Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapci/chipsets/atacyrix/@/dev/sfxge/common/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ata/atapci/chipsets/atacyrix/@/dev/sfxge/common/efx_ev.c |
/*- * Copyright 2007-2009 Solarflare Communications Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/sfxge/common/efx_ev.c 228100 2011-11-28 20:28:23Z philip $"); #include "efsys.h" #include "efx.h" #include "efx_types.h" #include "efx_regs.h" #include "efx_impl.h" #if EFSYS_OPT_QSTATS #define EFX_EV_QSTAT_INCR(_eep, _stat) \ do { \ (_eep)->ee_stat[_stat]++; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_EV_QSTAT_INCR(_eep, _stat) #endif __checkReturn int efx_ev_init( __in efx_nic_t *enp) { efx_oword_t oword; int rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); if (enp->en_mod_flags & EFX_MOD_EV) { rc = EINVAL; goto fail1; } EFSYS_ASSERT3U(enp->en_ev_qcount, ==, 0); /* * Program the event queue for receive and transmit queue * flush events. */ EFX_BAR_READO(enp, FR_AZ_DP_CTRL_REG, &oword); EFX_SET_OWORD_FIELD(oword, FRF_AZ_FLS_EVQ_ID, 0); EFX_BAR_WRITEO(enp, FR_AZ_DP_CTRL_REG, &oword); enp->en_mod_flags |= EFX_MOD_EV; return (0); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } static __checkReturn boolean_t efx_ev_rx_not_ok( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in uint32_t label, __in uint32_t id, __inout uint16_t *flagsp) { boolean_t ignore = B_FALSE; if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_TOBE_DISC) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_TOBE_DISC); EFSYS_PROBE(tobe_disc); /* Assume this is a unicast address mismatch, unless below * we find either FSF_AZ_RX_EV_ETH_CRC_ERR or * EV_RX_PAUSE_FRM_ERR is set. */ (*flagsp) |= EFX_ADDR_MISMATCH; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_FRM_TRUNC) != 0) { EFSYS_PROBE2(frm_trunc, uint32_t, label, uint32_t, id); EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC); (*flagsp) |= EFX_DISCARD; #if (EFSYS_OPT_RX_HDR_SPLIT || EFSYS_OPT_RX_SCATTER) /* Lookout for payload queue ran dry errors and ignore them. * * Sadly for the header/data split cases, the descriptor * pointer in this event refers to the header queue and * therefore cannot be easily detected as duplicate. * So we drop these and rely on the receive processing seeing * a subsequent packet with FSF_AZ_RX_EV_SOP set to discard * the partially received packet. */ if ((EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_SOP) == 0) && (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_JUMBO_CONT) == 0) && (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_BYTE_CNT) == 0)) ignore = B_TRUE; #endif /* EFSYS_OPT_RX_HDR_SPLIT || EFSYS_OPT_RX_SCATTER */ } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_ETH_CRC_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR); EFSYS_PROBE(crc_err); (*flagsp) &= ~EFX_ADDR_MISMATCH; (*flagsp) |= EFX_DISCARD; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_PAUSE_FRM_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_PAUSE_FRM_ERR); EFSYS_PROBE(pause_frm_err); (*flagsp) &= ~EFX_ADDR_MISMATCH; (*flagsp) |= EFX_DISCARD; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_BUF_OWNER_ID_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_BUF_OWNER_ID_ERR); EFSYS_PROBE(owner_id_err); (*flagsp) |= EFX_DISCARD; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR); EFSYS_PROBE(ipv4_err); (*flagsp) &= ~EFX_CKSUM_IPV4; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR); EFSYS_PROBE(udp_chk_err); (*flagsp) &= ~EFX_CKSUM_TCPUDP; } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_IP_FRAG_ERR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_IP_FRAG_ERR); /* * If IP is fragmented FSF_AZ_RX_EV_IP_FRAG_ERR is set. This * causes FSF_AZ_RX_EV_PKT_OK to be clear. This is not an error * condition. */ (*flagsp) &= ~(EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP); } return (ignore); } static __checkReturn boolean_t efx_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; uint32_t id; uint32_t size; uint32_t label; boolean_t ok; #if (EFSYS_OPT_RX_HDR_SPLIT || EFSYS_OPT_RX_SCATTER) boolean_t sop; boolean_t jumbo_cont; #endif /* EFSYS_OPT_RX_HDR_SPLIT || EFSYS_OPT_RX_SCATTER */ uint32_t hdr_type; boolean_t is_v6; uint16_t flags; boolean_t ignore; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_RX); /* Basic packet information */ id = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_DESC_PTR); size = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_BYTE_CNT); label = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_Q_LABEL); ok = (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_PKT_OK) != 0); #if (EFSYS_OPT_RX_HDR_SPLIT || EFSYS_OPT_RX_SCATTER) sop = (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_SOP) != 0); jumbo_cont = (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_JUMBO_CONT) != 0); #endif /* EFSYS_OPT_RX_HDR_SPLIT || EFSYS_OPT_RX_SCATTER */ hdr_type = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_HDR_TYPE); is_v6 = (enp->en_family != EFX_FAMILY_FALCON && EFX_QWORD_FIELD(*eqp, FSF_CZ_RX_EV_IPV6_PKT) != 0); /* * If packet is marked as OK and packet type is TCP/IP or * UDP/IP or other IP, then we can rely on the hardware checksums. */ switch (hdr_type) { case FSE_AZ_RX_EV_HDR_TYPE_IPV4V6_TCP: flags = EFX_PKT_TCP | EFX_CKSUM_TCPUDP; if (is_v6) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV6); flags |= EFX_PKT_IPV6; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV4); flags |= EFX_PKT_IPV4 | EFX_CKSUM_IPV4; } break; case FSE_AZ_RX_EV_HDR_TYPE_IPV4V6_UDP: flags = EFX_PKT_UDP | EFX_CKSUM_TCPUDP; if (is_v6) { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV6); flags |= EFX_PKT_IPV6; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV4); flags |= EFX_PKT_IPV4 | EFX_CKSUM_IPV4; } break; case FSE_AZ_RX_EV_HDR_TYPE_IPV4V6_OTHER: if (is_v6) { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV6); flags = EFX_PKT_IPV6; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV4); flags = EFX_PKT_IPV4 | EFX_CKSUM_IPV4; } break; case FSE_AZ_RX_EV_HDR_TYPE_OTHER: EFX_EV_QSTAT_INCR(eep, EV_RX_NON_IP); flags = 0; break; default: EFSYS_ASSERT(B_FALSE); flags = 0; break; } #if EFSYS_OPT_RX_SCATTER || EFSYS_OPT_RX_HDR_SPLIT /* Report scatter and header/lookahead split buffer flags */ if (sop) flags |= EFX_PKT_START; if (jumbo_cont) flags |= EFX_PKT_CONT; #endif /* EFSYS_OPT_RX_SCATTER || EFSYS_OPT_RX_HDR_SPLIT */ /* Detect errors included in the FSF_AZ_RX_EV_PKT_OK indication */ if (!ok) { ignore = efx_ev_rx_not_ok(eep, eqp, label, id, &flags); if (ignore) { EFSYS_PROBE4(rx_complete, uint32_t, label, uint32_t, id, uint32_t, size, uint16_t, flags); return (B_FALSE); } } /* If we're not discarding the packet then it is ok */ if (~flags & EFX_DISCARD) EFX_EV_QSTAT_INCR(eep, EV_RX_OK); /* Detect multicast packets that didn't match the filter */ if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_MCAST_PKT) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_MCAST_PKT); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_MCAST_HASH_MATCH) != 0) { EFX_EV_QSTAT_INCR(eep, EV_RX_MCAST_HASH_MATCH); } else { EFSYS_PROBE(mcast_mismatch); flags |= EFX_ADDR_MISMATCH; } } else { flags |= EFX_PKT_UNICAST; } /* * The packet parser in Siena can abort parsing packets under * certain error conditions, setting the PKT_NOT_PARSED bit * (which clears PKT_OK). If this is set, then don't trust * the PKT_TYPE field. */ if (enp->en_family != EFX_FAMILY_FALCON && !ok) { uint32_t parse_err; parse_err = EFX_QWORD_FIELD(*eqp, FSF_CZ_RX_EV_PKT_NOT_PARSED); if (parse_err != 0) flags |= EFX_CHECK_VLAN; } if (~flags & EFX_CHECK_VLAN) { uint32_t pkt_type; pkt_type = EFX_QWORD_FIELD(*eqp, FSF_AZ_RX_EV_PKT_TYPE); if (pkt_type >= FSE_AZ_RX_EV_PKT_TYPE_VLAN) flags |= EFX_PKT_VLAN_TAGGED; } EFSYS_PROBE4(rx_complete, uint32_t, label, uint32_t, id, uint32_t, size, uint16_t, flags); EFSYS_ASSERT(eecp->eec_rx != NULL); should_abort = eecp->eec_rx(arg, label, id, size, flags); return (should_abort); } static __checkReturn boolean_t efx_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t id; uint32_t label; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_TX); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_COMP) != 0 && EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_PKT_ERR) == 0 && EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_PKT_TOO_BIG) == 0 && EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_WQ_FF_FULL) == 0) { id = EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_DESC_PTR); label = EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_Q_LABEL); EFSYS_PROBE2(tx_complete, uint32_t, label, uint32_t, id); EFSYS_ASSERT(eecp->eec_tx != NULL); should_abort = eecp->eec_tx(arg, label, id); return (should_abort); } if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_COMP) != 0) EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_PKT_ERR) != 0) EFX_EV_QSTAT_INCR(eep, EV_TX_PKT_ERR); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_PKT_TOO_BIG) != 0) EFX_EV_QSTAT_INCR(eep, EV_TX_PKT_TOO_BIG); if (EFX_QWORD_FIELD(*eqp, FSF_AZ_TX_EV_WQ_FF_FULL) != 0) EFX_EV_QSTAT_INCR(eep, EV_TX_WQ_FF_FULL); EFX_EV_QSTAT_INCR(eep, EV_TX_UNEXPECTED); return (B_FALSE); } static __checkReturn boolean_t efx_ev_global( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; efx_port_t *epp = &(enp->en_port); boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_GLOBAL); should_abort = B_FALSE; /* Check for a link management event */ if (EFX_QWORD_FIELD(*eqp, FSF_BZ_GLB_EV_XG_MNT_INTR) != 0) { EFX_EV_QSTAT_INCR(eep, EV_GLOBAL_MNT); EFSYS_PROBE(xg_mgt); epp->ep_mac_poll_needed = B_TRUE; } return (should_abort); } static __checkReturn boolean_t efx_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRIVER); should_abort = B_FALSE; switch (EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBCODE)) { case FSE_AZ_TX_DESCQ_FLS_DONE_EV: { uint32_t label; EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DESCQ_FLS_DONE); label = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBDATA); EFSYS_PROBE1(tx_descq_fls_done, uint32_t, label); EFSYS_ASSERT(eecp->eec_txq_flush_done != NULL); should_abort = eecp->eec_txq_flush_done(arg, label); break; } case FSE_AZ_RX_DESCQ_FLS_DONE_EV: { uint32_t label; uint32_t failed; label = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); failed = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); EFSYS_ASSERT(eecp->eec_rxq_flush_done != NULL); EFSYS_ASSERT(eecp->eec_rxq_flush_failed != NULL); if (failed) { EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_FAILED); EFSYS_PROBE1(rx_descq_fls_failed, uint32_t, label); should_abort = eecp->eec_rxq_flush_failed(arg, label); } else { EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_DONE); EFSYS_PROBE1(rx_descq_fls_done, uint32_t, label); should_abort = eecp->eec_rxq_flush_done(arg, label); } break; } case FSE_AZ_EVQ_INIT_DONE_EV: EFSYS_ASSERT(eecp->eec_initialized != NULL); should_abort = eecp->eec_initialized(arg); break; case FSE_AZ_EVQ_NOT_EN_EV: EFSYS_PROBE(evq_not_en); break; case FSE_AZ_SRM_UPD_DONE_EV: { uint32_t code; EFX_EV_QSTAT_INCR(eep, EV_DRIVER_SRM_UPD_DONE); code = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBDATA); EFSYS_ASSERT(eecp->eec_sram != NULL); should_abort = eecp->eec_sram(arg, code); break; } case FSE_AZ_WAKE_UP_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBDATA); EFSYS_ASSERT(eecp->eec_wake_up != NULL); should_abort = eecp->eec_wake_up(arg, id); break; } case FSE_AZ_TX_PKT_NON_TCP_UDP: EFSYS_PROBE(tx_pkt_non_tcp_udp); break; case FSE_AZ_TIMER_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, FSF_AZ_DRIVER_EV_SUBDATA); EFSYS_ASSERT(eecp->eec_timer != NULL); should_abort = eecp->eec_timer(arg, id); break; } case FSE_AZ_RX_DSC_ERROR_EV: EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DSC_ERROR); EFSYS_PROBE(rx_dsc_error); EFSYS_ASSERT(eecp->eec_exception != NULL); should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_RX_DSC_ERROR, 0); break; case FSE_AZ_TX_DSC_ERROR_EV: EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DSC_ERROR); EFSYS_PROBE(tx_dsc_error); EFSYS_ASSERT(eecp->eec_exception != NULL); should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_TX_DSC_ERROR, 0); break; default: break; } return (should_abort); } static __checkReturn boolean_t efx_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t data; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRV_GEN); data = EFX_QWORD_FIELD(*eqp, FSF_AZ_EV_DATA_DW0); if (data >= ((uint32_t)1 << 16)) { EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); return (B_TRUE); } EFSYS_ASSERT(eecp->eec_software != NULL); should_abort = eecp->eec_software(arg, (uint16_t)data); return (should_abort); } #if EFSYS_OPT_MCDI static __checkReturn boolean_t efx_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; unsigned code; boolean_t should_abort = B_FALSE; EFSYS_ASSERT3U(enp->en_family, ==, EFX_FAMILY_SIENA); if (enp->en_family != EFX_FAMILY_SIENA) goto out; EFX_EV_QSTAT_INCR(eep, EV_MCDI_RESPONSE); code = EFX_QWORD_FIELD(*eqp, MCDI_EVENT_CODE); switch (code) { case MCDI_EVENT_CODE_BADSSERT: efx_mcdi_ev_death(enp, EINTR); break; case MCDI_EVENT_CODE_CMDDONE: efx_mcdi_ev_cpl(enp, MCDI_EV_FIELD(*eqp, CMDDONE_SEQ), MCDI_EV_FIELD(*eqp, CMDDONE_DATALEN), MCDI_EV_FIELD(*eqp, CMDDONE_ERRNO)); break; case MCDI_EVENT_CODE_LINKCHANGE: { efx_link_mode_t link_mode; siena_phy_link_ev(enp, eqp, &link_mode); should_abort = eecp->eec_link_change(arg, link_mode); break; } case MCDI_EVENT_CODE_SENSOREVT: { #if EFSYS_OPT_MON_STATS efx_mon_stat_t id; efx_mon_stat_value_t value; int rc; if ((rc = siena_mon_ev(enp, eqp, &id, &value)) == 0) should_abort = eecp->eec_monitor(arg, id, value); else if (rc == ENOTSUP) { should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_SENSOREVT, MCDI_EV_FIELD(eqp, DATA)); } else EFSYS_ASSERT(rc == ENODEV); /* Wrong port */ #else should_abort = B_FALSE; #endif break; } case MCDI_EVENT_CODE_SCHEDERR: /* Informational only */ break; case MCDI_EVENT_CODE_REBOOT: efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MAC_STATS_DMA: #if EFSYS_OPT_MAC_STATS if (eecp->eec_mac_stats != NULL) { eecp->eec_mac_stats(arg, MCDI_EV_FIELD(eqp, MAC_STATS_DMA_GENERATION)); } #endif break; case MCDI_EVENT_CODE_FWALERT: { uint32_t reason = MCDI_EV_FIELD(eqp, FWALERT_REASON); if (reason == MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS) should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_FWALERT_SRAM, MCDI_EV_FIELD(eqp, FWALERT_DATA)); else should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_FWALERT, MCDI_EV_FIELD(eqp, DATA)); break; } default: EFSYS_PROBE1(mc_pcol_error, int, code); break; } out: return (should_abort); } #endif /* EFSYS_OPT_SIENA */ __checkReturn int efx_ev_qprime( __in efx_evq_t *eep, __in unsigned int count) { efx_nic_t *enp = eep->ee_enp; uint32_t rptr; efx_dword_t dword; int rc; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); if (!(enp->en_mod_flags & EFX_MOD_INTR)) { rc = EINVAL; goto fail1; } rptr = count & eep->ee_mask; EFX_POPULATE_DWORD_1(dword, FRF_AZ_EVQ_RPTR, rptr); EFX_BAR_TBL_WRITED(enp, FR_AZ_EVQ_RPTR_REG, eep->ee_index, &dword, B_FALSE); return (0); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } __checkReturn boolean_t efx_ev_qpending( __in efx_evq_t *eep, __in unsigned int count) { size_t offset; efx_qword_t qword; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); offset = (count & eep->ee_mask) * sizeof (efx_qword_t); EFSYS_MEM_READQ(eep->ee_esmp, offset, &qword); return (EFX_QWORD_FIELD(qword, EFX_DWORD_0) != 0xffffffff && EFX_QWORD_FIELD(qword, EFX_DWORD_1) != 0xffffffff); } #if EFSYS_OPT_EV_PREFETCH void efx_ev_qprefetch( __in efx_evq_t *eep, __in unsigned int count) { unsigned int offset; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); offset = (count & eep->ee_mask) * sizeof (efx_qword_t); EFSYS_MEM_PREFETCH(eep->ee_esmp, offset); } #endif /* EFSYS_OPT_EV_PREFETCH */ #define EFX_EV_BATCH 8 #define EFX_EV_PRESENT(_qword) \ (EFX_QWORD_FIELD((_qword), EFX_DWORD_0) != 0xffffffff && \ EFX_QWORD_FIELD((_qword), EFX_DWORD_1) != 0xffffffff) void efx_ev_qpoll( __in efx_evq_t *eep, __inout unsigned int *countp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_qword_t ev[EFX_EV_BATCH]; unsigned int batch; unsigned int total; unsigned int count; unsigned int index; size_t offset; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); EFSYS_ASSERT(countp != NULL); EFSYS_ASSERT(eecp != NULL); count = *countp; do { /* Read up until the end of the batch period */ batch = EFX_EV_BATCH - (count & (EFX_EV_BATCH - 1)); offset = (count & eep->ee_mask) * sizeof (efx_qword_t); for (total = 0; total < batch; ++total) { EFSYS_MEM_READQ(eep->ee_esmp, offset, &(ev[total])); if (!EFX_EV_PRESENT(ev[total])) break; EFSYS_PROBE3(event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(ev[total], EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(ev[total], EFX_DWORD_0)); offset += sizeof (efx_qword_t); } #if EFSYS_OPT_EV_PREFETCH && (EFSYS_OPT_EV_PREFETCH_PERIOD > 1) /* * Prefetch the next batch when we get within PREFETCH_PERIOD * of a completed batch. If the batch is smaller, then prefetch * immediately. */ if (total == batch && total < EFSYS_OPT_EV_PREFETCH_PERIOD) EFSYS_MEM_PREFETCH(eep->ee_esmp, offset); #endif /* EFSYS_OPT_EV_PREFETCH */ /* Process the batch of events */ for (index = 0; index < total; ++index) { boolean_t should_abort; uint32_t code; efx_ev_handler_t handler; #if EFSYS_OPT_EV_PREFETCH /* Prefetch if we've now reached the batch period */ if (total == batch && index + EFSYS_OPT_EV_PREFETCH_PERIOD == total) { offset = (count + batch) & eep->ee_mask; offset *= sizeof (efx_qword_t); EFSYS_MEM_PREFETCH(eep->ee_esmp, offset); } #endif /* EFSYS_OPT_EV_PREFETCH */ EFX_EV_QSTAT_INCR(eep, EV_ALL); code = EFX_QWORD_FIELD(ev[index], FSF_AZ_EV_CODE); handler = eep->ee_handler[code]; EFSYS_ASSERT(handler != NULL); should_abort = handler(eep, &(ev[index]), eecp, arg); if (should_abort) { /* Ignore subsequent events */ total = index + 1; break; } } /* * Now that the hardware has most likely moved onto dma'ing * into the next cache line, clear the processed events. Take * care to only clear out events that we've processed */ EFX_SET_QWORD(ev[0]); offset = (count & eep->ee_mask) * sizeof (efx_qword_t); for (index = 0; index < total; ++index) { EFSYS_MEM_WRITEQ(eep->ee_esmp, offset, &(ev[0])); offset += sizeof (efx_qword_t); } count += total; } while (total == batch); *countp = count; } void efx_ev_qpost( __in efx_evq_t *eep, __in uint16_t data) { efx_nic_t *enp = eep->ee_enp; efx_qword_t ev; efx_oword_t oword; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); EFX_POPULATE_QWORD_2(ev, FSF_AZ_EV_CODE, FSE_AZ_EV_CODE_DRV_GEN_EV, FSF_AZ_EV_DATA_DW0, (uint32_t)data); EFX_POPULATE_OWORD_3(oword, FRF_AZ_DRV_EV_QID, eep->ee_index, EFX_DWORD_0, EFX_QWORD_FIELD(ev, EFX_DWORD_0), EFX_DWORD_1, EFX_QWORD_FIELD(ev, EFX_DWORD_1)); EFX_BAR_WRITEO(enp, FR_AZ_DRV_EV_REG, &oword); } __checkReturn int efx_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us) { efx_nic_t *enp = eep->ee_enp; unsigned int locked; efx_dword_t dword; int rc; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); if (us > enp->en_nic_cfg.enc_evq_moderation_max) { rc = EINVAL; goto fail1; } /* If the value is zero then disable the timer */ if (us == 0) { if (enp->en_family == EFX_FAMILY_FALCON) EFX_POPULATE_DWORD_2(dword, FRF_AB_TC_TIMER_MODE, FFE_AB_TIMER_MODE_DIS, FRF_AB_TC_TIMER_VAL, 0); else EFX_POPULATE_DWORD_2(dword, FRF_CZ_TC_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS, FRF_CZ_TC_TIMER_VAL, 0); } else { uint32_t timer_val; /* Calculate the timer value in quanta */ us -= (us % EFX_EV_TIMER_QUANTUM); if (us < EFX_EV_TIMER_QUANTUM) us = EFX_EV_TIMER_QUANTUM; timer_val = us / EFX_EV_TIMER_QUANTUM; /* Moderation value is base 0 so we need to deduct 1 */ if (enp->en_family == EFX_FAMILY_FALCON) EFX_POPULATE_DWORD_2(dword, FRF_AB_TC_TIMER_MODE, FFE_AB_TIMER_MODE_INT_HLDOFF, FRF_AB_TIMER_VAL, timer_val - 1); else EFX_POPULATE_DWORD_2(dword, FRF_CZ_TC_TIMER_MODE, FFE_CZ_TIMER_MODE_INT_HLDOFF, FRF_CZ_TC_TIMER_VAL, timer_val - 1); } locked = (eep->ee_index == 0) ? 1 : 0; EFX_BAR_TBL_WRITED(enp, FR_BZ_TIMER_COMMAND_REGP0, eep->ee_index, &dword, locked); return (0); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } __checkReturn int efx_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __deref_out efx_evq_t **eepp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t size; efx_evq_t *eep; efx_oword_t oword; int rc; EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_EV); EFSYS_ASSERT3U(enp->en_ev_qcount + 1, <, encp->enc_evq_limit); if (!ISP2(n) || !(n & EFX_EVQ_NEVS_MASK)) { rc = EINVAL; goto fail1; } if (index >= encp->enc_evq_limit) { rc = EINVAL; goto fail2; } #if EFSYS_OPT_RX_SCALE if (enp->en_intr.ei_type == EFX_INTR_LINE && index >= EFX_MAXRSS_LEGACY) { rc = EINVAL; goto fail3; } #endif for (size = 0; (1 << size) <= (EFX_EVQ_MAXNEVS / EFX_EVQ_MINNEVS); size++) if ((1 << size) == (int)(n / EFX_EVQ_MINNEVS)) break; if (id + (1 << size) >= encp->enc_buftbl_limit) { rc = EINVAL; goto fail4; } /* Allocate an EVQ object */ EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (efx_evq_t), eep); if (eep == NULL) { rc = ENOMEM; goto fail5; } eep->ee_magic = EFX_EVQ_MAGIC; eep->ee_enp = enp; eep->ee_index = index; eep->ee_mask = n - 1; eep->ee_esmp = esmp; /* Set up the handler table */ eep->ee_handler[FSE_AZ_EV_CODE_RX_EV] = efx_ev_rx; eep->ee_handler[FSE_AZ_EV_CODE_TX_EV] = efx_ev_tx; eep->ee_handler[FSE_AZ_EV_CODE_DRIVER_EV] = efx_ev_driver; eep->ee_handler[FSE_AZ_EV_CODE_GLOBAL_EV] = efx_ev_global; eep->ee_handler[FSE_AZ_EV_CODE_DRV_GEN_EV] = efx_ev_drv_gen; #if EFSYS_OPT_MCDI eep->ee_handler[FSE_AZ_EV_CODE_MCDI_EVRESPONSE] = efx_ev_mcdi; #endif /* EFSYS_OPT_SIENA */ /* Set up the new event queue */ if (enp->en_family != EFX_FAMILY_FALCON) { EFX_POPULATE_OWORD_1(oword, FRF_CZ_TIMER_Q_EN, 1); EFX_BAR_TBL_WRITEO(enp, FR_AZ_TIMER_TBL, index, &oword); } EFX_POPULATE_OWORD_3(oword, FRF_AZ_EVQ_EN, 1, FRF_AZ_EVQ_SIZE, size, FRF_AZ_EVQ_BUF_BASE_ID, id); EFX_BAR_TBL_WRITEO(enp, FR_AZ_EVQ_PTR_TBL, index, &oword); enp->en_ev_qcount++; *eepp = eep; return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); #if EFSYS_OPT_RX_SCALE fail3: EFSYS_PROBE(fail3); #endif fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, int, rc); return (rc); } #if EFSYS_OPT_NAMES /* START MKCONFIG GENERATED EfxEventQueueStatNamesBlock 67e9bdcd920059bd */ static const char __cs * __cs __efx_ev_qstat_name[] = { "all", "rx", "rx_ok", "rx_recovery", "rx_frm_trunc", "rx_tobe_disc", "rx_pause_frm_err", "rx_buf_owner_id_err", "rx_ipv4_hdr_chksum_err", "rx_tcp_udp_chksum_err", "rx_eth_crc_err", "rx_ip_frag_err", "rx_mcast_pkt", "rx_mcast_hash_match", "rx_tcp_ipv4", "rx_tcp_ipv6", "rx_udp_ipv4", "rx_udp_ipv6", "rx_other_ipv4", "rx_other_ipv6", "rx_non_ip", "rx_overrun", "tx", "tx_wq_ff_full", "tx_pkt_err", "tx_pkt_too_big", "tx_unexpected", "global", "global_phy", "global_mnt", "global_rx_recovery", "driver", "driver_srm_upd_done", "driver_tx_descq_fls_done", "driver_rx_descq_fls_done", "driver_rx_descq_fls_failed", "driver_rx_dsc_error", "driver_tx_dsc_error", "drv_gen", "mcdi_response", }; /* END MKCONFIG GENERATED EfxEventQueueStatNamesBlock */ const char __cs * efx_ev_qstat_name( __in efx_nic_t *enp, __in unsigned int id) { EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(id, <, EV_NQSTATS); return (__efx_ev_qstat_name[id]); } #endif /* EFSYS_OPT_NAMES */ #if EFSYS_OPT_QSTATS void efx_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat) { unsigned int id; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); for (id = 0; id < EV_NQSTATS; id++) { efsys_stat_t *essp = &stat[id]; EFSYS_STAT_INCR(essp, eep->ee_stat[id]); eep->ee_stat[id] = 0; } } #endif /* EFSYS_OPT_QSTATS */ void efx_ev_qdestroy( __in efx_evq_t *eep) { efx_nic_t *enp = eep->ee_enp; efx_oword_t oword; EFSYS_ASSERT3U(eep->ee_magic, ==, EFX_EVQ_MAGIC); EFSYS_ASSERT(enp->en_ev_qcount != 0); --enp->en_ev_qcount; /* Purge event queue */ EFX_ZERO_OWORD(oword); EFX_BAR_TBL_WRITEO(enp, FR_AZ_EVQ_PTR_TBL, eep->ee_index, &oword); if (enp->en_family != EFX_FAMILY_FALCON) { EFX_ZERO_OWORD(oword); EFX_BAR_TBL_WRITEO(enp, FR_AZ_TIMER_TBL, eep->ee_index, &oword); } /* Free the EVQ object */ EFSYS_KMEM_FREE(enp->en_esip, sizeof (efx_evq_t), eep); } void efx_ev_fini( __in efx_nic_t *enp) { EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_INTR); EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_EV); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX)); EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX)); EFSYS_ASSERT3U(enp->en_ev_qcount, ==, 0); enp->en_mod_flags &= ~EFX_MOD_EV; }