Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/bxe/@/nfsclient/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/bxe/@/nfsclient/nfs_subs.c |
/*- * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/nfsclient/nfs_subs.c 235626 2012-05-18 19:48:38Z mckusick $"); /* * These functions support the macros and help fiddle mbuf chains for * the nfs op functions. They do things like create the rpc header and * copy data between mbuf chains and uio lists. */ #include "opt_kdtrace.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/bio.h> #include <sys/buf.h> #include <sys/proc.h> #include <sys/mount.h> #include <sys/vnode.h> #include <sys/namei.h> #include <sys/mbuf.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/malloc.h> #include <sys/sysent.h> #include <sys/syscall.h> #include <sys/sysproto.h> #include <sys/taskqueue.h> #include <vm/vm.h> #include <vm/vm_object.h> #include <vm/vm_extern.h> #include <vm/uma.h> #include <nfs/nfsproto.h> #include <nfsclient/nfs.h> #include <nfsclient/nfsnode.h> #include <nfs/nfs_kdtrace.h> #include <nfs/xdr_subs.h> #include <nfsclient/nfsm_subs.h> #include <nfsclient/nfsmount.h> #include <netinet/in.h> /* * Note that stdarg.h and the ANSI style va_start macro is used for both * ANSI and traditional C compilers. */ #include <machine/stdarg.h> #ifdef KDTRACE_HOOKS dtrace_nfsclient_attrcache_flush_probe_func_t dtrace_nfsclient_attrcache_flush_done_probe; uint32_t nfsclient_attrcache_flush_done_id; dtrace_nfsclient_attrcache_get_hit_probe_func_t dtrace_nfsclient_attrcache_get_hit_probe; uint32_t nfsclient_attrcache_get_hit_id; dtrace_nfsclient_attrcache_get_miss_probe_func_t dtrace_nfsclient_attrcache_get_miss_probe; uint32_t nfsclient_attrcache_get_miss_id; dtrace_nfsclient_attrcache_load_probe_func_t dtrace_nfsclient_attrcache_load_done_probe; uint32_t nfsclient_attrcache_load_done_id; #endif /* !KDTRACE_HOOKS */ /* * Data items converted to xdr at startup, since they are constant * This is kinda hokey, but may save a little time doing byte swaps */ u_int32_t nfs_xdrneg1; u_int32_t nfs_true, nfs_false; /* And other global data */ static u_int32_t nfs_xid = 0; static enum vtype nv2tov_type[8]= { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; int nfs_ticks; int nfs_pbuf_freecnt = -1; /* start out unlimited */ struct nfs_bufq nfs_bufq; static struct mtx nfs_xid_mtx; struct task nfs_nfsiodnew_task; /* * and the reverse mapping from generic to Version 2 procedure numbers */ int nfsv2_procid[NFS_NPROCS] = { NFSV2PROC_NULL, NFSV2PROC_GETATTR, NFSV2PROC_SETATTR, NFSV2PROC_LOOKUP, NFSV2PROC_NOOP, NFSV2PROC_READLINK, NFSV2PROC_READ, NFSV2PROC_WRITE, NFSV2PROC_CREATE, NFSV2PROC_MKDIR, NFSV2PROC_SYMLINK, NFSV2PROC_CREATE, NFSV2PROC_REMOVE, NFSV2PROC_RMDIR, NFSV2PROC_RENAME, NFSV2PROC_LINK, NFSV2PROC_READDIR, NFSV2PROC_NOOP, NFSV2PROC_STATFS, NFSV2PROC_NOOP, NFSV2PROC_NOOP, NFSV2PROC_NOOP, NFSV2PROC_NOOP, }; LIST_HEAD(nfsnodehashhead, nfsnode); u_int32_t nfs_xid_gen(void) { uint32_t xid; mtx_lock(&nfs_xid_mtx); /* Get a pretty random xid to start with */ if (!nfs_xid) nfs_xid = random(); /* * Skip zero xid if it should ever happen. */ if (++nfs_xid == 0) nfs_xid++; xid = nfs_xid; mtx_unlock(&nfs_xid_mtx); return xid; } /* * Create the header for an rpc request packet * The hsiz is the size of the rest of the nfs request header. * (just used to decide if a cluster is a good idea) */ struct mbuf * nfsm_reqhead(struct vnode *vp, u_long procid, int hsiz) { struct mbuf *mb; MGET(mb, M_WAIT, MT_DATA); if (hsiz >= MINCLSIZE) MCLGET(mb, M_WAIT); mb->m_len = 0; return (mb); } /* * copies a uio scatter/gather list to an mbuf chain. * NOTE: can ony handle iovcnt == 1 */ int nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, caddr_t *bpos) { char *uiocp; struct mbuf *mp, *mp2; int xfer, left, mlen; int uiosiz, clflg, rem; char *cp; KASSERT(uiop->uio_iovcnt == 1, ("nfsm_uiotombuf: iovcnt != 1")); if (siz > MLEN) /* or should it >= MCLBYTES ?? */ clflg = 1; else clflg = 0; rem = nfsm_rndup(siz)-siz; mp = mp2 = *mq; while (siz > 0) { left = uiop->uio_iov->iov_len; uiocp = uiop->uio_iov->iov_base; if (left > siz) left = siz; uiosiz = left; while (left > 0) { mlen = M_TRAILINGSPACE(mp); if (mlen == 0) { MGET(mp, M_WAIT, MT_DATA); if (clflg) MCLGET(mp, M_WAIT); mp->m_len = 0; mp2->m_next = mp; mp2 = mp; mlen = M_TRAILINGSPACE(mp); } xfer = (left > mlen) ? mlen : left; #ifdef notdef /* Not Yet.. */ if (uiop->uio_iov->iov_op != NULL) (*(uiop->uio_iov->iov_op)) (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); else #endif if (uiop->uio_segflg == UIO_SYSSPACE) bcopy(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); else copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); mp->m_len += xfer; left -= xfer; uiocp += xfer; uiop->uio_offset += xfer; uiop->uio_resid -= xfer; } uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + uiosiz; uiop->uio_iov->iov_len -= uiosiz; siz -= uiosiz; } if (rem > 0) { if (rem > M_TRAILINGSPACE(mp)) { MGET(mp, M_WAIT, MT_DATA); mp->m_len = 0; mp2->m_next = mp; } cp = mtod(mp, caddr_t)+mp->m_len; for (left = 0; left < rem; left++) *cp++ = '\0'; mp->m_len += rem; *bpos = cp; } else *bpos = mtod(mp, caddr_t)+mp->m_len; *mq = mp; return (0); } /* * Copy a string into mbufs for the hard cases... */ int nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz) { struct mbuf *m1 = NULL, *m2; long left, xfer, len, tlen; u_int32_t *tl; int putsize; putsize = 1; m2 = *mb; left = M_TRAILINGSPACE(m2); if (left > 0) { tl = ((u_int32_t *)(*bpos)); *tl++ = txdr_unsigned(siz); putsize = 0; left -= NFSX_UNSIGNED; m2->m_len += NFSX_UNSIGNED; if (left > 0) { bcopy(cp, (caddr_t) tl, left); siz -= left; cp += left; m2->m_len += left; left = 0; } } /* Loop around adding mbufs */ while (siz > 0) { MGET(m1, M_WAIT, MT_DATA); if (siz > MLEN) MCLGET(m1, M_WAIT); m1->m_len = NFSMSIZ(m1); m2->m_next = m1; m2 = m1; tl = mtod(m1, u_int32_t *); tlen = 0; if (putsize) { *tl++ = txdr_unsigned(siz); m1->m_len -= NFSX_UNSIGNED; tlen = NFSX_UNSIGNED; putsize = 0; } if (siz < m1->m_len) { len = nfsm_rndup(siz); xfer = siz; if (xfer < len) *(tl+(xfer>>2)) = 0; } else { xfer = len = m1->m_len; } bcopy(cp, (caddr_t) tl, xfer); m1->m_len = len+tlen; siz -= xfer; cp += xfer; } *mb = m1; *bpos = mtod(m1, caddr_t)+m1->m_len; return (0); } /* * Called once to initialize data structures... */ int nfs_init(struct vfsconf *vfsp) { int i; nfsmount_zone = uma_zcreate("NFSMOUNT", sizeof(struct nfsmount), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); nfs_true = txdr_unsigned(TRUE); nfs_false = txdr_unsigned(FALSE); nfs_xdrneg1 = txdr_unsigned(-1); nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; if (nfs_ticks < 1) nfs_ticks = 1; /* Ensure async daemons disabled */ for (i = 0; i < NFS_MAXASYNCDAEMON; i++) { nfs_iodwant[i] = NFSIOD_NOT_AVAILABLE; nfs_iodmount[i] = NULL; } nfs_nhinit(); /* Init the nfsnode table */ /* * Initialize reply list and start timer */ mtx_init(&nfs_iod_mtx, "NFS iod lock", NULL, MTX_DEF); mtx_init(&nfs_xid_mtx, "NFS xid lock", NULL, MTX_DEF); TASK_INIT(&nfs_nfsiodnew_task, 0, nfs_nfsiodnew_tq, NULL); nfs_pbuf_freecnt = nswbuf / 2 + 1; return (0); } int nfs_uninit(struct vfsconf *vfsp) { int i; /* * Tell all nfsiod processes to exit. Clear nfs_iodmax, and wakeup * any sleeping nfsiods so they check nfs_iodmax and exit. * Drain nfsiodnew task before we wait for them to finish. */ mtx_lock(&nfs_iod_mtx); nfs_iodmax = 0; mtx_unlock(&nfs_iod_mtx); taskqueue_drain(taskqueue_thread, &nfs_nfsiodnew_task); mtx_lock(&nfs_iod_mtx); for (i = 0; i < nfs_numasync; i++) if (nfs_iodwant[i] == NFSIOD_AVAILABLE) wakeup(&nfs_iodwant[i]); /* The last nfsiod to exit will wake us up when nfs_numasync hits 0 */ while (nfs_numasync) msleep(&nfs_numasync, &nfs_iod_mtx, PWAIT, "ioddie", 0); mtx_unlock(&nfs_iod_mtx); nfs_nhuninit(); uma_zdestroy(nfsmount_zone); return (0); } void nfs_dircookie_lock(struct nfsnode *np) { mtx_lock(&np->n_mtx); while (np->n_flag & NDIRCOOKIELK) (void) msleep(&np->n_flag, &np->n_mtx, PZERO, "nfsdirlk", 0); np->n_flag |= NDIRCOOKIELK; mtx_unlock(&np->n_mtx); } void nfs_dircookie_unlock(struct nfsnode *np) { mtx_lock(&np->n_mtx); np->n_flag &= ~NDIRCOOKIELK; wakeup(&np->n_flag); mtx_unlock(&np->n_mtx); } int nfs_upgrade_vnlock(struct vnode *vp) { int old_lock; ASSERT_VOP_LOCKED(vp, "nfs_upgrade_vnlock"); old_lock = VOP_ISLOCKED(vp); if (old_lock != LK_EXCLUSIVE) { KASSERT(old_lock == LK_SHARED, ("nfs_upgrade_vnlock: wrong old_lock %d", old_lock)); /* Upgrade to exclusive lock, this might block */ vn_lock(vp, LK_UPGRADE | LK_RETRY); } return (old_lock); } void nfs_downgrade_vnlock(struct vnode *vp, int old_lock) { if (old_lock != LK_EXCLUSIVE) { KASSERT(old_lock == LK_SHARED, ("wrong old_lock %d", old_lock)); /* Downgrade from exclusive lock. */ vn_lock(vp, LK_DOWNGRADE | LK_RETRY); } } void nfs_printf(const char *fmt, ...) { va_list ap; mtx_lock(&Giant); va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); mtx_unlock(&Giant); } /* * Attribute cache routines. * nfs_loadattrcache() - loads or updates the cache contents from attributes * that are on the mbuf list * nfs_getattrcache() - returns valid attributes if found in cache, returns * error otherwise */ /* * Load the attribute cache (that lives in the nfsnode entry) with * the values on the mbuf list and * Iff vap not NULL * copy the attributes to *vaper */ int nfs_loadattrcache(struct vnode **vpp, struct mbuf **mdp, caddr_t *dposp, struct vattr *vaper, int dontshrink) { struct vnode *vp = *vpp; struct vattr *vap; struct nfs_fattr *fp; struct nfsnode *np = NULL; int32_t t1; caddr_t cp2; int rdev; struct mbuf *md; enum vtype vtyp; u_short vmode; struct timespec mtime, mtime_save; int v3 = NFS_ISV3(vp); int error = 0; md = *mdp; t1 = (mtod(md, caddr_t) + md->m_len) - *dposp; cp2 = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, M_WAIT); if (cp2 == NULL) { error = EBADRPC; goto out; } fp = (struct nfs_fattr *)cp2; if (v3) { vtyp = nfsv3tov_type(fp->fa_type); vmode = fxdr_unsigned(u_short, fp->fa_mode); rdev = makedev(fxdr_unsigned(int, fp->fa3_rdev.specdata1), fxdr_unsigned(int, fp->fa3_rdev.specdata2)); fxdr_nfsv3time(&fp->fa3_mtime, &mtime); } else { vtyp = nfsv2tov_type(fp->fa_type); vmode = fxdr_unsigned(u_short, fp->fa_mode); /* * XXX * * The duplicate information returned in fa_type and fa_mode * is an ambiguity in the NFS version 2 protocol. * * VREG should be taken literally as a regular file. If a * server intents to return some type information differently * in the upper bits of the mode field (e.g. for sockets, or * FIFOs), NFSv2 mandates fa_type to be VNON. Anyway, we * leave the examination of the mode bits even in the VREG * case to avoid breakage for bogus servers, but we make sure * that there are actually type bits set in the upper part of * fa_mode (and failing that, trust the va_type field). * * NFSv3 cleared the issue, and requires fa_mode to not * contain any type information (while also introduing sockets * and FIFOs for fa_type). */ if (vtyp == VNON || (vtyp == VREG && (vmode & S_IFMT) != 0)) vtyp = IFTOVT(vmode); rdev = fxdr_unsigned(int32_t, fp->fa2_rdev); fxdr_nfsv2time(&fp->fa2_mtime, &mtime); /* * Really ugly NFSv2 kludge. */ if (vtyp == VCHR && rdev == 0xffffffff) vtyp = VFIFO; } /* * If v_type == VNON it is a new node, so fill in the v_type, * n_mtime fields. Check to see if it represents a special * device, and if so, check for a possible alias. Once the * correct vnode has been obtained, fill in the rest of the * information. */ np = VTONFS(vp); mtx_lock(&np->n_mtx); if (vp->v_type != vtyp) { vp->v_type = vtyp; if (vp->v_type == VFIFO) vp->v_op = &nfs_fifoops; np->n_mtime = mtime; } vap = &np->n_vattr; vap->va_type = vtyp; vap->va_mode = (vmode & 07777); vap->va_rdev = rdev; mtime_save = vap->va_mtime; vap->va_mtime = mtime; vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; if (v3) { vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid); vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid); vap->va_size = fxdr_hyper(&fp->fa3_size); vap->va_blocksize = NFS_FABLKSIZE; vap->va_bytes = fxdr_hyper(&fp->fa3_used); vap->va_fileid = fxdr_unsigned(int32_t, fp->fa3_fileid.nfsuquad[1]); fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime); fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime); vap->va_flags = 0; vap->va_filerev = 0; } else { vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid); vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid); vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size); vap->va_blocksize = fxdr_unsigned(int32_t, fp->fa2_blocksize); vap->va_bytes = (u_quad_t)fxdr_unsigned(int32_t, fp->fa2_blocks) * NFS_FABLKSIZE; vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid); fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime); vap->va_flags = 0; vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t, fp->fa2_ctime.nfsv2_sec); vap->va_ctime.tv_nsec = 0; vap->va_gen = fxdr_unsigned(u_int32_t, fp->fa2_ctime.nfsv2_usec); vap->va_filerev = 0; } np->n_attrstamp = time_second; if (vap->va_size != np->n_size) { if (vap->va_type == VREG) { if (dontshrink && vap->va_size < np->n_size) { /* * We've been told not to shrink the file; * zero np->n_attrstamp to indicate that * the attributes are stale. */ vap->va_size = np->n_size; np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); } else if (np->n_flag & NMODIFIED) { /* * We've modified the file: Use the larger * of our size, and the server's size. */ if (vap->va_size < np->n_size) { vap->va_size = np->n_size; } else { np->n_size = vap->va_size; np->n_flag |= NSIZECHANGED; } } else { np->n_size = vap->va_size; np->n_flag |= NSIZECHANGED; } vnode_pager_setsize(vp, np->n_size); } else { np->n_size = vap->va_size; } } /* * The following checks are added to prevent a race between (say) * a READDIR+ and a WRITE. * READDIR+, WRITE requests sent out. * READDIR+ resp, WRITE resp received on client. * However, the WRITE resp was handled before the READDIR+ resp * causing the post op attrs from the write to be loaded first * and the attrs from the READDIR+ to be loaded later. If this * happens, we have stale attrs loaded into the attrcache. * We detect this by for the mtime moving back. We invalidate the * attrcache when this happens. */ if (timespeccmp(&mtime_save, &vap->va_mtime, >)) { /* Size changed or mtime went backwards */ np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); } if (vaper != NULL) { bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); if (np->n_flag & NCHG) { if (np->n_flag & NACC) vaper->va_atime = np->n_atim; if (np->n_flag & NUPD) vaper->va_mtime = np->n_mtim; } } #ifdef KDTRACE_HOOKS if (np->n_attrstamp != 0) KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, &np->n_vattr, 0); #endif mtx_unlock(&np->n_mtx); out: #ifdef KDTRACE_HOOKS if (error) KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, NULL, error); #endif return (error); } #ifdef NFS_ACDEBUG #include <sys/sysctl.h> SYSCTL_DECL(_vfs_oldnfs); static int nfs_acdebug; SYSCTL_INT(_vfs_oldnfs, OID_AUTO, acdebug, CTLFLAG_RW, &nfs_acdebug, 0, "Toggle acdebug (attribute cache debug) flag"); #endif /* * Check the time stamp * If the cache is valid, copy contents to *vap and return 0 * otherwise return an error */ int nfs_getattrcache(struct vnode *vp, struct vattr *vaper) { struct nfsnode *np; struct vattr *vap; struct nfsmount *nmp; int timeo; np = VTONFS(vp); vap = &np->n_vattr; nmp = VFSTONFS(vp->v_mount); #ifdef NFS_ACDEBUG mtx_lock(&Giant); /* nfs_printf() */ #endif mtx_lock(&np->n_mtx); /* XXX n_mtime doesn't seem to be updated on a miss-and-reload */ timeo = (time_second - np->n_mtime.tv_sec) / 10; #ifdef NFS_ACDEBUG if (nfs_acdebug>1) nfs_printf("nfs_getattrcache: initial timeo = %d\n", timeo); #endif if (vap->va_type == VDIR) { if ((np->n_flag & NMODIFIED) || timeo < nmp->nm_acdirmin) timeo = nmp->nm_acdirmin; else if (timeo > nmp->nm_acdirmax) timeo = nmp->nm_acdirmax; } else { if ((np->n_flag & NMODIFIED) || timeo < nmp->nm_acregmin) timeo = nmp->nm_acregmin; else if (timeo > nmp->nm_acregmax) timeo = nmp->nm_acregmax; } #ifdef NFS_ACDEBUG if (nfs_acdebug > 2) nfs_printf("acregmin %d; acregmax %d; acdirmin %d; acdirmax %d\n", nmp->nm_acregmin, nmp->nm_acregmax, nmp->nm_acdirmin, nmp->nm_acdirmax); if (nfs_acdebug) nfs_printf("nfs_getattrcache: age = %d; final timeo = %d\n", (time_second - np->n_attrstamp), timeo); #endif if ((time_second - np->n_attrstamp) >= timeo) { nfsstats.attrcache_misses++; mtx_unlock(&np->n_mtx); #ifdef NFS_ACDEBUG mtx_unlock(&Giant); /* nfs_printf() */ #endif KDTRACE_NFS_ATTRCACHE_GET_MISS(vp); return (ENOENT); } nfsstats.attrcache_hits++; if (vap->va_size != np->n_size) { if (vap->va_type == VREG) { if (np->n_flag & NMODIFIED) { if (vap->va_size < np->n_size) vap->va_size = np->n_size; else np->n_size = vap->va_size; } else { np->n_size = vap->va_size; } vnode_pager_setsize(vp, np->n_size); } else { np->n_size = vap->va_size; } } bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(struct vattr)); if (np->n_flag & NCHG) { if (np->n_flag & NACC) vaper->va_atime = np->n_atim; if (np->n_flag & NUPD) vaper->va_mtime = np->n_mtim; } mtx_unlock(&np->n_mtx); #ifdef NFS_ACDEBUG mtx_unlock(&Giant); /* nfs_printf() */ #endif KDTRACE_NFS_ATTRCACHE_GET_HIT(vp, vap); return (0); } /* * Purge all cached information about an NFS vnode including name * cache entries, the attribute cache, and the access cache. This is * called when an NFS request for a node fails with a stale * filehandle. */ void nfs_purgecache(struct vnode *vp) { struct nfsnode *np; int i; np = VTONFS(vp); cache_purge(vp); mtx_lock(&np->n_mtx); np->n_attrstamp = 0; KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); for (i = 0; i < NFS_ACCESSCACHESIZE; i++) np->n_accesscache[i].stamp = 0; KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp); mtx_unlock(&np->n_mtx); } static nfsuint64 nfs_nullcookie = { { 0, 0 } }; /* * This function finds the directory cookie that corresponds to the * logical byte offset given. */ nfsuint64 * nfs_getcookie(struct nfsnode *np, off_t off, int add) { struct nfsdmap *dp, *dp2; int pos; nfsuint64 *retval = NULL; pos = (uoff_t)off / NFS_DIRBLKSIZ; if (pos == 0 || off < 0) { KASSERT(!add, ("nfs getcookie add at <= 0")); return (&nfs_nullcookie); } pos--; dp = LIST_FIRST(&np->n_cookies); if (!dp) { if (add) { dp = malloc(sizeof (struct nfsdmap), M_NFSDIROFF, M_WAITOK); dp->ndm_eocookie = 0; LIST_INSERT_HEAD(&np->n_cookies, dp, ndm_list); } else goto out; } while (pos >= NFSNUMCOOKIES) { pos -= NFSNUMCOOKIES; if (LIST_NEXT(dp, ndm_list)) { if (!add && dp->ndm_eocookie < NFSNUMCOOKIES && pos >= dp->ndm_eocookie) goto out; dp = LIST_NEXT(dp, ndm_list); } else if (add) { dp2 = malloc(sizeof (struct nfsdmap), M_NFSDIROFF, M_WAITOK); dp2->ndm_eocookie = 0; LIST_INSERT_AFTER(dp, dp2, ndm_list); dp = dp2; } else goto out; } if (pos >= dp->ndm_eocookie) { if (add) dp->ndm_eocookie = pos + 1; else goto out; } retval = &dp->ndm_cookies[pos]; out: return (retval); } /* * Invalidate cached directory information, except for the actual directory * blocks (which are invalidated separately). * Done mainly to avoid the use of stale offset cookies. */ void nfs_invaldir(struct vnode *vp) { struct nfsnode *np = VTONFS(vp); KASSERT(vp->v_type == VDIR, ("nfs: invaldir not dir")); nfs_dircookie_lock(np); np->n_direofoffset = 0; np->n_cookieverf.nfsuquad[0] = 0; np->n_cookieverf.nfsuquad[1] = 0; if (LIST_FIRST(&np->n_cookies)) LIST_FIRST(&np->n_cookies)->ndm_eocookie = 0; nfs_dircookie_unlock(np); } /* * The write verifier has changed (probably due to a server reboot), so all * B_NEEDCOMMIT blocks will have to be written again. Since they are on the * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT * and B_CLUSTEROK flags. Once done the new write verifier can be set for the * mount point. * * B_CLUSTEROK must be cleared along with B_NEEDCOMMIT because stage 1 data * writes are not clusterable. */ void nfs_clearcommit(struct mount *mp) { struct vnode *vp, *nvp; struct buf *bp, *nbp; struct bufobj *bo; MNT_VNODE_FOREACH_ALL(vp, mp, nvp) { bo = &vp->v_bufobj; vholdl(vp); VI_UNLOCK(vp); BO_LOCK(bo); TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (!BUF_ISLOCKED(bp) && (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == (B_DELWRI | B_NEEDCOMMIT)) bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); } BO_UNLOCK(bo); vdrop(vp); } } /* * Helper functions for former macros. Some of these should be * moved to their callers. */ int nfsm_mtofh_xx(struct vnode *d, struct vnode **v, int v3, int *f, struct mbuf **md, caddr_t *dpos) { struct nfsnode *ttnp; struct vnode *ttvp; nfsfh_t *ttfhp; u_int32_t *tl; int ttfhsize; int t1; if (v3) { tl = nfsm_dissect_xx(NFSX_UNSIGNED, md, dpos); if (tl == NULL) return EBADRPC; *f = fxdr_unsigned(int, *tl); } else *f = 1; if (*f) { t1 = nfsm_getfh_xx(&ttfhp, &ttfhsize, (v3), md, dpos); if (t1 != 0) return t1; t1 = nfs_nget(d->v_mount, ttfhp, ttfhsize, &ttnp, LK_EXCLUSIVE); if (t1 != 0) return t1; *v = NFSTOV(ttnp); } if (v3) { tl = nfsm_dissect_xx(NFSX_UNSIGNED, md, dpos); if (tl == NULL) return EBADRPC; if (*f) *f = fxdr_unsigned(int, *tl); else if (fxdr_unsigned(int, *tl)) nfsm_adv_xx(NFSX_V3FATTR, md, dpos); } if (*f) { ttvp = *v; t1 = nfs_loadattrcache(&ttvp, md, dpos, NULL, 0); if (t1) return t1; *v = ttvp; } return 0; } int nfsm_getfh_xx(nfsfh_t **f, int *s, int v3, struct mbuf **md, caddr_t *dpos) { u_int32_t *tl; if (v3) { tl = nfsm_dissect_xx(NFSX_UNSIGNED, md, dpos); if (tl == NULL) return EBADRPC; *s = fxdr_unsigned(int, *tl); if (*s <= 0 || *s > NFSX_V3FHMAX) return EBADRPC; } else *s = NFSX_V2FH; *f = nfsm_dissect_xx(nfsm_rndup(*s), md, dpos); if (*f == NULL) return EBADRPC; else return 0; } int nfsm_loadattr_xx(struct vnode **v, struct vattr *va, struct mbuf **md, caddr_t *dpos) { int t1; struct vnode *ttvp = *v; t1 = nfs_loadattrcache(&ttvp, md, dpos, va, 0); if (t1 != 0) return t1; *v = ttvp; return 0; } int nfsm_postop_attr_xx(struct vnode **v, int *f, struct vattr *va, struct mbuf **md, caddr_t *dpos) { u_int32_t *tl; int t1; struct vnode *ttvp = *v; tl = nfsm_dissect_xx(NFSX_UNSIGNED, md, dpos); if (tl == NULL) return EBADRPC; *f = fxdr_unsigned(int, *tl); if (*f != 0) { t1 = nfs_loadattrcache(&ttvp, md, dpos, va, 1); if (t1 != 0) { *f = 0; return t1; } *v = ttvp; } return 0; } int nfsm_wcc_data_xx(struct vnode **v, int *f, struct mbuf **md, caddr_t *dpos) { u_int32_t *tl; int ttattrf, ttretf = 0; int t1; tl = nfsm_dissect_xx(NFSX_UNSIGNED, md, dpos); if (tl == NULL) return EBADRPC; if (*tl == nfs_true) { tl = nfsm_dissect_xx(6 * NFSX_UNSIGNED, md, dpos); if (tl == NULL) return EBADRPC; mtx_lock(&(VTONFS(*v))->n_mtx); if (*f) ttretf = (VTONFS(*v)->n_mtime.tv_sec == fxdr_unsigned(u_int32_t, *(tl + 2)) && VTONFS(*v)->n_mtime.tv_nsec == fxdr_unsigned(u_int32_t, *(tl + 3))); mtx_unlock(&(VTONFS(*v))->n_mtx); } t1 = nfsm_postop_attr_xx(v, &ttattrf, NULL, md, dpos); if (t1) return t1; if (*f) *f = ttretf; else *f = ttattrf; return 0; } int nfsm_strtom_xx(const char *a, int s, int m, struct mbuf **mb, caddr_t *bpos) { u_int32_t *tl; int t1; if (s > m) return ENAMETOOLONG; t1 = nfsm_rndup(s) + NFSX_UNSIGNED; if (t1 <= M_TRAILINGSPACE(*mb)) { tl = nfsm_build_xx(t1, mb, bpos); *tl++ = txdr_unsigned(s); *(tl + ((t1 >> 2) - 2)) = 0; bcopy(a, tl, s); } else { t1 = nfsm_strtmbuf(mb, bpos, a, s); if (t1 != 0) return t1; } return 0; } int nfsm_fhtom_xx(struct vnode *v, int v3, struct mbuf **mb, caddr_t *bpos) { u_int32_t *tl; int t1; caddr_t cp; if (v3) { t1 = nfsm_rndup(VTONFS(v)->n_fhsize) + NFSX_UNSIGNED; if (t1 < M_TRAILINGSPACE(*mb)) { tl = nfsm_build_xx(t1, mb, bpos); *tl++ = txdr_unsigned(VTONFS(v)->n_fhsize); *(tl + ((t1 >> 2) - 2)) = 0; bcopy(VTONFS(v)->n_fhp, tl, VTONFS(v)->n_fhsize); } else { t1 = nfsm_strtmbuf(mb, bpos, (const char *)VTONFS(v)->n_fhp, VTONFS(v)->n_fhsize); if (t1 != 0) return t1; } } else { cp = nfsm_build_xx(NFSX_V2FH, mb, bpos); bcopy(VTONFS(v)->n_fhp, cp, NFSX_V2FH); } return 0; } void nfsm_v3attrbuild_xx(struct vattr *va, int full, struct mbuf **mb, caddr_t *bpos) { u_int32_t *tl; if (va->va_mode != (mode_t)VNOVAL) { tl = nfsm_build_xx(2 * NFSX_UNSIGNED, mb, bpos); *tl++ = nfs_true; *tl = txdr_unsigned(va->va_mode); } else { tl = nfsm_build_xx(NFSX_UNSIGNED, mb, bpos); *tl = nfs_false; } if (full && va->va_uid != (uid_t)VNOVAL) { tl = nfsm_build_xx(2 * NFSX_UNSIGNED, mb, bpos); *tl++ = nfs_true; *tl = txdr_unsigned(va->va_uid); } else { tl = nfsm_build_xx(NFSX_UNSIGNED, mb, bpos); *tl = nfs_false; } if (full && va->va_gid != (gid_t)VNOVAL) { tl = nfsm_build_xx(2 * NFSX_UNSIGNED, mb, bpos); *tl++ = nfs_true; *tl = txdr_unsigned(va->va_gid); } else { tl = nfsm_build_xx(NFSX_UNSIGNED, mb, bpos); *tl = nfs_false; } if (full && va->va_size != VNOVAL) { tl = nfsm_build_xx(3 * NFSX_UNSIGNED, mb, bpos); *tl++ = nfs_true; txdr_hyper(va->va_size, tl); } else { tl = nfsm_build_xx(NFSX_UNSIGNED, mb, bpos); *tl = nfs_false; } if (va->va_atime.tv_sec != VNOVAL) { if (va->va_atime.tv_sec != time_second) { tl = nfsm_build_xx(3 * NFSX_UNSIGNED, mb, bpos); *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); txdr_nfsv3time(&va->va_atime, tl); } else { tl = nfsm_build_xx(NFSX_UNSIGNED, mb, bpos); *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); } } else { tl = nfsm_build_xx(NFSX_UNSIGNED, mb, bpos); *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); } if (va->va_mtime.tv_sec != VNOVAL) { if (va->va_mtime.tv_sec != time_second) { tl = nfsm_build_xx(3 * NFSX_UNSIGNED, mb, bpos); *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT); txdr_nfsv3time(&va->va_mtime, tl); } else { tl = nfsm_build_xx(NFSX_UNSIGNED, mb, bpos); *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER); } } else { tl = nfsm_build_xx(NFSX_UNSIGNED, mb, bpos); *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE); } }