->ng_fastq, sc->tx_mbuf); else IFQ_DEQUEUE(&sc->ng_sndq, sc->tx_mbuf); } else #endif if (sc->tx_mbuf == NULL) { if (sc->config.line_pkg == PKG_RAWIP) IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf); else { #if NSPPP sc->tx_mbuf = sppp_dequeue(sc->ifp); #elif P2P if (!IFQ_IS_EMPTY(&sc->p2p->p2p_isnd)) IFQ_DEQUEUE(&sc->p2p->p2p_isnd, sc->tx_mbuf); else IFQ_DEQUEUE(&sc->ifp->if_snd, sc->tx_mbuf); #endif } } if (sc->tx_mbuf == NULL) return 0; /* no pkt to transmit */ /* Build DMA descriptors for an outgoing mbuf chain. */ ring->temp = ring->write; /* temporary ring write pointer */ if (txintr_setup_mbuf(sc, sc->tx_mbuf) != 0) return 0; /* Enqueue the mbuf; txintr_cleanup will free it. */ mbuf_enqueue(ring, sc->tx_mbuf); /* The transmitter has room for another packet. */ sc->tx_mbuf = NULL; /* Set first & last segment bits. */ /* last_desc is the desc BEFORE the one pointed to by ring->temp. */ first_desc = ring->write; first_desc->control |= TLP_DCTL_TX_FIRST_SEG; last_desc = (ring->temp==ring->first)? ring->last : ring->temp-1; last_desc->control |= TLP_DCTL_TX_LAST_SEG; /* Interrupt at end-of-transmission? Why bother the poor computer! */ /* last_desc->control |= TLP_DCTL_TX_INTERRUPT; */ /* Make sure the OWNER bit is not set in the next descriptor. */ /* The OWNER bit may have been set if a previous call aborted. */ ring->temp->status = 0; /* Commit the DMA descriptors to the software. */ ring->write = ring->temp; /* Before setting the OWNER bit, flush the cache (memory barrier). */ DMA_SYNC(ring->map, ring->size_descs, BUS_DMASYNC_PREWRITE); /* Commit the DMA descriptors to the hardware. */ first_desc->status = TLP_DSTS_OWNER; /* Notify the transmitter that there is another packet to send. */ WRITE_CSR(TLP_TX_POLL, 1); return 1; /* did something */ } #endif /* BSD */ #ifdef __linux__ /* NOTE: this is the LINUX version of the interrupt/DMA code, */ /* Singly-linked tail-queues hold sk_buffs with active DMA. * skbuffs are linked through their sk_buff.next field. * Callers must hold sc->bottom_lock; not otherwise locked. */ /* Put an skbuff on the tail of the descriptor ring queue. */ static void /* Linux version */ skbuff_enqueue(struct desc_ring *ring, struct sk_buff *skb) { skb->next = NULL; if (ring->tail == NULL) ring->head = skb; else ring->tail->next = skb; ring->tail = skb; } /* Get an skbuff from the head of the descriptor ring queue. */ static struct sk_buff* /* Linux version */ skbuff_dequeue(struct desc_ring *ring) { struct sk_buff *skb = ring->head; if (skb != NULL) if ((ring->head = skb->next) == NULL) ring->tail = NULL; return skb; } /* Initialize a DMA descriptor ring. */ static int /* Linux version */ create_ring(softc_t *sc, struct desc_ring *ring, int num_descs) { struct dma_desc *descs; int size_descs = sizeof(struct dma_desc)*num_descs; /* Allocate and map memory for DMA descriptor array. */ if ((descs = pci_alloc_consistent(sc->pci_dev, size_descs, &ring->dma_addr)) == NULL) { printk("%s: pci_alloc_consistent() failed\n", NAME_UNIT); return ENOMEM; } memset(descs, 0, size_descs); ring->read = descs; ring->write = descs; ring->first = descs; ring->last = descs + num_descs -1; ring->last->control = TLP_DCTL_END_RING; ring->num_descs = num_descs; ring->size_descs = size_descs; ring->head = NULL; ring->tail = NULL; return 0; } /* Destroy a DMA descriptor ring */ static void /* Linux version */ destroy_ring(softc_t *sc, struct desc_ring *ring) { struct sk_buff *skb; /* Free queued skbuffs. */ while ((skb = skbuff_dequeue(ring)) != NULL) dev_kfree_skb(skb); /* TX may have one pkt that is not on any queue. */ if (sc->tx_skb != NULL) { dev_kfree_skb(sc->tx_skb); sc->tx_skb = NULL; } if (ring->first != NULL) { /* Unmap active DMA descriptors. */ while (ring->read != ring->write) { pci_unmap_single(sc->pci_dev, ring->read->address1, ring->read->length1 + ring->read->length2, PCI_DMA_BIDIRECTIONAL); if (ring->read++ == ring->last) ring->read = ring->first; } /* Unmap and free memory for DMA descriptor array. */ pci_free_consistent(sc->pci_dev, ring->size_descs, ring->first, ring->dma_addr); } } static int /* Linux version */ rxintr_cleanup(softc_t *sc) { struct desc_ring *ring = &sc->rxring; struct dma_desc *first_desc, *last_desc; struct sk_buff *first_skb=NULL, *last_skb=NULL; struct sk_buff *new_skb; int pkt_len, desc_len; /* Input packet flow control (livelock prevention): */ /* Give pkts to higher levels only if quota is > 0. */ if (sc->quota <= 0) return 0; /* This looks complicated, but remember: packets up to 4032 */ /* bytes long fit in one skbuff and use one DMA descriptor. */ first_desc = last_desc = ring->read; /* ASSERTION: If there is a descriptor in the ring and the hardware has */ /* finished with it, then that descriptor will have RX_FIRST_DESC set. */ if ((ring->read != ring->write) && /* descriptor ring not empty */ ((ring->read->status & TLP_DSTS_OWNER) == 0) && /* hardware done */ ((ring->read->status & TLP_DSTS_RX_FIRST_DESC) == 0)) /* should be set */ panic("%s: rxintr_cleanup: rx-first-descriptor not set.\n", NAME_UNIT); /* First decide if a complete packet has arrived. */ /* Run down DMA descriptors looking for one marked "last". */ /* Bail out if an active descriptor is encountered. */ /* Accumulate most significant bits of packet length. */ pkt_len = 0; for (;;) { if (last_desc == ring->write) return 0; /* no more descs */ if (last_desc->status & TLP_DSTS_OWNER) return 0; /* still active */ if (last_desc->status & TLP_DSTS_RX_LAST_DESC) break; /* end of packet */ pkt_len += last_desc->length1 + last_desc->length2; /* entire desc filled */ if (last_desc++->control & TLP_DCTL_END_RING) last_desc = ring->first; /* ring wrap */ } /* A complete packet has arrived; how long is it? */ /* H/w ref man shows RX pkt length as a 14-bit field. */ /* An experiment found that only the 12 LSBs work. */ if (((last_desc->status>>16)&0xFFF) == 0) pkt_len += 4096; /* carry-bit */ pkt_len = (pkt_len & 0xF000) + ((last_desc->status>>16) & 0x0FFF); /* Subtract the CRC length unless doing so would underflow. */ if (pkt_len >= sc->config.crc_len) pkt_len -= sc->config.crc_len; /* Run down DMA descriptors again doing the following: * 1) put pkt info in hdr of first skbuff. * 2) put additional skbuffs on frag_list. * 3) set skbuff lengths. */ first_desc = ring->read; do { /* Read a DMA descriptor from the ring. */ last_desc = ring->read; /* Advance the ring read pointer. */ if (ring->read++ == ring->last) ring->read = ring->first; /* Dequeue the corresponding skbuff. */ new_skb = skbuff_dequeue(ring); if (new_skb == NULL) panic("%s: rxintr_cleanup: expected an skbuff\n", NAME_UNIT); desc_len = last_desc->length1 + last_desc->length2; /* Unmap kernel virtual addresss to PCI address. */ pci_unmap_single(sc->pci_dev, last_desc->address1, desc_len, PCI_DMA_FROMDEVICE); /* Set skbuff length. */ skb_put(new_skb, (pkt_len >= desc_len) ? desc_len : pkt_len); pkt_len -= new_skb->len; /* 1) Put pkt info in hdr of first skbuff. */ if (last_desc == first_desc) { first_skb = new_skb; if (sc->config.line_pkg == PKG_RAWIP) { if (first_skb->data[0]>>4 == 4) first_skb->protocol = htons(ETH_P_IP); else if (first_skb->data[0]>>4 == 6) first_skb->protocol = htons(ETH_P_IPV6); } else #if GEN_HDLC first_skb->protocol = hdlc_type_trans(first_skb, sc->net_dev); #else first_skb->protocol = htons(ETH_P_HDLC); #endif first_skb->mac.raw = first_skb->data; first_skb->dev = sc->net_dev; do_gettimeofday(&first_skb->stamp); sc->net_dev->last_rx = jiffies; } else /* 2) link skbuffs. */ { /* Put this skbuff on the frag_list of the first skbuff. */ new_skb->next = NULL; if (skb_shinfo(first_skb)->frag_list == NULL) skb_shinfo(first_skb)->frag_list = new_skb; else last_skb->next = new_skb; /* 3) set skbuff lengths. */ first_skb->len += new_skb->len; first_skb->data_len += new_skb->len; } last_skb = new_skb; } while ((last_desc->status & TLP_DSTS_RX_LAST_DESC) == 0); /* Decide whether to accept or to discard this packet. */ /* RxHDLC sets MIIERR for bad CRC, abort and partial byte at pkt end. */ if (((last_desc->status & TLP_DSTS_RX_BAD) == 0) && (sc->status.oper_status == STATUS_UP) && (first_skb->len > 0)) { /* Optimization: copy a small pkt into a small skbuff. */ if (first_skb->len <= COPY_BREAK) if ((new_skb = skb_copy(first_skb, GFP_ATOMIC)) != NULL) { dev_kfree_skb_any(first_skb); first_skb = new_skb; } /* Include CRC and one flag byte in input byte count. */ sc->status.cntrs.ibytes += first_skb->len + sc->config.crc_len +1; sc->status.cntrs.ipackets++; /* Give this good packet to the network stacks. */ netif_receive_skb(first_skb); /* NAPI */ sc->quota--; } else if (sc->status.oper_status != STATUS_UP) { /* If the link is down, this packet is probably noise. */ sc->status.cntrs.idiscards++; dev_kfree_skb_any(first_skb); if (DRIVER_DEBUG) printk("%s: rxintr_cleanup: rx pkt discarded: link down\n", NAME_UNIT); } else /* Log and discard this bad packet. */ { if (DRIVER_DEBUG) printk("%s: RX bad pkt; len=%d %s%s%s%s\n", NAME_UNIT, first_skb->len, (last_desc->status & TLP_DSTS_RX_MII_ERR) ? " miierr" : "", (last_desc->status & TLP_DSTS_RX_DRIBBLE) ? " dribble" : "", (last_desc->status & TLP_DSTS_RX_DESC_ERR) ? " descerr" : "", (last_desc->status & TLP_DSTS_RX_OVERRUN) ? " overrun" : ""); if (last_desc->status & TLP_DSTS_RX_OVERRUN) sc->status.cntrs.fifo_over++; else sc->status.cntrs.ierrors++; dev_kfree_skb_any(first_skb); } return 1; /* did something */ } /* Setup (prepare) to receive a packet. */ /* Try to keep the RX descriptor ring full of empty buffers. */ static int /* Linux version */ rxintr_setup(softc_t *sc) { struct desc_ring *ring = &sc->rxring; struct dma_desc *desc; struct sk_buff *skb; u_int32_t dma_addr; /* Ring is full if (wrap(write+1)==read) */ if (((ring->write == ring->last) ? ring->first : ring->write+1) == ring->read) return 0; /* ring is full; nothing to do */ /* Allocate an skbuff. */ if ((skb = dev_alloc_skb(MAX_DESC_LEN)) == NULL) { sc->status.cntrs.rxdma++; if (DRIVER_DEBUG) printk("%s: rxintr_setup: dev_alloc_skb() failed\n", NAME_UNIT); return 0; } skb->dev = sc->net_dev; /* Queue the skbuff for later processing by rxintr_cleanup. */ skbuff_enqueue(ring, skb); /* Write a DMA descriptor into the ring. */ /* Hardware won't see it until the OWNER bit is set. */ desc = ring->write; /* Advance the ring write pointer. */ if (ring->write++ == ring->last) ring->write = ring->first; /* Map kernel virtual addresses to PCI addresses. */ dma_addr = pci_map_single(sc->pci_dev, skb->data, MAX_DESC_LEN, PCI_DMA_FROMDEVICE); /* Set up the DMA descriptor. */ desc->address1 = dma_addr; desc->length1 = MAX_CHUNK_LEN; desc->address2 = desc->address1 + desc->length1; desc->length2 = MAX_CHUNK_LEN; /* Before setting the OWNER bit, flush the cache (memory barrier). */ wmb(); /* write memory barrier */ /* Commit the DMA descriptor to the hardware. */ desc->status = TLP_DSTS_OWNER; /* Notify the receiver that there is another buffer available. */ WRITE_CSR(TLP_RX_POLL, 1); return 1; /* did something */ } /* Clean up after a packet has been transmitted. */ /* Free the sk_buff and update the DMA descriptor ring. */ static int /* Linux version */ txintr_cleanup(softc_t *sc) { struct desc_ring *ring = &sc->txring; struct dma_desc *desc; while ((ring->read != ring->write) && /* ring is not empty */ ((ring->read->status & TLP_DSTS_OWNER) == 0)) { /* Read a DMA descriptor from the ring. */ desc = ring->read; /* Advance the ring read pointer. */ if (ring->read++ == ring->last) ring->read = ring->first; /* Unmap kernel virtual address to PCI address. */ pci_unmap_single(sc->pci_dev, desc->address1, desc->length1 + desc->length2, PCI_DMA_TODEVICE); /* If this descriptor is the last segment of a packet, */ /* then dequeue and free the corresponding skbuff. */ if ((desc->control & TLP_DCTL_TX_LAST_SEG) != 0) { struct sk_buff *skb; if ((skb = skbuff_dequeue(ring)) == NULL) panic("%s: txintr_cleanup: expected an sk_buff\n", NAME_UNIT); /* Include CRC and one flag byte in output byte count. */ sc->status.cntrs.obytes += skb->len + sc->config.crc_len +1; sc->status.cntrs.opackets++; /* The only bad TX status is fifo underrun. */ if ((desc->status & TLP_DSTS_TX_UNDERRUN) != 0) { sc->status.cntrs.fifo_under++; /* also increment oerrors? */ if (DRIVER_DEBUG) printk("%s: txintr_cleanup: tx fifo underrun\n", NAME_UNIT); } dev_kfree_skb_any(skb); return 1; /* did something */ } } return 0; } /* Build DMA descriptors for a tranmit packet fragment, */ /* Assertion: fragment is contiguous in physical memory. */ static int /* 0=success; 1=error */ /* linux version */ txintr_setup_frag(softc_t *sc, char *data, int length) { struct desc_ring *ring = &sc->txring; struct dma_desc *desc; unsigned int desc_len; u_int32_t dma_addr; while (length > 0) { /* Ring is full if (wrap(write+1)==read) */ if (((ring->temp==ring->last) ? ring->first : ring->temp+1) == ring->read) { /* Not enough DMA descriptors; try later. */ for (; ring->temp!=ring->write; ring->temp = (ring->temp==ring->first)? ring->last : ring->temp-1) pci_unmap_single(sc->pci_dev, ring->temp->address1, ring->temp->length1 + ring->temp->length2, PCI_DMA_FROMDEVICE); sc->status.cntrs.txdma++; return 1; } /* Provisionally, write a DMA descriptor into the ring. */ /* But don't change the REAL ring write pointer. */ /* Hardware won't see it until the OWNER bit is set. */ desc = ring->temp; /* Advance the temporary ring write pointer. */ if (ring->temp++ == ring->last) ring->temp = ring->first; /* Clear all control bits except the END_RING bit. */ desc->control &= TLP_DCTL_END_RING; /* Don't pad short packets up to 64 bytes */ desc->control |= TLP_DCTL_TX_NO_PAD; /* Use Tulip's CRC-32 generator, if appropriate. */ if (sc->config.crc_len != CFG_CRC_32) desc->control |= TLP_DCTL_TX_NO_CRC; /* Set the OWNER bit, except in the first descriptor. */ if (desc != ring->write) desc->status = TLP_DSTS_OWNER; desc_len = (length >= MAX_DESC_LEN) ? MAX_DESC_LEN : length; /* Map kernel virtual address to PCI address. */ dma_addr = pci_map_single(sc->pci_dev, data, desc_len, PCI_DMA_TODEVICE); /* If it will fit in one chunk, do so, otherwise split it. */ if (desc_len <= MAX_CHUNK_LEN) { desc->address1 = dma_addr; desc->length1 = desc_len; desc->address2 = 0; desc->length2 = 0; } else { desc->address1 = dma_addr; desc->length1 = desc_len>>1; desc->address2 = desc->address1 + desc->length1; desc->length2 = desc_len>>1; if (desc_len & 1) desc->length2++; } data += desc_len; length -= desc_len; } /* while (length > 0) */ return 0; /* success */ } /* NB: this procedure is recursive! */ static int /* 0=success; 1=error */ txintr_setup_skb(softc_t *sc, struct sk_buff *skb) { struct sk_buff *list; int i; /* First, handle the data in the skbuff itself. */ if (txintr_setup_frag(sc, skb->data, skb_headlen(skb))) return 1; /* Next, handle the VM pages in the Scatter/Gather list. */ if (skb_shinfo(skb)->nr_frags != 0) for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (txintr_setup_frag(sc, page_address(frag->page) + frag->page_offset, frag->size)) return 1; } /* Finally, handle the skbuffs in the frag_list. */ if ((list = skb_shinfo(skb)->frag_list) != NULL) for (; list; list=list->next) if (txintr_setup_skb(sc, list)) /* recursive! */ return 1; return 0; } /* Setup (prepare) to transmit a packet. */ /* Select a packet, build DMA descriptors and give packet to hardware. */ /* If DMA descriptors run out, abandon the attempt and return 0. */ static int /* Linux version */ txintr_setup(softc_t *sc) { struct desc_ring *ring = &sc->txring; struct dma_desc *first_desc, *last_desc; /* Protect against half-up links: Don't transmit */ /* if the receiver can't hear the far end. */ if (sc->status.oper_status != STATUS_UP) return 0; /* Pick a packet to transmit. */ /* linux_start() puts packets in sc->tx_skb. */ if (sc->tx_skb == NULL) { if (netif_queue_stopped(sc->net_dev) != 0) netif_wake_queue(sc->net_dev); return 0; /* no pkt to transmit */ } /* Build DMA descriptors for an outgoing skbuff. */ ring->temp = ring->write; /* temporary ring write pointer */ if (txintr_setup_skb(sc, sc->tx_skb) != 0) return 0; /* Enqueue the skbuff; txintr_cleanup will free it. */ skbuff_enqueue(ring, sc->tx_skb); /* The transmitter has room for another packet. */ sc->tx_skb = NULL; /* Set first & last segment bits. */ /* last_desc is the desc BEFORE the one pointed to by ring->temp. */ first_desc = ring->write; first_desc->control |= TLP_DCTL_TX_FIRST_SEG; last_desc = (ring->temp==ring->first)? ring->last : ring->temp-1; last_desc->control |= TLP_DCTL_TX_LAST_SEG; /* Interrupt at end-of-transmission? Why bother the poor computer! */ /* last_desc->control |= TLP_DCTL_TX_INTERRUPT; */ /* Make sure the OWNER bit is not set in the next descriptor. */ /* The OWNER bit may have been set if a previous call aborted. */ ring->temp->status = 0; /* Commit the DMA descriptors to the software. */ ring->write = ring->temp; /* Before setting the OWNER bit, flush the cache (memory barrier). */ wmb(); /* write memory barrier */ /* Commit the DMA descriptors to the hardware. */ first_desc->status = TLP_DSTS_OWNER; /* Notify the transmitter that there is another packet to send. */ WRITE_CSR(TLP_TX_POLL, 1); sc->net_dev->trans_start = jiffies; return 1; /* did something */ } #endif /* __linux__ */ static void check_intr_status(softc_t *sc) { u_int32_t status, cfcs, op_mode; u_int32_t missed, overruns; /* Check for four unusual events: * 1) fatal PCI bus errors - some are recoverable * 2) transmitter FIFO underruns - increase fifo threshold * 3) receiver FIFO overruns - clear potential hangup * 4) no receive descs or bufs - count missed packets */ /* 1) A fatal bus error causes a Tulip to stop initiating bus cycles. */ /* Module unload/load or boot are the only fixes for Parity Errors. */ /* Master and Target Aborts can be cleared and life may continue. */ status = READ_CSR(TLP_STATUS); if ((status & TLP_STAT_FATAL_ERROR) != 0) { u_int32_t fatal = (status & TLP_STAT_FATAL_BITS)>>TLP_STAT_FATAL_SHIFT; printf("%s: FATAL PCI BUS ERROR: %s%s%s%s\n", NAME_UNIT, (fatal == 0) ? "PARITY ERROR" : "", (fatal == 1) ? "MASTER ABORT" : "", (fatal == 2) ? "TARGET ABORT" : "", (fatal >= 3) ? "RESERVED (?)" : ""); cfcs = READ_PCI_CFG(sc, TLP_CFCS); /* try to clear it */ cfcs &= ~(TLP_CFCS_MSTR_ABORT | TLP_CFCS_TARG_ABORT); WRITE_PCI_CFG(sc, TLP_CFCS, cfcs); } /* 2) If the transmitter fifo underruns, increase the transmit fifo */ /* threshold: the number of bytes required to be in the fifo */ /* before starting the transmitter (cost: increased tx delay). */ /* The TX_FSM must be stopped to change this parameter. */ if ((status & TLP_STAT_TX_UNDERRUN) != 0) { op_mode = READ_CSR(TLP_OP_MODE); /* enable store-and-forward mode if tx_threshold tops out? */ if ((op_mode & TLP_OP_TX_THRESH) < TLP_OP_TX_THRESH) { op_mode += 0x4000; /* increment TX_THRESH field; can't overflow */ WRITE_CSR(TLP_OP_MODE, op_mode & ~TLP_OP_TX_RUN); /* Wait for the TX FSM to stop; it might be processing a pkt. */ while (READ_CSR(TLP_STATUS) & TLP_STAT_TX_FSM); /* XXX HANG */ WRITE_CSR(TLP_OP_MODE, op_mode); /* restart tx */ if (DRIVER_DEBUG) printf("%s: tx underrun; tx fifo threshold now %d bytes\n", NAME_UNIT, 128<<((op_mode>>TLP_OP_TR_SHIFT)&3)); } } /* 3) Errata memo from Digital Equipment Corp warns that 21140A */ /* receivers through rev 2.2 can hang if the fifo overruns. */ /* Recommended fix: stop and start the RX FSM after an overrun. */ missed = READ_CSR(TLP_MISSED); if ((overruns = ((missed & TLP_MISS_OVERRUN)>>TLP_OVERRUN_SHIFT)) != 0) { if (DRIVER_DEBUG) printf("%s: rx overrun cntr=%d\n", NAME_UNIT, overruns); sc->status.cntrs.overruns += overruns; if ((READ_PCI_CFG(sc, TLP_CFRV) & 0xFF) <= 0x22) { op_mode = READ_CSR(TLP_OP_MODE); WRITE_CSR(TLP_OP_MODE, op_mode & ~TLP_OP_RX_RUN); /* Wait for the RX FSM to stop; it might be processing a pkt. */ while (READ_CSR(TLP_STATUS) & TLP_STAT_RX_FSM); /* XXX HANG */ WRITE_CSR(TLP_OP_MODE, op_mode); /* restart rx */ } } /* 4) When the receiver is enabled and a packet arrives, but no DMA */ /* descriptor is available, the packet is counted as 'missed'. */ /* The receiver should never miss packets; warn if it happens. */ if ((missed = (missed & TLP_MISS_MISSED)) != 0) { if (DRIVER_DEBUG) printf("%s: rx missed %d pkts\n", NAME_UNIT, missed); sc->status.cntrs.missed += missed; } } static void /* This is where the work gets done. */ core_interrupt(void *arg, int check_status) { softc_t *sc = arg; int activity; /* If any CPU is inside this critical section, then */ /* other CPUs should go away without doing anything. */ if (BOTTOM_TRYLOCK == 0) { sc->status.cntrs.lck_intr++; return; } /* Clear pending card interrupts. */ WRITE_CSR(TLP_STATUS, READ_CSR(TLP_STATUS)); /* In Linux, pci_alloc_consistent() means DMA descriptors */ /* don't need explicit syncing. */ #if BSD { struct desc_ring *ring = &sc->txring; DMA_SYNC(sc->txring.map, sc->txring.size_descs, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ring = &sc->rxring; DMA_SYNC(sc->rxring.map, sc->rxring.size_descs, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } #endif do /* This is the main loop for interrupt processing. */ { activity = txintr_cleanup(sc); activity += txintr_setup(sc); activity += rxintr_cleanup(sc); activity += rxintr_setup(sc); } while (activity); #if BSD { struct desc_ring *ring = &sc->txring; DMA_SYNC(sc->txring.map, sc->txring.size_descs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ring = &sc->rxring; DMA_SYNC(sc->rxring.map, sc->rxring.size_descs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } #endif /* As the interrupt is dismissed, check for four unusual events. */ if (check_status) check_intr_status(sc); BOTTOM_UNLOCK; } /* user_interrupt() may be called from a syscall or a softirq */ static void user_interrupt(softc_t *sc, int check_status) { DISABLE_INTR; /* noop on FreeBSD-5 and Linux */ core_interrupt(sc, check_status); ENABLE_INTR; /* noop on FreeBSD-5 and Linux */ } #if BSD # if (defined(__FreeBSD__) && defined(DEVICE_POLLING)) /* Service the card from the kernel idle loop without interrupts. */ static int fbsd_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { softc_t *sc = IFP2SC(ifp); #if (__FreeBSD_version < 700000) if ((ifp->if_capenable & IFCAP_POLLING) == 0) { ether_poll_deregister(ifp); cmd = POLL_DEREGISTER; } if (cmd == POLL_DEREGISTER) { /* Last call -- reenable card interrupts. */ WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX); return 0; } #endif sc->quota = count; core_interrupt(sc, (cmd==POLL_AND_CHECK_STATUS)); return 0; } # endif /* (__FreeBSD__ && DEVICE_POLLING) */ /* BSD kernels call this procedure when an interrupt happens. */ static intr_return_t bsd_interrupt(void *arg) { softc_t *sc = arg; /* Cut losses early if this is not our interrupt. */ if ((READ_CSR(TLP_STATUS) & TLP_INT_TXRX) == 0) return IRQ_NONE; # if (defined(__FreeBSD__) && defined(DEVICE_POLLING)) if (sc->ifp->if_capenable & IFCAP_POLLING) return IRQ_NONE; if ((sc->ifp->if_capabilities & IFCAP_POLLING) && (ether_poll_register(fbsd_poll, sc->ifp))) { WRITE_CSR(TLP_INT_ENBL, TLP_INT_DISABLE); return IRQ_NONE; } else sc->quota = sc->rxring.num_descs; /* input flow control */ # endif /* (__FreeBSD__ && DEVICE_POLLING) */ /* Disable card interrupts. */ WRITE_CSR(TLP_INT_ENBL, TLP_INT_DISABLE); core_interrupt(sc, 0); /* Enable card interrupts. */ WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX); return IRQ_HANDLED; } #endif /* BSD */ /* Administrative status of the driver (UP or DOWN) has changed. */ /* A card-specific action may be required: T1 and T3 cards: no-op. */ /* HSSI and SSI cards change the state of modem ready signals. */ static void set_status(softc_t *sc, int status) { struct ioctl ioctl; ioctl.cmd = IOCTL_SET_STATUS; ioctl.data = status; sc->card->ioctl(sc, &ioctl); } #if P2P /* Callout from P2P: */ /* Get the state of DCD (Data Carrier Detect). */ static int p2p_getmdm(struct p2pcom *p2p, caddr_t result) { softc_t *sc = IFP2SC(&p2p->p2p_if); /* Non-zero isn't good enough; TIOCM_CAR is 0x40. */ *(int *)result = (sc->status.oper_status==STATUS_UP) ? TIOCM_CAR : 0; return 0; } /* Callout from P2P: */ /* Set the state of DTR (Data Terminal Ready). */ static int p2p_mdmctl(struct p2pcom *p2p, int flag) { softc_t *sc = IFP2SC(&p2p->p2p_if); set_status(sc, flag); return 0; } #endif /* P2P */ #if NSPPP # ifndef PP_FR # define PP_FR 0 # endif /* Callout from SPPP: */ static void sppp_tls(struct sppp *sppp) { # ifdef __FreeBSD__ if (!(sppp->pp_mode & IFF_LINK2) && !(sppp->pp_flags & PP_FR)) # elif defined(__NetBSD__) || defined(__OpenBSD__) if (!(sppp->pp_flags & PP_CISCO)) # endif sppp->pp_up(sppp); } /* Callout from SPPP: */ static void sppp_tlf(struct sppp *sppp) { # ifdef __FreeBSD__ if (!(sppp->pp_mode & IFF_LINK2) && !(sppp->pp_flags & PP_FR)) # elif defined(__NetBSD__) || defined(__OpenBSD__) if (!(sppp->pp_flags & PP_CISCO)) # endif sppp->pp_down(sppp); } #endif /* NSPPP */ /* Configure line protocol stuff. * Called by attach_card() during module init. * Called by core_ioctl() when lmcconfig writes sc->config. * Called by detach_card() during module shutdown. */ static void config_proto(softc_t *sc, struct config *config) { /* Use line protocol stack instead of RAWIP mode. */ if ((sc->config.line_pkg == PKG_RAWIP) && (config->line_pkg != PKG_RAWIP)) { #if NSPPP LMC_BPF_DETACH; sppp_attach(sc->ifp); LMC_BPF_ATTACH(DLT_PPP, 4); sc->sppp->pp_tls = sppp_tls; sc->sppp->pp_tlf = sppp_tlf; /* Force reconfiguration of SPPP params. */ sc->config.line_prot = 0; sc->config.keep_alive = config->keep_alive ? 0:1; #elif P2P int error = 0; sc->p2p->p2p_proto = 0; /* force p2p_attach */ if ((error = p2p_attach(sc->p2p))) /* calls bpfattach() */ { printf("%s: p2p_attach() failed; error %d\n", NAME_UNIT, error); config->line_pkg = PKG_RAWIP; /* still in RAWIP mode */ } else { sc->p2p->p2p_mdmctl = p2p_mdmctl; /* set DTR */ sc->p2p->p2p_getmdm = p2p_getmdm; /* get DCD */ } #elif GEN_HDLC int error = 0; sc->net_dev->mtu = HDLC_MAX_MTU; if ((error = hdlc_open(sc->net_dev))) { printf("%s: hdlc_open() failed; error %d\n", NAME_UNIT, error); printf("%s: Try 'sethdlc %s ppp'\n", NAME_UNIT, NAME_UNIT); config->line_pkg = PKG_RAWIP; /* still in RAWIP mode */ } #else /* no line protocol stack was configured */ config->line_pkg = PKG_RAWIP; /* still in RAWIP mode */ #endif } /* Bypass line protocol stack and return to RAWIP mode. */ if ((sc->config.line_pkg != PKG_RAWIP) && (config->line_pkg == PKG_RAWIP)) { #if NSPPP LMC_BPF_DETACH; sppp_flush(sc->ifp); sppp_detach(sc->ifp); setup_ifnet(sc->ifp); LMC_BPF_ATTACH(DLT_RAW, 0); #elif P2P int error = 0; if_qflush(&sc->p2p->p2p_isnd); if ((error = p2p_detach(sc->p2p))) { printf("%s: p2p_detach() failed; error %d\n", NAME_UNIT, error); printf("%s: Try 'ifconfig %s down -remove'\n", NAME_UNIT, NAME_UNIT); config->line_pkg = PKG_P2P; /* not in RAWIP mode; still attached to P2P */ } else { setup_ifnet(sc->ifp); LMC_BPF_ATTACH(DLT_RAW, 0); } #elif GEN_HDLC hdlc_proto_detach(sc->hdlc_dev); hdlc_close(sc->net_dev); setup_netdev(sc->net_dev); #endif } #if NSPPP if (config->line_pkg != PKG_RAWIP) { /* Check for change to PPP protocol. */ if ((sc->config.line_prot != PROT_PPP) && (config->line_prot == PROT_PPP)) { LMC_BPF_DETACH; # if (defined(__NetBSD__) || defined(__OpenBSD__)) sc->sppp->pp_flags &= ~PP_CISCO; # elif defined(__FreeBSD__) sc->ifp->if_flags &= ~IFF_LINK2; sc->sppp->pp_flags &= ~PP_FR; # endif LMC_BPF_ATTACH(DLT_PPP, 4); sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL); } # ifndef DLT_C_HDLC # define DLT_C_HDLC DLT_PPP # endif /* Check for change to C_HDLC protocol. */ if ((sc->config.line_prot != PROT_C_HDLC) && (config->line_prot == PROT_C_HDLC)) { LMC_BPF_DETACH; # if (defined(__NetBSD__) || defined(__OpenBSD__)) sc->sppp->pp_flags |= PP_CISCO; # elif defined(__FreeBSD__) sc->ifp->if_flags |= IFF_LINK2; sc->sppp->pp_flags &= ~PP_FR; # endif LMC_BPF_ATTACH(DLT_C_HDLC, 4); sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL); } /* Check for change to Frame Relay protocol. */ if ((sc->config.line_prot != PROT_FRM_RLY) && (config->line_prot == PROT_FRM_RLY)) { LMC_BPF_DETACH; # if (defined(__NetBSD__) || defined(__OpenBSD__)) sc->sppp->pp_flags &= ~PP_CISCO; # elif defined(__FreeBSD__) sc->ifp->if_flags &= ~IFF_LINK2; sc->sppp->pp_flags |= PP_FR; # endif LMC_BPF_ATTACH(DLT_FRELAY, 4); sppp_ioctl(sc->ifp, SIOCSIFFLAGS, NULL); } /* Check for disabling keep-alives. */ if ((sc->config.keep_alive != 0) && (config->keep_alive == 0)) sc->sppp->pp_flags &= ~PP_KEEPALIVE; /* Check for enabling keep-alives. */ if ((sc->config.keep_alive == 0) && (config->keep_alive != 0)) sc->sppp->pp_flags |= PP_KEEPALIVE; } #endif /* NSPPP */ /* Loop back through the TULIP Ethernet chip; (no CRC). */ /* Data sheet says stop DMA before changing OPMODE register. */ /* But that's not as simple as it sounds; works anyway. */ /* Check for enabling loopback thru Tulip chip. */ if ((sc->config.loop_back != CFG_LOOP_TULIP) && (config->loop_back == CFG_LOOP_TULIP)) { u_int32_t op_mode = READ_CSR(TLP_OP_MODE); op_mode |= TLP_OP_INT_LOOP; WRITE_CSR(TLP_OP_MODE, op_mode); config->crc_len = CFG_CRC_0; } /* Check for disabling loopback thru Tulip chip. */ if ((sc->config.loop_back == CFG_LOOP_TULIP) && (config->loop_back != CFG_LOOP_TULIP)) { u_int32_t op_mode = READ_CSR(TLP_OP_MODE); op_mode &= ~TLP_OP_LOOP_MODE; WRITE_CSR(TLP_OP_MODE, op_mode); config->crc_len = CFG_CRC_16; } } /* This is the core ioctl procedure. */ /* It handles IOCTLs from lmcconfig(8). */ /* It must not run when card watchdogs run. */ /* Called from a syscall (user context; no spinlocks). */ /* This procedure can SLEEP. */ static int core_ioctl(softc_t *sc, u_long cmd, caddr_t data) { struct iohdr *iohdr = (struct iohdr *) data; struct ioctl *ioctl = (struct ioctl *) data; struct status *status = (struct status *) data; struct config *config = (struct config *) data; int error = 0; /* All structs start with a string and a cookie. */ if (((struct iohdr *)data)->cookie != NGM_LMC_COOKIE) return EINVAL; while (TOP_TRYLOCK == 0) { sc->status.cntrs.lck_ioctl++; SLEEP(10000); /* yield? */ } switch (cmd) { case LMCIOCGSTAT: { *status = sc->status; iohdr->cookie = NGM_LMC_COOKIE; break; } case LMCIOCGCFG: { *config = sc->config; iohdr->cookie = NGM_LMC_COOKIE; break; } case LMCIOCSCFG: { if ((error = CHECK_CAP)) break; config_proto(sc, config); sc->config = *config; sc->card->config(sc); break; } case LMCIOCREAD: { if (ioctl->cmd == IOCTL_RW_PCI) { if (ioctl->address > 252) { error = EFAULT; break; } ioctl->data = READ_PCI_CFG(sc, ioctl->address); } else if (ioctl->cmd == IOCTL_RW_CSR) { if (ioctl->address > 15) { error = EFAULT; break; } ioctl->data = READ_CSR(ioctl->address*TLP_CSR_STRIDE); } else if (ioctl->cmd == IOCTL_RW_SROM) { if (ioctl->address > 63) { error = EFAULT; break; } ioctl->data = read_srom(sc, ioctl->address); } else if (ioctl->cmd == IOCTL_RW_BIOS) ioctl->data = read_bios(sc, ioctl->address); else if (ioctl->cmd == IOCTL_RW_MII) ioctl->data = read_mii(sc, ioctl->address); else if (ioctl->cmd == IOCTL_RW_FRAME) ioctl->data = read_framer(sc, ioctl->address); else error = EINVAL; break; } case LMCIOCWRITE: { if ((error = CHECK_CAP)) break; if (ioctl->cmd == IOCTL_RW_PCI) { if (ioctl->address > 252) { error = EFAULT; break; } WRITE_PCI_CFG(sc, ioctl->address, ioctl->data); } else if (ioctl->cmd == IOCTL_RW_CSR) { if (ioctl->address > 15) { error = EFAULT; break; } WRITE_CSR(ioctl->address*TLP_CSR_STRIDE, ioctl->data); } else if (ioctl->cmd == IOCTL_RW_SROM) { if (ioctl->address > 63) { error = EFAULT; break; } write_srom(sc, ioctl->address, ioctl->data); /* can sleep */ } else if (ioctl->cmd == IOCTL_RW_BIOS) { if (ioctl->address == 0) erase_bios(sc); write_bios(sc, ioctl->address, ioctl->data); /* can sleep */ } else if (ioctl->cmd == IOCTL_RW_MII) write_mii(sc, ioctl->address, ioctl->data); else if (ioctl->cmd == IOCTL_RW_FRAME) write_framer(sc, ioctl->address, ioctl->data); else if (ioctl->cmd == IOCTL_WO_SYNTH) write_synth(sc, (struct synth *)&ioctl->data); else if (ioctl->cmd == IOCTL_WO_DAC) { write_dac(sc, 0x9002); /* set Vref = 2.048 volts */ write_dac(sc, ioctl->data & 0xFFF); } else error = EINVAL; break; } case LMCIOCTL: { if ((error = CHECK_CAP)) break; if (ioctl->cmd == IOCTL_XILINX_RESET) { reset_xilinx(sc); sc->card->config(sc); } else if (ioctl->cmd == IOCTL_XILINX_ROM) { load_xilinx_from_rom(sc); /* can sleep */ sc->card->config(sc); } else if (ioctl->cmd == IOCTL_XILINX_FILE) { /* load_xilinx_from_file() can sleep. */ error = load_xilinx_from_file(sc, ioctl->ucode, ioctl->data); if (error != 0) load_xilinx_from_rom(sc); /* try the rom */ sc->card->config(sc); set_status(sc, (error==0)); /* XXX */ } else if (ioctl->cmd == IOCTL_RESET_CNTRS) { memset(&sc->status.cntrs, 0, sizeof(struct event_cntrs)); microtime(&sc->status.cntrs.reset_time); } else error = sc->card->ioctl(sc, ioctl); /* can sleep */ break; } default: error = EINVAL; break; } TOP_UNLOCK; return error; } /* This is the core watchdog procedure. */ /* It calculates link speed, and calls the card-specific watchdog code. */ /* Calls interrupt() in case one got lost; also kick-starts the device. */ /* ioctl syscalls and card watchdog routines must be interlocked. */ /* This procedure must not sleep. */ static void core_watchdog(softc_t *sc) { /* Read and restart the Tulip timer. */ u_int32_t tx_speed = READ_CSR(TLP_TIMER); WRITE_CSR(TLP_TIMER, 0xFFFF); /* Measure MII clock using a timer in the Tulip chip. * This timer counts transmitter bits divided by 4096. * Since this is called once a second the math is easy. * This is only correct when the link is NOT sending pkts. * On a fully-loaded link, answer will be HALF actual rate. * Clock rate during pkt is HALF clk rate between pkts. * Measuring clock rate really measures link utilization! */ sc->status.tx_speed = (0xFFFF - (tx_speed & 0xFFFF)) << 12; /* The first status reset time is when the calendar clock is set. */ if (sc->status.cntrs.reset_time.tv_sec < 1000) microtime(&sc->status.cntrs.reset_time); /* Update hardware (operational) status. */ /* Call the card-specific watchdog routines. */ if (TOP_TRYLOCK != 0) { sc->status.oper_status = sc->card->watchdog(sc); /* Increment a counter which tells user-land */ /* observers that SNMP state has been updated. */ sc->status.ticks++; TOP_UNLOCK; } else sc->status.cntrs.lck_watch++; /* In case an interrupt gets lost... */ user_interrupt(sc, 1); } #if IFNET /* Called from a syscall (user context; no spinlocks). */ static int lmc_raw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifreq *ifr = (struct ifreq *) data; int error = 0; switch (cmd) { # if (defined(__FreeBSD__) && defined(DEVICE_POLLING)) /* XXX necessary? */ case SIOCSIFCAP: # endif case SIOCSIFDSTADDR: case SIOCAIFADDR: case SIOCSIFFLAGS: #if 0 case SIOCADDMULTI: case SIOCDELMULTI: break; #endif case SIOCSIFADDR: ifp->if_flags |= IFF_UP; /* a Unix tradition */ break; case SIOCSIFMTU: ifp->if_mtu = ifr->ifr_mtu; break; default: error = EINVAL; break; } return error; } /* Called from a syscall (user context; no spinlocks). */ static int lmc_ifnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { softc_t *sc = IFP2SC(ifp); # ifdef __OpenBSD__ struct ifreq *ifr = (struct ifreq *) data; # endif int error = 0; switch (cmd) { /* Catch the IOCTLs used by lmcconfig. */ case LMCIOCGSTAT: case LMCIOCGCFG: case LMCIOCSCFG: case LMCIOCREAD: case LMCIOCWRITE: case LMCIOCTL: error = core_ioctl(sc, cmd, data); break; # ifdef __OpenBSD__ /* Catch the IOCTLs used by ifconfig. */ case SIOCSIFMEDIA: if ((error = CHECK_CAP)) break; case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifm, cmd); break; case SIOCSIFTIMESLOT: if ((error = CHECK_CAP)) break; if (sc->status.card_type == TLP_CSID_T1E1) { struct config config = sc->config; if ((error = copyin(ifr->ifr_data, &config.time_slots, sizeof config.time_slots))) break; config.iohdr.cookie = NGM_LMC_COOKIE; error = core_ioctl(sc, LMCIOCSCFG, (caddr_t)&config); } else error = EINVAL; break; case SIOCGIFTIMESLOT: if (sc->status.card_type == TLP_CSID_T1E1) error = copyout(&sc->config.time_slots, ifr->ifr_data, sizeof sc->config.time_slots); else error = EINVAL; break; # endif /* Pass the rest to the line protocol. */ default: if (sc->config.line_pkg == PKG_RAWIP) error = lmc_raw_ioctl(ifp, cmd, data); else # if NSPPP error = sppp_ioctl(ifp, cmd, data); # elif P2P error = p2p_ioctl(ifp, cmd, data); # else error = EINVAL; # endif break; } if (DRIVER_DEBUG && (error!=0)) printf("%s: lmc_ifnet_ioctl; cmd=0x%08lx error=%d\n", NAME_UNIT, cmd, error); return error; } /* Called from a syscall (user context; no spinlocks). */ static void lmc_ifnet_start(struct ifnet *ifp) { softc_t *sc = IFP2SC(ifp); /* Start the transmitter; incoming pkts are NOT processed. */ user_interrupt(sc, 0); } /* sppp and p2p replace this with their own proc. */ /* RAWIP mode is the only time this is used. */ /* Called from a syscall (user context; no spinlocks). */ static int lmc_raw_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, struct route *ro) { softc_t *sc = IFP2SC(ifp); int error = 0; /* Fail if the link is down. */ if (sc->status.oper_status != STATUS_UP) { m_freem(m); sc->status.cntrs.odiscards++; if (DRIVER_DEBUG) printf("%s: lmc_raw_output: tx pkt discarded: link down\n", NAME_UNIT); return ENETDOWN; } # if NETGRAPH /* Netgraph has priority over the ifnet kernel interface. */ if (sc->ng_hook != NULL) { m_freem(m); sc->status.cntrs.odiscards++; if (DRIVER_DEBUG) printf("%s: lmc_raw_output: tx pkt discarded: netgraph active\n", NAME_UNIT); return EBUSY; } # endif /* lmc_raw_output() ENQUEUEs in a syscall or softirq. */ /* txintr_setup() DEQUEUEs in a hard interrupt. */ /* Some BSD QUEUE routines are not interrupt-safe. */ { DISABLE_INTR; # if (__FreeBSD_version >= 503000) IFQ_ENQUEUE(&ifp->if_snd, m, error); # else IFQ_ENQUEUE(&ifp->if_snd, m, NULL, error); # endif ENABLE_INTR; } if (error==0) user_interrupt(sc, 0); /* start the transmitter */ else { m_freem(m); sc->status.cntrs.odiscards++; if (DRIVER_DEBUG) printf("%s: lmc_raw_output: IFQ_ENQUEUE() failed; error %d\n", NAME_UNIT, error); } return error; } /* Called from a softirq once a second. */ static void lmc_watchdog(void *arg) { struct ifnet *ifp = arg; softc_t *sc = IFP2SC(ifp); u_int8_t old_oper_status = sc->status.oper_status; struct event_cntrs *cntrs = &sc->status.cntrs; core_watchdog(sc); /* updates oper_status */ #if NETGRAPH if (sc->ng_hook != NULL) { sc->status.line_pkg = PKG_NG; sc->status.line_prot = 0; } else #endif if (sc->config.line_pkg == PKG_RAWIP) { sc->status.line_pkg = PKG_RAWIP; sc->status.line_prot = PROT_IP_HDLC; } else { # if P2P /* Notice change in link status. */ if ((old_oper_status != sc->status.oper_status) && (sc->p2p->p2p_modem)) (*sc->p2p->p2p_modem)(sc->p2p, sc->status.oper_status==STATUS_UP); /* Notice change in line protocol. */ sc->status.line_pkg = PKG_P2P; switch (sc->ifp->if_type) { case IFT_PPP: sc->status.line_prot = PROT_PPP; break; case IFT_PTPSERIAL: sc->status.line_prot = PROT_C_HDLC; break; case IFT_FRELAY: sc->status.line_prot = PROT_FRM_RLY; break; default: sc->status.line_prot = 0; break; } # elif NSPPP /* Notice change in link status. */ if ((old_oper_status != STATUS_UP) && (sc->status.oper_status == STATUS_UP)) /* link came up */ sppp_tls(sc->sppp); if ((old_oper_status == STATUS_UP) && (sc->status.oper_status != STATUS_UP)) /* link went down */ sppp_tlf(sc->sppp); /* Notice change in line protocol. */ sc->status.line_pkg = PKG_SPPP; # ifdef __FreeBSD__ if (sc->sppp->pp_flags & PP_FR) sc->status.line_prot = PROT_FRM_RLY; else if (sc->ifp->if_flags & IFF_LINK2) # elif (defined(__NetBSD__) || defined(__OpenBSD__)) if (sc->sppp->pp_flags & PP_CISCO) # endif sc->status.line_prot = PROT_C_HDLC; else sc->status.line_prot = PROT_PPP; # else /* Suppress compiler warning. */ if (old_oper_status == STATUS_UP); # endif } /* Copy statistics from sc to ifp. */ ifp->if_baudrate = sc->status.tx_speed; ifp->if_ipackets = cntrs->ipackets; ifp->if_opackets = cntrs->opackets; ifp->if_ibytes = cntrs->ibytes; ifp->if_obytes = cntrs->obytes; ifp->if_ierrors = cntrs->ierrors; ifp->if_oerrors = cntrs->oerrors; ifp->if_iqdrops = cntrs->idiscards; # if ((__FreeBSD_version >= 500000) || defined(__OpenBSD__) || defined(__NetBSD__)) if (sc->status.oper_status == STATUS_UP) ifp->if_link_state = LINK_STATE_UP; else ifp->if_link_state = LINK_STATE_DOWN; # endif /* Call this procedure again after one second. */ callout_reset(&sc->callout, hz, lmc_watchdog, ifp); } # ifdef __OpenBSD__ /* Callback from ifmedia. */ static int ifmedia_change(struct ifnet *ifp) { softc_t *sc = IFP2SC(ifp); struct config config = sc->config; int media = sc->ifm.ifm_media; int error; /* ifconfig lmc0 media t1 */ if (sc->status.card_type == TLP_CSID_T3) { if ((media & IFM_TMASK) == IFM_TDM_T3) config.format = CFG_FORMAT_T3CPAR; else if ((media & IFM_TMASK) == IFM_TDM_T3_M13) config.format = CFG_FORMAT_T3M13; } else if (sc->status.card_type == TLP_CSID_T1E1) { if ((media & IFM_TMASK) == IFM_TDM_T1) config.format = CFG_FORMAT_T1ESF; else if ((media & IFM_TMASK) == IFM_TDM_T1_AMI) config.format = CFG_FORMAT_T1SF; else if ((media & IFM_TMASK) == IFM_TDM_E1) config.format = CFG_FORMAT_E1NONE; else if ((media & IFM_TMASK) == IFM_TDM_E1_G704) config.format = CFG_FORMAT_E1FASCRC; } /* ifconfig lmc0 mediaopt loopback */ if (media & IFM_LOOP) config.loop_back = CFG_LOOP_TULIP; else config.loop_back = CFG_LOOP_NONE; /* ifconfig lmc0 mediaopt crc16 */ if (media & IFM_TDM_HDLC_CRC16) config.crc_len = CFG_CRC_16; else config.crc_len = CFG_CRC_32; /* Set ConFiGuration. */ config.iohdr.cookie = NGM_LMC_COOKIE; error = core_ioctl(sc, LMCIOCSCFG, (caddr_t)&config); return error; } /* Callback from ifmedia. */ static void ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) { softc_t *sc = IFP2SC(ifp); /* ifconfig wants to know if the hardware link is up. */ ifmr->ifm_status = IFM_AVALID; if (sc->status.oper_status == STATUS_UP) ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active = sc->ifm.ifm_cur->ifm_media; if (sc->config.loop_back != CFG_LOOP_NONE) ifmr->ifm_active |= IFM_LOOP; if (sc->config.crc_len == CFG_CRC_16) ifmr->ifm_active |= IFM_TDM_HDLC_CRC16; } # endif /* __OpenBSD__ */ static void setup_ifnet(struct ifnet *ifp) { softc_t *sc = ifp->if_softc; /* Initialize the generic network interface. */ /* Note similarity to linux's setup_netdev(). */ ifp->if_flags = IFF_POINTOPOINT; ifp->if_flags |= IFF_RUNNING; ifp->if_ioctl = lmc_ifnet_ioctl; ifp->if_start = lmc_ifnet_start; /* sppp changes this */ ifp->if_output = lmc_raw_output; /* sppp & p2p change this */ ifp->if_input = lmc_raw_input; ifp->if_mtu = MAX_DESC_LEN; /* sppp & p2p change this */ ifp->if_type = IFT_PTPSERIAL; /* p2p changes this */ # if (defined(__FreeBSD__) && defined(DEVICE_POLLING)) ifp->if_capabilities |= IFCAP_POLLING; ifp->if_capenable |= IFCAP_POLLING_NOCOUNT; # if (__FreeBSD_version < 500000) ifp->if_capenable |= IFCAP_POLLING; # endif # endif /* Every OS does it differently! */ # if (defined(__FreeBSD__) && (__FreeBSD_version < 502000)) (const char *)ifp->if_name = device_get_name(sc->dev); ifp->if_unit = device_get_unit(sc->dev); # elif (__FreeBSD_version >= 502000) if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); # elif defined(__NetBSD__) strcpy(ifp->if_xname, sc->dev.dv_xname); # elif defined(__OpenBSD__) bcopy(sc->dev.dv_xname, ifp->if_xname, IFNAMSIZ); # elif defined(__bsdi__) ifp->if_name = sc->dev.dv_cfdata->cf_driver->cd_name; ifp->if_unit = sc->dev.dv_unit; # endif } static int lmc_ifnet_attach(softc_t *sc) { # if (__FreeBSD_version >= 600000) sc->ifp = if_alloc(NSPPP ? IFT_PPP : IFT_OTHER); if (sc->ifp == NULL) return ENOMEM; # endif # if NSPPP # if (__FreeBSD_version >= 600000) sc->sppp = sc->ifp->if_l2com; # else sc->ifp = &sc->spppcom.pp_if; sc->sppp = &sc->spppcom; # endif # elif P2P sc->ifp = &sc->p2pcom.p2p_if; sc->p2p = &sc->p2pcom; # elif (__FreeBSD_version < 600000) sc->ifp = &sc->ifnet; # endif /* Initialize the network interface struct. */ sc->ifp->if_softc = sc; setup_ifnet(sc->ifp); /* ALTQ output queue initialization. */ IFQ_SET_MAXLEN(&sc->ifp->if_snd, SNDQ_MAXLEN); IFQ_SET_READY(&sc->ifp->if_snd); /* Attach to the ifnet kernel interface. */ if_attach(sc->ifp); # if ((defined(__NetBSD__) && __NetBSD_Version__ >= 106000000) || \ (defined(__OpenBSD__) && OpenBSD >= 200211)) if_alloc_sadl(sc->ifp); # endif /* Attach Berkeley Packet Filter. */ LMC_BPF_ATTACH(DLT_RAW, 0); # ifdef __OpenBSD__ /* Initialize ifmedia mechanism. */ ifmedia_init(&sc->ifm, IFM_OMASK | IFM_GMASK | IFM_IMASK, ifmedia_change, ifmedia_status); if (sc->status.card_type == TLP_CSID_T3) { ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T3, 0, NULL); ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T3_M13, 0, NULL); ifmedia_set(&sc->ifm, IFM_TDM | IFM_TDM_T3); } else if (sc->status.card_type == TLP_CSID_T1E1) { ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T1, 0, NULL); ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_T1_AMI, 0, NULL); ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_E1, 0, NULL); ifmedia_add(&sc->ifm, IFM_TDM | IFM_TDM_E1_G704, 0, NULL); ifmedia_set(&sc->ifm, IFM_TDM | IFM_TDM_T1); } else if ((sc->status.card_type == TLP_CSID_HSSI) || (sc->status.card_type == TLP_CSID_SSI)) { ifmedia_add(&sc->ifm, IFM_TDM | IFM_NONE, 0, NULL); ifmedia_set(&sc->ifm, IFM_TDM | IFM_NONE); } # endif /* __OpenBSD__ */ callout_reset(&sc->callout, hz, lmc_watchdog, sc); return 0; } static void lmc_ifnet_detach(softc_t *sc) { # ifdef __OpenBSD__ ifmedia_delete_instance(&sc->ifm, IFM_INST_ANY); # endif # if (defined(__FreeBSD__) && defined(DEVICE_POLLING)) if (sc->ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(sc->ifp); # endif /* Detach Berkeley Packet Filter. */ LMC_BPF_DETACH; # if ((defined(__NetBSD__) && __NetBSD_Version__ >= 106000000) || \ (defined(__OpenBSD__) && OpenBSD >= 200211)) if_free_sadl(sc->ifp); # endif /* Detach from the ifnet kernel interface. */ if_detach(sc->ifp); # if (__FreeBSD_version >= 600000) if_free_type(sc->ifp, NSPPP ? IFT_PPP : IFT_OTHER); # endif } #endif /* IFNET */ #if NETGRAPH /* Netgraph changed significantly between FreeBSD-4 and -5. */ /* These are backward compatibility hacks for FreeBSD-4. */ # if (__FreeBSD_version >= 500000) /* These next two macros should be added to netgraph */ # define NG_TYPE_REF(type) atomic_add_int(&(type)->refs, 1) # define NG_TYPE_UNREF(type) \ do { \ if ((type)->refs == 1) \ ng_rmtype(type); \ else \ atomic_subtract_int(&(type)->refs, 1); \ } while (0) # else /* FreeBSD-4 */ # define NGI_GET_MSG(item, msg) /* nothing */ # define NG_HOOK_FORCE_QUEUE(hook) /* nothing */ # define NG_TYPE_REF(type) atomic_add_int(&(type)->refs, 1) # define NG_TYPE_UNREF(type) \ do { \ if ((type)->refs == 1) \ LIST_REMOVE(type, types); \ else \ atomic_subtract_int(&(type)->refs, 1); \ } while (0) # endif /* It is an error to construct new copies of this Netgraph node. */ /* All instances are constructed by ng_attach and are persistent. */ # if (__FreeBSD_version >= 500000) static int ng_constructor(node_p node) { return EINVAL; } # else /* FreeBSD-4 */ static int ng_constructor(node_p *node) { return EINVAL; } # endif /* Incoming Netgraph control message. */ # if (__FreeBSD_version >= 500000) static int ng_rcvmsg(node_p node, item_p item, hook_p lasthook) { struct ng_mesg *msg; # else /* FreeBSD-4 */ static int ng_rcvmsg(node_p node, struct ng_mesg *msg, const char *retaddr, struct ng_mesg **rptr) { # endif struct ng_mesg *resp = NULL; softc_t *sc = NG_NODE_PRIVATE(node); int error = 0; NGI_GET_MSG(item, msg); if (msg->header.typecookie == NGM_LMC_COOKIE) { switch (msg->header.cmd) { case LMCIOCGSTAT: case LMCIOCGCFG: case LMCIOCSCFG: case LMCIOCREAD: case LMCIOCWRITE: case LMCIOCTL: { /* Call the core ioctl procedure. */ error = core_ioctl(sc, msg->header.cmd, msg->data); if ((msg->header.cmd & IOC_OUT) != 0) { /* synchronous response */ NG_MKRESPONSE(resp, msg, sizeof(struct ng_mesg) + IOCPARM_LEN(msg->header.cmd), M_NOWAIT); if (resp == NULL) error = ENOMEM; else memcpy(resp->data, msg->data, IOCPARM_LEN(msg->header.cmd)); } break; } default: error = EINVAL; break; } } else if ((msg->header.typecookie == NGM_GENERIC_COOKIE) && (msg->header.cmd == NGM_TEXT_STATUS)) { /* synchronous response */ NG_MKRESPONSE(resp, msg, sizeof(struct ng_mesg) + NG_TEXTRESPONSE, M_NOWAIT); if (resp == NULL) error = ENOMEM; else { char *s = resp->data; sprintf(s, "Card type = <%s>\n" "This driver considers the link to be %s.\n" "Use lmcconfig to configure this interface.\n", sc->dev_desc, (sc->status.oper_status==STATUS_UP) ? "UP" : "DOWN"); resp->header.arglen = strlen(s) +1; } } else /* Netgraph should be able to read and write these * parameters with text-format control messages: * SSI HSSI T1E1 T3 * crc crc crc crc * loop loop loop loop * clksrc clksrc * dte dte format format * synth synth cablen cablen * cable timeslot scram * gain * pulse * lbo * Someday I'll implement this... */ error = EINVAL; /* Handle synchronous response. */ # if (__FreeBSD_version >= 500000) NG_RESPOND_MSG(error, node, item, resp); NG_FREE_MSG(msg); # else /* FreeBSD-4 */ if (rptr != NULL) *rptr = resp; else if (resp != NULL) free(resp, M_NETGRAPH); free(msg, M_NETGRAPH); # endif return error; } /* This is a persistent netgraph node. */ static int ng_shutdown(node_p node) { # if (__FreeBSD_version >= 500000) /* unless told to really die, bounce back to life */ if ((node->nd_flags & NG_REALLY_DIE)==0) node->nd_flags &= ~NG_INVALID; /* bounce back to life */ # else /* FreeBSD-4 */ ng_cutlinks(node); node->flags &= ~NG_INVALID; /* bounce back to life */ # endif return 0; } /* ng_disconnect is the opposite of this procedure. */ static int ng_newhook(node_p node, hook_p hook, const char *name) { softc_t *sc = NG_NODE_PRIVATE(node); /* Hook name must be 'rawdata'. */ if (strncmp(name, "rawdata", 7) != 0) return EINVAL; /* Is our hook connected? */ if (sc->ng_hook != NULL) return EBUSY; /* Accept the hook. */ sc->ng_hook = hook; return 0; } /* Both ends have accepted their hooks and the links have been made. */ /* This is the last chance to reject the connection request. */ static int ng_connect(hook_p hook) { /* Probably not at splnet, force outward queueing. (huh?) */ NG_HOOK_FORCE_QUEUE(NG_HOOK_PEER(hook)); return 0; /* always accept */ } /* Receive data in mbufs from another Netgraph node. */ /* Transmit an mbuf-chain on the communication link. */ /* This procedure is very similar to lmc_raw_output(). */ /* Called from a syscall (user context; no spinlocks). */ # if (__FreeBSD_version >= 500000) static int ng_rcvdata(hook_p hook, item_p item) { softc_t *sc = NG_NODE_PRIVATE(NG_HOOK_NODE(hook)); int error = 0; struct mbuf *m; meta_p meta = NULL; NGI_GET_M(item, m); NGI_GET_META(item, meta); NG_FREE_ITEM(item); # else /* FreeBSD-4 */ static int ng_rcvdata(hook_p hook, struct mbuf *m, meta_p meta) { softc_t *sc = NG_NODE_PRIVATE(NG_HOOK_NODE(hook)); int error = 0; # endif /* This macro must not store into meta! */ NG_FREE_META(meta); /* Fail if the link is down. */ if (sc->status.oper_status != STATUS_UP) { m_freem(m); sc->status.cntrs.odiscards++; if (DRIVER_DEBUG) printf("%s: ng_rcvdata: tx pkt discarded: link down\n", NAME_UNIT); return ENETDOWN; } /* ng_rcvdata() ENQUEUEs in a syscall or softirq. */ /* txintr_setup() DEQUEUEs in a hard interrupt. */ /* Some BSD QUEUE routines are not interrupt-safe. */ { DISABLE_INTR; # if (__FreeBSD_version >= 503000) if (meta==NULL) IFQ_ENQUEUE(&sc->ng_sndq, m, error); else IFQ_ENQUEUE(&sc->ng_fastq, m, error); # else if (meta==NULL) IFQ_ENQUEUE(&sc->ng_sndq, m, NULL, error); else IFQ_ENQUEUE(&sc->ng_fastq, m, NULL, error); # endif ENABLE_INTR; } if (error==0) user_interrupt(sc, 0); /* start the transmitter */ else { m_freem(m); sc->status.cntrs.odiscards++; if (DRIVER_DEBUG) printf("%s: ng_rcvdata: IFQ_ENQUEUE() failed; error %d\n", NAME_UNIT, error); } return error; } /* ng_newhook is the opposite of this procedure, not */ /* ng_connect, as you might expect from the names. */ static int ng_disconnect(hook_p hook) { softc_t *sc = NG_NODE_PRIVATE(NG_HOOK_NODE(hook)); /* Disconnect the hook. */ sc->ng_hook = NULL; return 0; } static struct ng_type ng_type = { .version = NG_ABI_VERSION, .name = NG_LMC_NODE_TYPE, .mod_event = NULL, .constructor = ng_constructor, .rcvmsg = ng_rcvmsg, # if (__FreeBSD_version >=503000) .close = NULL, # endif .shutdown = ng_shutdown, .newhook = ng_newhook, .findhook = NULL, .connect = ng_connect, .rcvdata = ng_rcvdata, # if (defined(__FreeBSD__) && (__FreeBSD_version < 500000)) .rcvdataq = ng_rcvdata, # endif .disconnect = ng_disconnect, }; # if (IFNET == 0) /* Called from a softirq once a second. */ static void ng_watchdog(void *arg) { softc_t *sc = arg; /* Call the core watchdog procedure. */ core_watchdog(sc); /* Set line protocol and package status. */ sc->status.line_pkg = PKG_NG; sc->status.line_prot = 0; /* Call this procedure again after one second. */ callout_reset(&sc->callout, hz, ng_watchdog, sc); } # endif /* Attach to the Netgraph kernel interface (/sys/netgraph). * It is called once for each physical card during device attach. * This is effectively ng_constructor. */ static int ng_attach(softc_t *sc) { int error; /* If this node type is not known to Netgraph then register it. */ if (ng_type.refs == 0) /* or: if (ng_findtype(&ng_type) == NULL) */ { if ((error = ng_newtype(&ng_type))) { printf("%s: ng_newtype() failed; error %d\n", NAME_UNIT, error); return error; } } else NG_TYPE_REF(&ng_type); /* Call the superclass node constructor. */ if ((error = ng_make_node_common(&ng_type, &sc->ng_node))) { NG_TYPE_UNREF(&ng_type); printf("%s: ng_make_node_common() failed; error %d\n", NAME_UNIT, error); return error; } /* Associate a name with this netgraph node. */ if ((error = ng_name_node(sc->ng_node, NAME_UNIT))) { NG_NODE_UNREF(sc->ng_node); NG_TYPE_UNREF(&ng_type); printf("%s: ng_name_node() failed; error %d\n", NAME_UNIT, error); return error; } # if (__FreeBSD_version >= 500000) /* Initialize the send queue mutexes. */ mtx_init(&sc->ng_sndq.ifq_mtx, NAME_UNIT, "sndq", MTX_DEF); mtx_init(&sc->ng_fastq.ifq_mtx, NAME_UNIT, "fastq", MTX_DEF); # endif /* Put a backpointer to the softc in the netgraph node. */ NG_NODE_SET_PRIVATE(sc->ng_node, sc); /* ALTQ output queue initialization. */ IFQ_SET_MAXLEN(&sc->ng_fastq, SNDQ_MAXLEN); IFQ_SET_READY(&sc->ng_fastq); IFQ_SET_MAXLEN(&sc->ng_sndq, SNDQ_MAXLEN); IFQ_SET_READY(&sc->ng_sndq); # if (IFNET == 0) /* Arrange to call ng_watchdog() once a second. */ callout_reset(&sc->callout, hz, ng_watchdog, sc); # endif return 0; } static void ng_detach(softc_t *sc) { callout_drain(&sc->callout); # if (__FreeBSD_version >= 500000) mtx_destroy(&sc->ng_sndq.ifq_mtx); mtx_destroy(&sc->ng_fastq.ifq_mtx); ng_rmnode_self(sc->ng_node); /* free hook */ NG_NODE_UNREF(sc->ng_node); /* free node */ NG_TYPE_UNREF(&ng_type); # else /* FreeBSD-4 */ ng_unname(sc->ng_node); /* free name */ ng_cutlinks(sc->ng_node); /* free hook */ NG_NODE_UNREF(sc->ng_node); /* free node */ NG_TYPE_UNREF(&ng_type); # endif } #endif /* NETGRAPH */ /* The next few procedures initialize the card. */ /* Returns 0 on success; error code on failure. */ static int startup_card(softc_t *sc) { int num_rx_descs, error = 0; u_int32_t tlp_bus_pbl, tlp_bus_cal, tlp_op_tr; u_int32_t tlp_cfdd, tlp_cfcs; u_int32_t tlp_cflt, tlp_csid, tlp_cfit; /* Make sure the COMMAND bits are reasonable. */ tlp_cfcs = READ_PCI_CFG(sc, TLP_CFCS); tlp_cfcs &= ~TLP_CFCS_MWI_ENABLE; tlp_cfcs |= TLP_CFCS_BUS_MASTER; tlp_cfcs |= TLP_CFCS_MEM_ENABLE; tlp_cfcs |= TLP_CFCS_IO_ENABLE; tlp_cfcs |= TLP_CFCS_PAR_ERROR; tlp_cfcs |= TLP_CFCS_SYS_ERROR; WRITE_PCI_CFG(sc, TLP_CFCS, tlp_cfcs); /* Set the LATENCY TIMER to the recommended value, */ /* and make sure the CACHE LINE SIZE is reasonable. */ tlp_cfit = READ_PCI_CFG(sc, TLP_CFIT); tlp_cflt = READ_PCI_CFG(sc, TLP_CFLT); tlp_cflt &= ~TLP_CFLT_LATENCY; tlp_cflt |= (tlp_cfit & TLP_CFIT_MAX_LAT)>>16; /* "prgmbl burst length" and "cache alignment" used below. */ switch(tlp_cflt & TLP_CFLT_CACHE) { case 8: /* 8 bytes per cache line */ { tlp_bus_pbl = 32; tlp_bus_cal = 1; break; } case 16: { tlp_bus_pbl = 32; tlp_bus_cal = 2; break; } case 32: { tlp_bus_pbl = 32; tlp_bus_cal = 3; break; } default: { tlp_bus_pbl = 32; tlp_bus_cal = 1; tlp_cflt &= ~TLP_CFLT_CACHE; tlp_cflt |= 8; break; } } WRITE_PCI_CFG(sc, TLP_CFLT, tlp_cflt); /* Make sure SNOOZE and SLEEP modes are disabled. */ tlp_cfdd = READ_PCI_CFG(sc, TLP_CFDD); tlp_cfdd &= ~TLP_CFDD_SLEEP; tlp_cfdd &= ~TLP_CFDD_SNOOZE; WRITE_PCI_CFG(sc, TLP_CFDD, tlp_cfdd); DELAY(11*1000); /* Tulip wakes up in 10 ms max */ /* Software Reset the Tulip chip; stops DMA and Interrupts. */ /* This does not change the PCI config regs just set above. */ WRITE_CSR(TLP_BUS_MODE, TLP_BUS_RESET); /* self-clearing */ DELAY(5); /* Tulip is dead for 50 PCI cycles after reset. */ /* Reset the Xilinx Field Programmable Gate Array. */ reset_xilinx(sc); /* side effect: turns on all four LEDs */ /* Configure card-specific stuff (framers, line interfaces, etc.). */ sc->card->config(sc); /* Initializing cards can glitch clocks and upset fifos. */ /* Reset the FIFOs between the Tulip and Xilinx chips. */ set_mii16_bits(sc, MII16_FIFO); clr_mii16_bits(sc, MII16_FIFO); /* Initialize the PCI busmode register. */ /* The PCI bus cycle type "Memory Write and Invalidate" does NOT */ /* work cleanly in any version of the 21140A, so don't enable it! */ WRITE_CSR(TLP_BUS_MODE, (tlp_bus_cal ? TLP_BUS_READ_LINE : 0) | (tlp_bus_cal ? TLP_BUS_READ_MULT : 0) | (tlp_bus_pbl<<TLP_BUS_PBL_SHIFT) | (tlp_bus_cal<<TLP_BUS_CAL_SHIFT) | ((BYTE_ORDER == BIG_ENDIAN) ? TLP_BUS_DESC_BIGEND : 0) | ((BYTE_ORDER == BIG_ENDIAN) ? TLP_BUS_DATA_BIGEND : 0) | TLP_BUS_DSL_VAL | TLP_BUS_ARB); /* Pick number of RX descriptors and TX fifo threshold. */ /* tx_threshold in bytes: 0=128, 1=256, 2=512, 3=1024 */ tlp_csid = READ_PCI_CFG(sc, TLP_CSID); switch(tlp_csid) { case TLP_CSID_HSSI: /* 52 Mb/s */ case TLP_CSID_HSSIc: /* 52 Mb/s */ case TLP_CSID_T3: /* 45 Mb/s */ { num_rx_descs = 48; tlp_op_tr = 2; break; } case TLP_CSID_SSI: /* 10 Mb/s */ { num_rx_descs = 32; tlp_op_tr = 1; break; } case TLP_CSID_T1E1: /* 2 Mb/s */ { num_rx_descs = 16; tlp_op_tr = 0; break; } default: { num_rx_descs = 16; tlp_op_tr = 0; break; } } /* Create DMA descriptors and initialize list head registers. */ if ((error = create_ring(sc, &sc->txring, NUM_TX_DESCS))) return error; WRITE_CSR(TLP_TX_LIST, sc->txring.dma_addr); if ((error = create_ring(sc, &sc->rxring, num_rx_descs))) return error; WRITE_CSR(TLP_RX_LIST, sc->rxring.dma_addr); /* Initialize the operating mode register. */ WRITE_CSR(TLP_OP_MODE, TLP_OP_INIT | (tlp_op_tr<<TLP_OP_TR_SHIFT)); /* Read the missed frame register (result ignored) to zero it. */ error = READ_CSR( TLP_MISSED); /* error is used as a bit-dump */ /* Disable rx watchdog and tx jabber features. */ WRITE_CSR(TLP_WDOG, TLP_WDOG_INIT); /* Enable card interrupts. */ WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX); return 0; } /* Stop DMA and Interrupts; free descriptors and buffers. */ static void shutdown_card(void *arg) { softc_t *sc = arg; /* Leave the LEDs in the state they were in after power-on. */ led_on(sc, MII16_LED_ALL); /* Software reset the Tulip chip; stops DMA and Interrupts */ WRITE_CSR(TLP_BUS_MODE, TLP_BUS_RESET); /* self-clearing */ DELAY(5); /* Tulip is dead for 50 PCI cycles after reset. */ /* Disconnect from the PCI bus except for config cycles. */ /* Hmmm; Linux syslogs a warning that IO and MEM are disabled. */ WRITE_PCI_CFG(sc, TLP_CFCS, TLP_CFCS_MEM_ENABLE | TLP_CFCS_IO_ENABLE); /* Free the DMA descriptor rings. */ destroy_ring(sc, &sc->txring); destroy_ring(sc, &sc->rxring); } /* Start the card and attach a kernel interface and line protocol. */ static int attach_card(softc_t *sc, const char *intrstr) { struct config config; u_int32_t tlp_cfrv; u_int16_t mii3; u_int8_t *ieee; int i, error = 0; /* Start the card. */ if ((error = startup_card(sc))) return error; # if (__FreeBSD_version >= 500000) callout_init(&sc->callout, 0); # else /* FreeBSD-4 */ callout_init(&sc->callout); # endif /* Attach a kernel interface. */ #if NETGRAPH if ((error = ng_attach(sc))) return error; sc->flags |= FLAG_NETGRAPH; #endif #if IFNET if ((error = lmc_ifnet_attach(sc))) return error; sc->flags |= FLAG_IFNET; #endif /* Attach a line protocol stack. */ sc->config.line_pkg = PKG_RAWIP; config = sc->config; /* get current config */ config.line_pkg = 0; /* select external stack */ config.line_prot = PROT_C_HDLC; config.keep_alive = 1; config_proto(sc, &config); /* reconfigure */ sc->config = config; /* save new configuration */ /* Print interesting hardware-related things. */ mii3 = read_mii(sc, 3); tlp_cfrv = READ_PCI_CFG(sc, TLP_CFRV); printf("%s: PCI rev %d.%d, MII rev %d.%d", NAME_UNIT, (tlp_cfrv>>4) & 0xF, tlp_cfrv & 0xF, (mii3>>4) & 0xF, mii3 & 0xF); ieee = (u_int8_t *)sc->status.ieee; for (i=0; i<3; i++) sc->status.ieee[i] = read_srom(sc, 10+i); printf(", IEEE addr %02x:%02x:%02x:%02x:%02x:%02x", ieee[0], ieee[1], ieee[2], ieee[3], ieee[4], ieee[5]); sc->card->ident(sc); printf(" %s\n", intrstr); /* Print interesting software-related things. */ printf("%s: Driver rev %d.%d.%d", NAME_UNIT, DRIVER_MAJOR_VERSION, DRIVER_MINOR_VERSION, DRIVER_SUB_VERSION); printf(", Options %s%s%s%s%s%s%s%s%s\n", NETGRAPH ? "NETGRAPH " : "", GEN_HDLC ? "GEN_HDLC " : "", NSPPP ? "SPPP " : "", P2P ? "P2P " : "", ALTQ_PRESENT ? "ALTQ " : "", NBPFILTER ? "BPF " : "", DEV_POLL ? "POLL " : "", IOREF_CSR ? "IO_CSR " : "MEM_CSR ", (BYTE_ORDER == BIG_ENDIAN) ? "BIG_END " : "LITTLE_END "); /* Make the local hardware ready. */ set_status(sc, 1); return 0; } /* Detach from the kernel in all ways. */ static void detach_card(softc_t *sc) { struct config config; /* Make the local hardware NOT ready. */ set_status(sc, 0); /* Detach external line protocol stack. */ if (sc->config.line_pkg != PKG_RAWIP) { config = sc->config; config.line_pkg = PKG_RAWIP; config_proto(sc, &config); sc->config = config; } /* Detach kernel interfaces. */ #if NETGRAPH if (sc->flags & FLAG_NETGRAPH) { IFQ_PURGE(&sc->ng_fastq); IFQ_PURGE(&sc->ng_sndq); ng_detach(sc); sc->flags &= ~FLAG_NETGRAPH; } #endif #if IFNET if (sc->flags & FLAG_IFNET) { IFQ_PURGE(&sc->ifp->if_snd); lmc_ifnet_detach(sc); sc->flags &= ~FLAG_IFNET; } #endif /* Reset the Tulip chip; stops DMA and Interrupts. */ shutdown_card(sc); } /* This is the I/O configuration interface for FreeBSD */ #ifdef __FreeBSD__ static int fbsd_probe(device_t dev) { u_int32_t cfid = pci_read_config(dev, TLP_CFID, 4); u_int32_t csid = pci_read_config(dev, TLP_CSID, 4); /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ if (cfid != TLP_CFID_TULIP) return ENXIO; switch (csid) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: device_set_desc(dev, HSSI_DESC); break; case TLP_CSID_T3: device_set_desc(dev, T3_DESC); break; case TLP_CSID_SSI: device_set_desc(dev, SSI_DESC); break; case TLP_CSID_T1E1: device_set_desc(dev, T1E1_DESC); break; default: return ENXIO; } return 0; } static int fbsd_detach(device_t dev) { softc_t *sc = device_get_softc(dev); /* Stop the card and detach from the kernel. */ detach_card(sc); /* Release resources. */ if (sc->irq_cookie != NULL) { bus_teardown_intr(dev, sc->irq_res, sc->irq_cookie); sc->irq_cookie = NULL; } if (sc->irq_res != NULL) { bus_release_resource(dev, SYS_RES_IRQ, sc->irq_res_id, sc->irq_res); sc->irq_res = NULL; } if (sc->csr_res != NULL) { bus_release_resource(dev, sc->csr_res_type, sc->csr_res_id, sc->csr_res); sc->csr_res = NULL; } # if (__FreeBSD_version >= 500000) mtx_destroy(&sc->top_mtx); mtx_destroy(&sc->bottom_mtx); # endif return 0; /* no error */ } static int fbsd_shutdown(device_t dev) { shutdown_card(device_get_softc(dev)); return 0; } static int fbsd_attach(device_t dev) { softc_t *sc = device_get_softc(dev); int error; /* READ/WRITE_PCI_CFG need this. */ sc->dev = dev; /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: sc->card = &hssi_card; break; case TLP_CSID_T3: sc->card = &t3_card; break; case TLP_CSID_SSI: sc->card = &ssi_card; break; case TLP_CSID_T1E1: sc->card = &t1_card; break; default: return ENXIO; } sc->dev_desc = device_get_desc(dev); /* Allocate PCI memory or IO resources to access the Tulip chip CSRs. */ # if IOREF_CSR sc->csr_res_id = TLP_CBIO; sc->csr_res_type = SYS_RES_IOPORT; # else sc->csr_res_id = TLP_CBMA; sc->csr_res_type = SYS_RES_MEMORY; # endif sc->csr_res = bus_alloc_resource(dev, sc->csr_res_type, &sc->csr_res_id, 0, ~0, 1, RF_ACTIVE); if (sc->csr_res == NULL) { printf("%s: bus_alloc_resource(csr) failed.\n", NAME_UNIT); return ENXIO; } sc->csr_tag = rman_get_bustag(sc->csr_res); sc->csr_handle = rman_get_bushandle(sc->csr_res); /* Allocate PCI interrupt resources for the card. */ sc->irq_res_id = 0; sc->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irq_res_id, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); if (sc->irq_res == NULL) { printf("%s: bus_alloc_resource(irq) failed.\n", NAME_UNIT); fbsd_detach(dev); return ENXIO; } if ((error = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE, NULL, bsd_interrupt, sc, &sc->irq_cookie))) { printf("%s: bus_setup_intr() failed; error %d\n", NAME_UNIT, error); fbsd_detach(dev); return error; } # if (__FreeBSD_version >= 500000) /* Initialize the top-half and bottom-half locks. */ mtx_init(&sc->top_mtx, NAME_UNIT, "top half lock", MTX_DEF); mtx_init(&sc->bottom_mtx, NAME_UNIT, "bottom half lock", MTX_DEF); # endif /* Start the card and attach a kernel interface and line protocol. */ if ((error = attach_card(sc, ""))) detach_card(sc); return error; } static device_method_t methods[] = { DEVMETHOD(device_probe, fbsd_probe), DEVMETHOD(device_attach, fbsd_attach), DEVMETHOD(device_detach, fbsd_detach), DEVMETHOD(device_shutdown, fbsd_shutdown), /* This driver does not suspend and resume. */ { 0, 0 } }; static driver_t driver = { .name = DEVICE_NAME, .methods = methods, # if (__FreeBSD_version >= 500000) .size = sizeof(softc_t), # else /* FreeBSD-4 */ .softc = sizeof(softc_t), # endif }; static devclass_t devclass; DRIVER_MODULE(lmc, pci, driver, devclass, 0, 0); MODULE_VERSION(lmc, 2); MODULE_DEPEND(lmc, pci, 1, 1, 1); # if NETGRAPH MODULE_DEPEND(lmc, netgraph, NG_ABI_VERSION, NG_ABI_VERSION, NG_ABI_VERSION); # endif # if NSPPP MODULE_DEPEND(lmc, sppp, 1, 1, 1); # endif #endif /* __FreeBSD__ */ /* This is the I/O configuration interface for NetBSD. */ #ifdef __NetBSD__ static int nbsd_match(struct device *parent, struct cfdata *match, void *aux) { struct pci_attach_args *pa = aux; u_int32_t cfid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CFID); u_int32_t csid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CSID); /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ if (cfid != TLP_CFID_TULIP) return 0; switch (csid) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: case TLP_CSID_T3: case TLP_CSID_SSI: case TLP_CSID_T1E1: return 100; default: return 0; } } static int nbsd_detach(struct device *self, int flags) { softc_t *sc = (softc_t *)self; /* device is first in softc */ /* Stop the card and detach from the kernel. */ detach_card(sc); /* Release resources. */ if (sc->sdh_cookie != NULL) { shutdownhook_disestablish(sc->sdh_cookie); sc->sdh_cookie = NULL; } if (sc->irq_cookie != NULL) { pci_intr_disestablish(sc->pa_pc, sc->irq_cookie); sc->irq_cookie = NULL; } if (sc->csr_handle) { bus_space_unmap(sc->csr_tag, sc->csr_handle, TLP_CSR_SIZE); sc->csr_handle = 0; } return 0; /* no error */ } static void nbsd_attach(struct device *parent, struct device *self, void *aux) { softc_t *sc = (softc_t *)self; /* device is first in softc */ struct pci_attach_args *pa = aux; const char *intrstr; bus_addr_t csr_addr; int error; /* READ/WRITE_PCI_CFG need these. */ sc->pa_pc = pa->pa_pc; sc->pa_tag = pa->pa_tag; /* bus_dma needs this. */ sc->pa_dmat = pa->pa_dmat; /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: sc->dev_desc = HSSI_DESC; sc->card = &hssi_card; break; case TLP_CSID_T3: sc->dev_desc = T3_DESC; sc->card = &t3_card; break; case TLP_CSID_SSI: sc->dev_desc = SSI_DESC; sc->card = &ssi_card; break; case TLP_CSID_T1E1: sc->dev_desc = T1E1_DESC; sc->card = &t1_card; break; default: return; } printf(": %s\n", sc->dev_desc); /* Allocate PCI resources to access the Tulip chip CSRs. */ # if IOREF_CSR csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBIO) & -2; sc->csr_tag = pa->pa_iot; /* bus_space tag for IO refs */ # else csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBMA); sc->csr_tag = pa->pa_memt; /* bus_space tag for MEM refs */ # endif if ((error = bus_space_map(sc->csr_tag, csr_addr, TLP_CSR_SIZE, 0, &sc->csr_handle))) { printf("%s: bus_space_map() failed; error %d\n", NAME_UNIT, error); return; } /* Allocate PCI interrupt resources. */ if ((error = pci_intr_map(pa, &sc->intr_handle))) { printf("%s: pci_intr_map() failed; error %d\n", NAME_UNIT, error); nbsd_detach(self, 0); return; } sc->irq_cookie = pci_intr_establish(pa->pa_pc, sc->intr_handle, IPL_NET, bsd_interrupt, sc); if (sc->irq_cookie == NULL) { printf("%s: pci_intr_establish() failed\n", NAME_UNIT); nbsd_detach(self, 0); return; } intrstr = pci_intr_string(pa->pa_pc, sc->intr_handle); /* Install a shutdown hook. */ sc->sdh_cookie = shutdownhook_establish(shutdown_card, sc); if (sc->sdh_cookie == NULL) { printf("%s: shutdown_hook_establish() failed\n", NAME_UNIT); nbsd_detach(self, 0); return; } /* Initialize the top-half and bottom-half locks. */ simple_lock_init(&sc->top_lock); simple_lock_init(&sc->bottom_lock); /* Start the card and attach a kernel interface and line protocol. */ if ((error = attach_card(sc, intrstr))) detach_card(sc); } # if (__NetBSD_Version__ >= 106080000) /* 1.6H */ CFATTACH_DECL(lmc, sizeof(softc_t), nbsd_match, nbsd_attach, nbsd_detach, NULL); # else struct cfattach lmc_ca = { /*.ca_name = DEVICE_NAME, */ .ca_devsize = sizeof(softc_t), .ca_match = nbsd_match, .ca_attach = nbsd_attach, .ca_detach = nbsd_detach, .ca_activate = NULL, }; # endif # if (__NetBSD_Version__ >= 106080000) CFDRIVER_DECL(lmc, DV_IFNET, NULL); # else static struct cfdriver lmc_cd = { .cd_name = DEVICE_NAME, .cd_class = DV_IFNET, .cd_ndevs = 0, .cd_devs = NULL, }; # endif /* cfdata is declared static, unseen outside this module. */ /* It is used for LKM; config builds its own in ioconf.c. */ static struct cfdata lmc_cf = { # if (__NetBSD_Version__ >= 106080000) .cf_name = DEVICE_NAME, .cf_atname = DEVICE_NAME, # else .cf_driver = &lmc_cd, .cf_attach = &lmc_ca, # endif .cf_unit = 0, .cf_fstate = FSTATE_STAR, }; # if (__NetBSD_Version__ >= 106080000) MOD_MISC(DEVICE_NAME) # else static struct lkm_misc _module = { .lkm_name = DEVICE_NAME, .lkm_type = LM_MISC, .lkm_offset = 0, .lkm_ver = LKM_VERSION, }; # endif /* From /sys/dev/pci/pci.c (no public prototype). */ int pciprint(void *, const char *); static int lkm_nbsd_match(struct pci_attach_args *pa) { return nbsd_match(0, 0, pa); } /* LKM loader finds this by appending "_lkmentry" to filename "if_lmc". */ int if_lmc_lkmentry(struct lkm_table *lkmtp, int cmd, int ver) { int i, error = 0; if (ver != LKM_VERSION) return EINVAL; switch (cmd) { case LKM_E_LOAD: { struct cfdriver* pcicd; lkmtp->private.lkm_misc = &_module; if ((pcicd = config_cfdriver_lookup("pci")) == NULL) { printf("%s: config_cfdriver_lookup(pci) failed; error %d\n", lmc_cd.cd_name, error); return error; } # if (__NetBSD_Version__ >= 106080000) if ((error = config_cfdriver_attach(&lmc_cd))) { printf("%s: config_cfdriver_attach() failed; error %d\n", lmc_cd.cd_name, error); return error; } if ((error = config_cfattach_attach(lmc_cd.cd_name, &lmc_ca))) { printf("%s: config_cfattach_attach() failed; error %d\n", lmc_cd.cd_name, error); config_cfdriver_detach(&lmc_cd); return error; } # endif for (i=0; i<pcicd->cd_ndevs; i++) { int dev; /* A pointer to a device is a pointer to its softc. */ struct pci_softc *sc = pcicd->cd_devs[i]; if (sc == NULL) continue; for (dev=0; dev<sc->sc_maxndevs; dev++) { struct pci_attach_args pa; pcitag_t tag = pci_make_tag(sc->sc_pc, sc->sc_bus, dev, 0); if (pci_probe_device(sc, tag, lkm_nbsd_match, &pa) != 0) config_attach(pcicd->cd_devs[i], &lmc_cf, &pa, pciprint); /* config_attach doesn't return on failure; it calls panic. */ } } break; } case LKM_E_UNLOAD: { for (i=lmc_cd.cd_ndevs-1; i>=0; i--) { struct device *dev = lmc_cd.cd_devs[i]; if (dev == NULL) continue; if ((error = config_detach(dev, 0))) { printf("%s: config_detach() failed; error %d\n", dev->dv_xname, error); return error; } } # if (__NetBSD_Version__ >= 106080000) if ((error = config_cfattach_detach(lmc_cd.cd_name, &lmc_ca))) { printf("%s: config_cfattach_detach() failed; error %d\n", lmc_cd.cd_name, error); return error; } if ((error = config_cfdriver_detach(&lmc_cd))) { printf("%s: config_cfdriver_detach() failed; error %d\n", lmc_cd.cd_name, error); return error; } # endif break; } case LKM_E_STAT: break; } return error; } #endif /* __NetBSD__ */ /* This is the I/O configuration interface for OpenBSD. */ #ifdef __OpenBSD__ static int obsd_match(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; u_int32_t cfid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CFID); u_int32_t csid = pci_conf_read(pa->pa_pc, pa->pa_tag, TLP_CSID); /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ if (cfid != TLP_CFID_TULIP) return 0; switch (csid) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: case TLP_CSID_T3: case TLP_CSID_SSI: case TLP_CSID_T1E1: return 100; /* match better than other 21140 drivers */ default: return 0; } } static int obsd_detach(struct device *self, int flags) { softc_t *sc = (softc_t *)self; /* device is first in softc */ /* Stop the card and detach from the kernel. */ detach_card(sc); /* Release resources. */ if (sc->sdh_cookie != NULL) { shutdownhook_disestablish(sc->sdh_cookie); sc->sdh_cookie = NULL; } if (sc->irq_cookie != NULL) { pci_intr_disestablish(sc->pa_pc, sc->irq_cookie); sc->irq_cookie = NULL; } if (sc->csr_handle) { bus_space_unmap(sc->csr_tag, sc->csr_handle, TLP_CSR_SIZE); sc->csr_handle = 0; } return 0; /* no error */ } static void obsd_attach(struct device *parent, struct device *self, void *aux) { softc_t *sc = (softc_t *)self; /* device is first in softc */ struct pci_attach_args *pa = aux; const char *intrstr; bus_addr_t csr_addr; int error; /* READ/WRITE_PCI_CFG need these. */ sc->pa_pc = pa->pa_pc; sc->pa_tag = pa->pa_tag; /* bus_dma needs this. */ sc->pa_dmat = pa->pa_dmat; /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: sc->dev_desc = HSSI_DESC; sc->card = &hssi_card; break; case TLP_CSID_T3: sc->dev_desc = T3_DESC; sc->card = &t3_card; break; case TLP_CSID_SSI: sc->dev_desc = SSI_DESC; sc->card = &ssi_card; break; case TLP_CSID_T1E1: sc->dev_desc = T1E1_DESC; sc->card = &t1_card; break; default: return; } printf(": %s\n", sc->dev_desc); /* Allocate PCI resources to access the Tulip chip CSRs. */ # if IOREF_CSR csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBIO) & -2; sc->csr_tag = pa->pa_iot; /* bus_space tag for IO refs */ # else csr_addr = (bus_addr_t)READ_PCI_CFG(sc, TLP_CBMA); sc->csr_tag = pa->pa_memt; /* bus_space tag for MEM refs */ # endif if ((error = bus_space_map(sc->csr_tag, csr_addr, TLP_CSR_SIZE, 0, &sc->csr_handle))) { printf("%s: bus_space_map() failed; error %d\n", NAME_UNIT, error); return; } /* Allocate PCI interrupt resources. */ if ((error = pci_intr_map(pa, &sc->intr_handle))) { printf("%s: pci_intr_map() failed; error %d\n", NAME_UNIT, error); obsd_detach(self, 0); return; } sc->irq_cookie = pci_intr_establish(pa->pa_pc, sc->intr_handle, IPL_NET, bsd_interrupt, sc, self->dv_xname); if (sc->irq_cookie == NULL) { printf("%s: pci_intr_establish() failed\n", NAME_UNIT); obsd_detach(self, 0); return; } intrstr = pci_intr_string(pa->pa_pc, sc->intr_handle); /* Install a shutdown hook. */ sc->sdh_cookie = shutdownhook_establish(shutdown_card, sc); if (sc->sdh_cookie == NULL) { printf("%s: shutdown_hook_establish() failed\n", NAME_UNIT); obsd_detach(self, 0); return; } /* Initialize the top-half and bottom-half locks. */ simple_lock_init(&sc->top_lock); simple_lock_init(&sc->bottom_lock); /* Start the card and attach a kernel interface and line protocol. */ if ((error = attach_card(sc, intrstr))) detach_card(sc); } struct cfattach lmc_ca = { .ca_devsize = sizeof(softc_t), .ca_match = obsd_match, .ca_attach = obsd_attach, .ca_detach = obsd_detach, .ca_activate = NULL, }; struct cfdriver lmc_cd = { .cd_name = DEVICE_NAME, .cd_devs = NULL, .cd_class = DV_IFNET, .cd_indirect = 0, .cd_ndevs = 0, }; /* cfdata is declared static, unseen outside this module. */ /* It is used for LKM; config builds its own in ioconf.c. */ static struct cfdata lmc_cfdata = { .cf_attach = &lmc_ca, .cf_driver = &lmc_cd, .cf_unit = 0, .cf_fstate = FSTATE_STAR, }; static struct lkm_any _module = { .lkm_name = DEVICE_NAME, .lkm_type = LM_MISC, .lkm_offset = 0, .lkm_ver = LKM_VERSION, }; /* From /sys/dev/pci/pci.c (no public prototype). */ int pciprint(void *, const char *); extern struct cfdriver pci_cd; /* LKM loader finds this by appending "_lkmentry" to filename "if_lmc". */ int if_lmc_lkmentry(struct lkm_table *lkmtp, int cmd, int ver) { int i, error = 0; if (ver != LKM_VERSION) return EINVAL; switch (cmd) { case LKM_E_LOAD: { /* XXX This works for ONE card on pci0 of a i386 machine! XXX */ lkmtp->private.lkm_any = &_module; for (i=0; i<pci_cd.cd_ndevs; i++) { struct pci_attach_args pa; struct device *parent = pci_cd.cd_devs[i]; if (parent == NULL) continue; /* dead clone? */ if ((parent->dv_unit)!=0) continue; /* only bus zero */ /* XXX For machine independence, need: pcibus_attach_args. XXX */ /* XXX See NetBSD's sys/dev/pci/pci.c/pci_probe_device. XXX */ /* XXX Why isn't there an LKM network interface module? XXX */ pa.pa_pc = NULL; /* XXX */ pa.pa_bus = 0; /* XXX */ pa.pa_iot = X86_BUS_SPACE_IO; /* XXX */ pa.pa_memt = X86_BUS_SPACE_MEM; /* XXX */ pa.pa_dmat = &pci_bus_dma_tag; /* XXX */ for (pa.pa_device=0; pa.pa_device<32; pa.pa_device++) /* XXX */ { int intr; pa.pa_function = 0; /* DEC-21140A has function 0 only XXX */ pa.pa_tag = pci_make_tag(pa.pa_pc, pa.pa_bus, pa.pa_device, 0); pa.pa_id = pci_conf_read(pa.pa_pc, pa.pa_tag, PCI_ID_REG); if ((pa.pa_id & 0xFFFF) == 0xFFFF) continue; if ((pa.pa_id & 0xFFFF) == 0) continue; /* XXX this only works for pci0 -- no swizzelling XXX */ pa.pa_intrswiz = 0; pa.pa_intrtag = pa.pa_tag; intr = pci_conf_read(pa.pa_pc, pa.pa_tag, PCI_INTERRUPT_REG); pa.pa_intrline = PCI_INTERRUPT_LINE(intr); pa.pa_intrpin = ((PCI_INTERRUPT_PIN(intr) -1) % 4) +1; if (obsd_match(parent, &lmc_cfdata, &pa)) config_attach(parent, &lmc_cfdata, &pa, pciprint); /* config_attach doesn't return on failure; it calls panic. */ } } break; } case LKM_E_UNLOAD: { for (i=lmc_cd.cd_ndevs-1; i>=0; i--) { struct device *dev = lmc_cd.cd_devs[i]; if (dev == NULL) continue; if ((error = config_detach(dev, 0))) printf("%s: config_detach() failed; error %d\n", dev->dv_xname, error); } break; } case LKM_E_STAT: break; } return error; } #endif /* __OpenBSD__ */ /* This is the I/O configuration interface for BSD/OS. */ #ifdef __bsdi__ static int bsdi_match(pci_devaddr_t *pa) { u_int32_t cfid = pci_inl(pa, TLP_CFID); u_int32_t csid = pci_inl(pa, TLP_CSID); /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ if (cfid != TLP_CFID_TULIP) return 0; switch (csid) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: case TLP_CSID_T3: case TLP_CSID_SSI: case TLP_CSID_T1E1: return 1; default: return 0; } } static int bsdi_probe(struct device *parent, struct cfdata *cf, void *aux) { struct isa_attach_args *ia = aux; pci_devaddr_t *pa = NULL; pci_devres_t res; /* This must be a PCI bus. */ if (ia->ia_bustype != BUS_PCI) return 0; /* Scan PCI bus for our boards. */ if ((pa = pci_scan(bsdi_match)) == 0) return 0; /* Scan config space for IO and MEM base registers and IRQ info. */ pci_getres(pa, &res, 1, ia); /* Crucial: pass pci_devaddr to bsdi_attach in ia_aux. */ ia->ia_aux = (void *)pa; return 1; } static void bsdi_attach(struct device *parent, struct device *self, void *aux) { softc_t *sc = (softc_t *)self; /* device is first in softc */ struct isa_attach_args *ia = aux; pci_devaddr_t *pa = ia->ia_aux; /* this is crucial! */ int error; /* READ/WRITE_PCI_CFG need this. */ sc->cfgbase = *pa; /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: sc->dev_desc = HSSI_DESC; sc->card = &hssi_card; break; case TLP_CSID_T3: sc->dev_desc = T3_DESC; sc->card = &t3_card; break; case TLP_CSID_SSI: sc->dev_desc = SSI_DESC; sc->card = &ssi_card; break; case TLP_CSID_T1E1: sc->dev_desc = T1E1_DESC; sc->card = &t1_card; break; default: return; } printf(": %s\n", sc->dev_desc); /* Allocate PCI memory or IO resources to access the Tulip chip CSRs. */ sc->csr_iobase = ia->ia_iobase; sc->csr_membase = (u_int32_t *)mapphys((vm_offset_t)ia->ia_maddr, TLP_CSR_SIZE); /* Attach to the PCI bus. */ isa_establish(&sc->id, &sc->dev); /* Allocate PCI interrupt resources for the card. */ sc->ih.ih_fun = bsd_interrupt; sc->ih.ih_arg = sc; intr_establish(ia->ia_irq, &sc->ih, DV_NET); /* Install a shutdown hook. */ sc->ats.func = shutdown_card; sc->ats.arg = sc; atshutdown(&sc->ats, ATSH_ADD); /* Initialize the top-half and bottom-half locks. */ simple_lock_init(&sc->top_lock); simple_lock_init(&sc->bottom_lock); /* Start the card and attach a kernel interface and line protocol. */ if ((error = attach_card(sc, ""))) detach_card(sc); } struct cfdriver lmccd = { .cd_devs = NULL, .cd_name = DEVICE_NAME, .cd_match = bsdi_probe, .cd_attach = bsdi_attach, .cd_class = DV_IFNET, .cd_devsize = sizeof(softc_t), }; #endif /* __bsdi__ */ #ifdef __linux__ /* The kernel calls this procedure when an interrupt happens. */ static irqreturn_t linux_interrupt(int irq, void *dev, struct pt_regs *regs) { struct net_device *net_dev = dev; softc_t *sc = dev_to_hdlc(net_dev)->priv; /* Cut losses early if this is not our interrupt. */ if ((READ_CSR(TLP_STATUS) & TLP_INT_TXRX) == 0) return IRQ_NONE; /* Disable card interrupts. */ WRITE_CSR(TLP_INT_ENBL, TLP_INT_DISABLE); /* Handle the card interrupt with the dev->poll method. */ if (netif_rx_schedule_prep(net_dev)) __netif_rx_schedule(net_dev); /* NAPI - add to poll list */ else printk("%s: interrupt while on poll list\n", NAME_UNIT); return IRQ_HANDLED; } /* This net_device method services interrupts in a softirq. */ /* With rxintr_cleanup(), it implements input flow control. */ static int linux_poll(struct net_device *net_dev, int *budget) { softc_t *sc = dev_to_hdlc(net_dev)->priv; int received; /* Yes, we do NAPI. */ /* Allow processing up to net_dev->quota incoming packets. */ /* This is the ONLY time core_interrupt() may process rx pkts. */ /* Otherwise (sc->quota == 0) and rxintr_cleanup() is a NOOP. */ sc->quota = net_dev->quota; /* Handle the card interrupt with kernel ints enabled. */ /* Process rx pkts (and tx pkts, too). */ /* Card interrupts are disabled. */ core_interrupt(sc, 0); /* Report number of rx packets processed. */ received = net_dev->quota - sc->quota; net_dev->quota -= received; *budget -= received; /* if quota prevented processing all rx pkts, leave rx ints disabled */ if (sc->quota == 0) /* this is off by one...but harmless */ { WRITE_CSR(TLP_INT_ENBL, TLP_INT_TX); return 1; /* more pkts to handle -- reschedule */ } sc->quota = 0; /* disable rx pkt processing by rxintr_cleanup() */ netif_rx_complete(net_dev); /* NAPI - remove from poll list */ /* Enable card interrupts. */ WRITE_CSR(TLP_INT_ENBL, TLP_INT_TXRX); return 0; } /* These next routines are similar to BSD's ifnet kernel/driver interface. */ /* This net_device method hands outgoing packets to the transmitter. */ /* With txintr_setup(), it implements output flow control. */ /* Called from a syscall (user context; no spinlocks). */ static int linux_start(struct sk_buff *skb, struct net_device *net_dev) { softc_t *sc = dev_to_hdlc(net_dev)->priv; if (sc->tx_skb == NULL) { /* Put this skb where the transmitter will see it. */ sc->tx_skb = skb; /* Start the transmitter; incoming pkts are NOT processed. */ user_interrupt(sc, 0); /* If the tx didn't take the skb then stop the queue. */ /* This can happen if another CPU is in core_interrupt(). */ if (sc->tx_skb != NULL) netif_stop_queue(net_dev); return 0; } /* This shouldn't happen; skb is NOT consumed. */ if (netif_queue_stopped(net_dev)) printk("%s: dev->start() called with queue stopped\n", NAME_UNIT); else netif_stop_queue(net_dev); return 1; } /* This net_device method restarts the transmitter if it hangs. */ /* Called from a softirq. */ static void linux_timeout(struct net_device *net_dev) { softc_t *sc = dev_to_hdlc(net_dev)->priv; /* Start the transmitter; incoming packets are NOT processed. */ user_interrupt(sc, 1); } /* This net_device method handles IOCTL syscalls. */ /* Called from a syscall (user context; no spinlocks; can sleep). */ static int linux_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) { softc_t *sc = dev_to_hdlc(net_dev)->priv; int error = 0; if ((cmd >= SIOCDEVPRIVATE) && (cmd <= SIOCDEVPRIVATE+15)) { struct iohdr *iohdr = (struct iohdr *)ifr; u_int16_t direction = iohdr->direction; u_int16_t length = iohdr->length; char *user_addr = (char *)iohdr->iohdr; char *kern_addr; if (iohdr->cookie != NGM_LMC_COOKIE) return -EINVAL; /* Emulate a BSD-style IOCTL syscall. */ kern_addr = kmalloc(length, GFP_KERNEL); if (kern_addr == NULL) error = -ENOMEM; if ((error == 0) && ((direction & DIR_IOW) != 0)) error = copy_from_user(kern_addr, user_addr, length); if (error == 0) error = -core_ioctl(sc, (unsigned long)cmd, kern_addr); if ((error == 0) && ((direction & DIR_IOR) != 0)) error = copy_to_user(user_addr, kern_addr, length); kfree(kern_addr); } # if GEN_HDLC else if (cmd == SIOCWANDEV) { const size_t size = sizeof(sync_serial_settings); switch (ifr->ifr_settings.type) { case IF_GET_IFACE: /* get interface config */ { ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL; if (ifr->ifr_settings.size < size) { ifr->ifr_settings.size = size; error = -ENOBUFS; } else { if (sc->config.tx_clk_src == CFG_CLKMUX_ST) sc->hdlc_settings.clock_type = CLOCK_EXT; if (sc->config.tx_clk_src == CFG_CLKMUX_INT) sc->hdlc_settings.clock_type = CLOCK_TXINT; if (sc->config.tx_clk_src == CFG_CLKMUX_RT) sc->hdlc_settings.clock_type = CLOCK_TXFROMRX; sc->hdlc_settings.loopback = (sc->config.loop_back != CFG_LOOP_NONE) ? 1:0; sc->hdlc_settings.clock_rate = sc->status.tx_speed; error = copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sc->hdlc_settings, size); } break; } case IF_IFACE_SYNC_SERIAL: /* set interface config */ { if (!capable(CAP_NET_ADMIN)) error = -EPERM; if (error == 0) error = copy_from_user(&sc->hdlc_settings, ifr->ifr_settings.ifs_ifsu.sync, size); /* hdlc_settings are currently ignored. */ break; } default: /* Pass the rest to the line protocol code. */ { error = hdlc_ioctl(net_dev, ifr, cmd); break; } } } # endif /* GEN_HDLC */ else /* unknown IOCTL command */ error = -EINVAL; if (DRIVER_DEBUG) printk("%s: linux_ioctl; cmd=0x%08x error=%d\n", NAME_UNIT, cmd, error); return error; } /* This net_device method returns a pointer to device statistics. */ static struct net_device_stats * linux_stats(struct net_device *net_dev) { # if GEN_HDLC return &dev_to_hdlc(net_dev)->stats; # else softc_t *sc = net_dev->priv; return &sc->net_stats; # endif } /* Called from a softirq once a second. */ static void linux_watchdog(unsigned long softc) { softc_t *sc = (softc_t *)softc; u_int8_t old_oper_status = sc->status.oper_status; struct event_cntrs *cntrs = &sc->status.cntrs; struct net_device_stats *stats = linux_stats(sc->net_dev); core_watchdog(sc); /* updates oper_status */ /* Notice change in link status. */ if ((old_oper_status != STATUS_UP) && (sc->status.oper_status == STATUS_UP)) /* link came up */ { hdlc_set_carrier(1, sc->net_dev); netif_wake_queue(sc->net_dev); } if ((old_oper_status == STATUS_UP) && (sc->status.oper_status != STATUS_UP)) /* link went down */ { hdlc_set_carrier(0, sc->net_dev); netif_stop_queue(sc->net_dev); } /* Notice change in line protocol. */ if (sc->config.line_pkg == PKG_RAWIP) { sc->status.line_pkg = PKG_RAWIP; sc->status.line_prot = PROT_IP_HDLC; } # if GEN_HDLC else { sc->status.line_pkg = PKG_GEN_HDLC; switch (sc->hdlc_dev->proto.id) { case IF_PROTO_PPP: sc->status.line_prot = PROT_PPP; break; case IF_PROTO_CISCO: sc->status.line_prot = PROT_C_HDLC; break; case IF_PROTO_FR: sc->status.line_prot = PROT_FRM_RLY; break; case IF_PROTO_HDLC: sc->status.line_prot = PROT_IP_HDLC; break; case IF_PROTO_X25: sc->status.line_prot = PROT_X25; break; case IF_PROTO_HDLC_ETH: sc->status.line_prot = PROT_ETH_HDLC; break; default: sc->status.line_prot = 0; break; } } # endif /* GEN_HDLC */ /* Copy statistics from sc to net_dev for get_stats(). */ stats->rx_packets = cntrs->ipackets; stats->tx_packets = cntrs->opackets; stats->rx_bytes = cntrs->ibytes; stats->tx_bytes = cntrs->obytes; stats->rx_errors = cntrs->ierrors; stats->tx_errors = cntrs->oerrors; stats->rx_dropped = cntrs->idiscards; stats->tx_dropped = cntrs->odiscards; stats->rx_fifo_errors = cntrs->fifo_over; stats->tx_fifo_errors = cntrs->fifo_under; stats->rx_missed_errors = cntrs->missed; stats->rx_over_errors = cntrs->overruns; /* Call this procedure again after one second. */ sc->wd_timer.expires = jiffies + HZ; /* now plus one second */ add_timer(&sc->wd_timer); } /* This is the I/O configuration interface for Linux. */ /* This net_device method is called when IFF_UP goes false. */ static int linux_stop(struct net_device *net_dev) { softc_t *sc = dev_to_hdlc(net_dev)->priv; /* Stop the card and detach from the kernel. */ detach_card(sc); /* doesn't fail */ free_irq(net_dev->irq, net_dev); /* doesn't fail */ del_timer(&sc->wd_timer); /* return value ignored */ return 0; } /* This net_device method is called when IFF_UP goes true. */ static int linux_open(struct net_device *net_dev) { softc_t *sc = dev_to_hdlc(net_dev)->priv; int error; /* Allocate PCI interrupt resources for the card. */ if ((error = request_irq(net_dev->irq, &linux_interrupt, SA_SHIRQ, NAME_UNIT, net_dev))) { printk("%s: request_irq() failed; error %d\n", NAME_UNIT, error); return error; } /* Arrange to call linux_watchdog() once a second. */ init_timer(&sc->wd_timer); sc->wd_timer.expires = jiffies + HZ; /* now plus one second */ sc->wd_timer.function = &linux_watchdog; sc->wd_timer.data = (unsigned long) sc; add_timer(&sc->wd_timer); /* Start the card and attach a kernel interface and line protocol. */ if ((error = -attach_card(sc, ""))) linux_stop(net_dev); else { net_dev->weight = sc->rxring.num_descs; /* input flow control */ netif_start_queue(net_dev); /* output flow control */ } return error; } # if GEN_HDLC static int hdlc_attach(struct net_device *net_dev, unsigned short encoding, unsigned short parity) { return 0; } # endif /* This pci_driver method is called during shutdown or module-unload. */ /* This is called from user context; can sleep; no spinlocks! */ static void __exit linux_remove(struct pci_dev *pci_dev) { struct net_device *net_dev = (struct net_device *)pci_get_drvdata(pci_dev); softc_t *sc = dev_to_hdlc(net_dev)->priv; if (net_dev == NULL) return; /* Assume that linux_stop() has already been called. */ if (sc->flags & FLAG_NETDEV) # if GEN_HDLC unregister_hdlc_device(net_dev); # else unregister_netdev(net_dev); # endif # if (IOREF_CSR == 0) if (sc->csr_membase != NULL) iounmap(sc->csr_membase); # endif pci_disable_device(pci_dev); if (sc->csr_iobase != 0) pci_release_regions(pci_dev); pci_set_drvdata(pci_dev, NULL); kfree(sc); free_netdev(net_dev); } static void setup_netdev(struct net_device *net_dev) { /* Initialize the generic network device. */ /* Note similarity to BSD's lmc_ifnet_attach(). */ net_dev->flags = IFF_POINTOPOINT; net_dev->flags |= IFF_RUNNING; net_dev->open = linux_open; net_dev->stop = linux_stop; net_dev->hard_start_xmit = linux_start; net_dev->do_ioctl = linux_ioctl; net_dev->get_stats = linux_stats; net_dev->tx_timeout = linux_timeout; net_dev->poll = linux_poll; net_dev->watchdog_timeo = 1 * HZ; net_dev->tx_queue_len = SNDQ_MAXLEN; net_dev->mtu = MAX_DESC_LEN; net_dev->type = ARPHRD_RAWHDLC; /* The receiver generates frag-lists for packets >4032 bytes. */ /* The transmitter accepts scatter/gather lists and frag-lists. */ /* However Linux linearizes outgoing packets since our hardware */ /* doesn't compute soft checksums. All that work for nothing! */ /*net_dev->features |= NETIF_F_SG; */ /*net_dev->features |= NETIF_F_FRAGLIST; */ } /* This pci_driver method is called during boot or module-load. */ /* This is called from user context; can sleep; no spinlocks! */ static int __init linux_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { u_int32_t cfid, csid; struct net_device *net_dev; softc_t *sc; int error; /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ pci_read_config_dword(pci_dev, TLP_CFID, &cfid); if (cfid != TLP_CFID_TULIP) return -ENXIO; pci_read_config_dword(pci_dev, TLP_CSID, &csid); switch (csid) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: case TLP_CSID_T3: case TLP_CSID_SSI: case TLP_CSID_T1E1: break; default: return -ENXIO; } /* Declare that these cards use 32-bit single-address PCI cycles. */ if ((error = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK))) { printk("%s: pci_set_dma_mask() failed; error %d\n", DEVICE_NAME, error); return error; } pci_set_consistent_dma_mask(pci_dev, DMA_32BIT_MASK); /* can't fail */ # if GEN_HDLC /* generic-hdlc line protocols */ /* device driver instance data, aka Soft Context or sc */ if ((sc = kmalloc(sizeof(softc_t), GFP_KERNEL)) == NULL) { printk("%s: kmalloc() failed\n", DEVICE_NAME); return -ENOMEM; } memset(sc, 0, sizeof(softc_t)); /* Allocate space for the HDLC network device struct. */ if ((net_dev = alloc_hdlcdev(sc)) == NULL) { printk("%s: alloc_hdlcdev() failed\n", DEVICE_NAME); kfree(sc); return -ENOMEM; } /* Initialize the network device struct. */ setup_netdev(net_dev); /* Initialize the HDLC extension to the network device. */ sc->hdlc_dev = dev_to_hdlc(net_dev); sc->hdlc_dev->attach = hdlc_attach; /* noop for this driver */ sc->hdlc_dev->xmit = linux_start; /* the REAL hard_start_xmit() */ # else /* GEN_HDLC */ /* no line protocol. */ /* Allocate space for the bare network device struct. */ net_dev = alloc_netdev(sizeof(softc_t), DEVICE_NAME"%d", setup_netdev); if (net_dev == NULL) { printk("%s: alloc_netdev() failed\n", DEVICE_NAME); return -ENOMEM; } /* device driver instance data, aka Soft Context or sc */ sc = net_dev->priv; # endif /* GEN_HDLC */ sc->net_dev = net_dev; /* NAME_UNIT macro needs this */ sc->pci_dev = pci_dev; /* READ/WRITE_PCI_CFG macros need this */ /* Cross-link pci_dev and net_dev. */ pci_set_drvdata(pci_dev, net_dev); /* pci_dev->driver_data = net_dev */ SET_NETDEV_DEV(net_dev, &pci_dev->dev); /* net_dev->class_dev.dev = &pci_dev->dev */ SET_MODULE_OWNER(net_dev); /* ??? NOOP in linux-2.6.3. ??? */ /* Sets cfcs.io and cfcs.mem; sets pci_dev->irq based on cfit.int */ if ((error = pci_enable_device(pci_dev))) { printk("%s: pci_enable_device() failed; error %d\n", DEVICE_NAME, error); linux_remove(pci_dev); return error; } net_dev->irq = pci_dev->irq; /* linux_open/stop need this */ /* Allocate PCI memory and IO resources to access the Tulip chip CSRs. */ if ((error = pci_request_regions(pci_dev, DEVICE_NAME))) { printk("%s: pci_request_regions() failed; error %d\n", DEVICE_NAME, error); linux_remove(pci_dev); return error; } net_dev->base_addr = pci_resource_start(pci_dev, 0); net_dev->mem_start = pci_resource_start(pci_dev, 1); net_dev->mem_end = pci_resource_end(pci_dev, 1); sc->csr_iobase = net_dev->base_addr; # if (IOREF_CSR == 0) sc->csr_membase = ioremap_nocache(net_dev->mem_start, TLP_CSR_SIZE); if (sc->csr_membase == NULL) { printk("%s: ioremap_nocache() failed\n", DEVICE_NAME); linux_remove(pci_dev); return -EFAULT; } # endif /* Sets cfcs.master, enabling PCI DMA; checks latency timer value. */ pci_set_master(pci_dev); /* Later, attach_card() does this too. */ /* Initialize the top-half and bottom-half locks. */ /* Top_lock must be initialized before net_dev is registered. */ init_MUTEX(&sc->top_lock); spin_lock_init(&sc->bottom_lock); # if GEN_HDLC if ((error = register_hdlc_device(net_dev))) { printk("%s: register_hdlc_device() failed; error %d\n", DEVICE_NAME, error); linux_remove(pci_dev); return error; } # else if ((error = register_netdev(net_dev))) { printk("%s: register_netdev() failed; error %d\n", DEVICE_NAME, error); linux_remove(pci_dev); return error; } # endif /* The NAME_UNIT macro now works. Use DEVICE_NAME before this. */ sc->flags |= FLAG_NETDEV; /* What kind of card are we driving? */ switch (READ_PCI_CFG(sc, TLP_CSID)) { case TLP_CSID_HSSI: case TLP_CSID_HSSIc: sc->dev_desc = HSSI_DESC; sc->card = &hssi_card; break; case TLP_CSID_T3: sc->dev_desc = T3_DESC; sc->card = &t3_card; break; case TLP_CSID_SSI: sc->dev_desc = SSI_DESC; sc->card = &ssi_card; break; case TLP_CSID_T1E1: sc->dev_desc = T1E1_DESC; sc->card = &t1_card; break; default: /* shouldn't happen! */ linux_remove(pci_dev); return -ENXIO; } /* Announce the hardware on the console. */ printk("%s: <%s> io 0x%04lx/9 mem 0x%08lx/25 rom 0x%08lx/14 irq %d pci %s\n", NAME_UNIT, sc->dev_desc, pci_resource_start(pci_dev, 0), pci_resource_start(pci_dev, 1), pci_resource_start(pci_dev, 6), pci_dev->irq, pci_name(pci_dev)); return 0; } /* This pci driver knows how to drive these devices: */ static __initdata struct pci_device_id pci_device_id_tbl[] = { /* Looking for a DEC 21140A chip on any Lan Media Corp card. */ { 0x1011, 0x0009, 0x1376, PCI_ANY_ID, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 } }; MODULE_DEVICE_TABLE(pci, pci_device_id_tbl); static struct pci_driver pci_driver = { .name = DEVICE_NAME, .id_table = pci_device_id_tbl, .probe = linux_probe, .remove = __devexit_p(linux_remove), /* This driver does not suspend and resume. */ }; /* This ultimately calls our pci_driver.probe() method. */ static int __init linux_modload(void) { return pci_module_init(&pci_driver); } module_init(linux_modload); /* This ultimately calls our pci_driver.remove() method. */ static void __exit linux_modunload(void) { pci_unregister_driver(&pci_driver); } module_exit(linux_modunload); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Device driver for SBE/LMC Wide-Area Network cards"); MODULE_AUTHOR("David Boggs <boggs@boggs.palo-alto.ca.us>"); #endif /* __linux__ */