config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/cas/@/amd64/include/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/cas/@/amd64/include/cpufunc.h

/*-
 * Copyright (c) 2003 Peter Wemm.
 * Copyright (c) 1993 The Regents of the University of California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD: release/9.1.0/sys/amd64/include/cpufunc.h 231977 2012-02-21 20:29:38Z kib $
 */

/*
 * Functions to provide access to special i386 instructions.
 * This in included in sys/systm.h, and that file should be
 * used in preference to this.
 */

#ifndef _MACHINE_CPUFUNC_H_
#define	_MACHINE_CPUFUNC_H_

#ifndef _SYS_CDEFS_H_
#error this file needs sys/cdefs.h as a prerequisite
#endif

struct region_descriptor;

#define readb(va)	(*(volatile uint8_t *) (va))
#define readw(va)	(*(volatile uint16_t *) (va))
#define readl(va)	(*(volatile uint32_t *) (va))
#define readq(va)	(*(volatile uint64_t *) (va))

#define writeb(va, d)	(*(volatile uint8_t *) (va) = (d))
#define writew(va, d)	(*(volatile uint16_t *) (va) = (d))
#define writel(va, d)	(*(volatile uint32_t *) (va) = (d))
#define writeq(va, d)	(*(volatile uint64_t *) (va) = (d))

#if defined(__GNUCLIKE_ASM) && defined(__CC_SUPPORTS___INLINE)

static __inline void
breakpoint(void)
{
	__asm __volatile("int $3");
}

static __inline u_int
bsfl(u_int mask)
{
	u_int	result;

	__asm __volatile("bsfl %1,%0" : "=r" (result) : "rm" (mask));
	return (result);
}

static __inline u_long
bsfq(u_long mask)
{
	u_long	result;

	__asm __volatile("bsfq %1,%0" : "=r" (result) : "rm" (mask));
	return (result);
}

static __inline u_int
bsrl(u_int mask)
{
	u_int	result;

	__asm __volatile("bsrl %1,%0" : "=r" (result) : "rm" (mask));
	return (result);
}

static __inline u_long
bsrq(u_long mask)
{
	u_long	result;

	__asm __volatile("bsrq %1,%0" : "=r" (result) : "rm" (mask));
	return (result);
}

static __inline void
clflush(u_long addr)
{

	__asm __volatile("clflush %0" : : "m" (*(char *)addr));
}

static __inline void
disable_intr(void)
{
	__asm __volatile("cli" : : : "memory");
}

static __inline void
do_cpuid(u_int ax, u_int *p)
{
	__asm __volatile("cpuid"
			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
			 :  "0" (ax));
}

static __inline void
cpuid_count(u_int ax, u_int cx, u_int *p)
{
	__asm __volatile("cpuid"
			 : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
			 :  "0" (ax), "c" (cx));
}

static __inline void
enable_intr(void)
{
	__asm __volatile("sti");
}

#ifdef _KERNEL

#define	HAVE_INLINE_FFS
#define        ffs(x)  __builtin_ffs(x)

#define	HAVE_INLINE_FFSL

static __inline int
ffsl(long mask)
{
	return (mask == 0 ? mask : (int)bsfq((u_long)mask) + 1);
}

#define	HAVE_INLINE_FLS

static __inline int
fls(int mask)
{
	return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1);
}

#define	HAVE_INLINE_FLSL

static __inline int
flsl(long mask)
{
	return (mask == 0 ? mask : (int)bsrq((u_long)mask) + 1);
}

#endif /* _KERNEL */

static __inline void
halt(void)
{
	__asm __volatile("hlt");
}

static __inline u_char
inb(u_int port)
{
	u_char	data;

	__asm __volatile("inb %w1, %0" : "=a" (data) : "Nd" (port));
	return (data);
}

static __inline u_int
inl(u_int port)
{
	u_int	data;

	__asm __volatile("inl %w1, %0" : "=a" (data) : "Nd" (port));
	return (data);
}

static __inline void
insb(u_int port, void *addr, size_t count)
{
	__asm __volatile("cld; rep; insb"
			 : "+D" (addr), "+c" (count)
			 : "d" (port)
			 : "memory");
}

static __inline void
insw(u_int port, void *addr, size_t count)
{
	__asm __volatile("cld; rep; insw"
			 : "+D" (addr), "+c" (count)
			 : "d" (port)
			 : "memory");
}

static __inline void
insl(u_int port, void *addr, size_t count)
{
	__asm __volatile("cld; rep; insl"
			 : "+D" (addr), "+c" (count)
			 : "d" (port)
			 : "memory");
}

static __inline void
invd(void)
{
	__asm __volatile("invd");
}

static __inline u_short
inw(u_int port)
{
	u_short	data;

	__asm __volatile("inw %w1, %0" : "=a" (data) : "Nd" (port));
	return (data);
}

static __inline void
outb(u_int port, u_char data)
{
	__asm __volatile("outb %0, %w1" : : "a" (data), "Nd" (port));
}

static __inline void
outl(u_int port, u_int data)
{
	__asm __volatile("outl %0, %w1" : : "a" (data), "Nd" (port));
}

static __inline void
outsb(u_int port, const void *addr, size_t count)
{
	__asm __volatile("cld; rep; outsb"
			 : "+S" (addr), "+c" (count)
			 : "d" (port));
}

static __inline void
outsw(u_int port, const void *addr, size_t count)
{
	__asm __volatile("cld; rep; outsw"
			 : "+S" (addr), "+c" (count)
			 : "d" (port));
}

static __inline void
outsl(u_int port, const void *addr, size_t count)
{
	__asm __volatile("cld; rep; outsl"
			 : "+S" (addr), "+c" (count)
			 : "d" (port));
}

static __inline void
outw(u_int port, u_short data)
{
	__asm __volatile("outw %0, %w1" : : "a" (data), "Nd" (port));
}

static __inline void
mfence(void)
{

	__asm __volatile("mfence" : : : "memory");
}

static __inline void
ia32_pause(void)
{
	__asm __volatile("pause");
}

static __inline u_long
read_rflags(void)
{
	u_long	rf;

	__asm __volatile("pushfq; popq %0" : "=r" (rf));
	return (rf);
}

static __inline uint64_t
rdmsr(u_int msr)
{
	uint32_t low, high;

	__asm __volatile("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
	return (low | ((uint64_t)high << 32));
}

static __inline uint64_t
rdpmc(u_int pmc)
{
	uint32_t low, high;

	__asm __volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (pmc));
	return (low | ((uint64_t)high << 32));
}

static __inline uint64_t
rdtsc(void)
{
	uint32_t low, high;

	__asm __volatile("rdtsc" : "=a" (low), "=d" (high));
	return (low | ((uint64_t)high << 32));
}

static __inline uint32_t
rdtsc32(void)
{
	uint32_t rv;

	__asm __volatile("rdtsc" : "=a" (rv) : : "edx");
	return (rv);
}

static __inline void
wbinvd(void)
{
	__asm __volatile("wbinvd");
}

static __inline void
write_rflags(u_long rf)
{
	__asm __volatile("pushq %0;  popfq" : : "r" (rf));
}

static __inline void
wrmsr(u_int msr, uint64_t newval)
{
	uint32_t low, high;

	low = newval;
	high = newval >> 32;
	__asm __volatile("wrmsr" : : "a" (low), "d" (high), "c" (msr));
}

static __inline void
load_cr0(u_long data)
{

	__asm __volatile("movq %0,%%cr0" : : "r" (data));
}

static __inline u_long
rcr0(void)
{
	u_long	data;

	__asm __volatile("movq %%cr0,%0" : "=r" (data));
	return (data);
}

static __inline u_long
rcr2(void)
{
	u_long	data;

	__asm __volatile("movq %%cr2,%0" : "=r" (data));
	return (data);
}

static __inline void
load_cr3(u_long data)
{

	__asm __volatile("movq %0,%%cr3" : : "r" (data) : "memory");
}

static __inline u_long
rcr3(void)
{
	u_long	data;

	__asm __volatile("movq %%cr3,%0" : "=r" (data));
	return (data);
}

static __inline void
load_cr4(u_long data)
{
	__asm __volatile("movq %0,%%cr4" : : "r" (data));
}

static __inline u_long
rcr4(void)
{
	u_long	data;

	__asm __volatile("movq %%cr4,%0" : "=r" (data));
	return (data);
}

/*
 * Global TLB flush (except for thise for pages marked PG_G)
 */
static __inline void
invltlb(void)
{

	load_cr3(rcr3());
}

/*
 * TLB flush for an individual page (even if it has PG_G).
 * Only works on 486+ CPUs (i386 does not have PG_G).
 */
static __inline void
invlpg(u_long addr)
{

	__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
}

static __inline u_short
rfs(void)
{
	u_short sel;
	__asm __volatile("movw %%fs,%0" : "=rm" (sel));
	return (sel);
}

static __inline u_short
rgs(void)
{
	u_short sel;
	__asm __volatile("movw %%gs,%0" : "=rm" (sel));
	return (sel);
}

static __inline u_short
rss(void)
{
	u_short sel;
	__asm __volatile("movw %%ss,%0" : "=rm" (sel));
	return (sel);
}

static __inline void
load_ds(u_short sel)
{
	__asm __volatile("movw %0,%%ds" : : "rm" (sel));
}

static __inline void
load_es(u_short sel)
{
	__asm __volatile("movw %0,%%es" : : "rm" (sel));
}

static __inline void
cpu_monitor(const void *addr, u_long extensions, u_int hints)
{

	__asm __volatile("monitor"
	    : : "a" (addr), "c" (extensions), "d" (hints));
}

static __inline void
cpu_mwait(u_long extensions, u_int hints)
{

	__asm __volatile("mwait" : : "a" (hints), "c" (extensions));
}

#ifdef _KERNEL
/* This is defined in <machine/specialreg.h> but is too painful to get to */
#ifndef	MSR_FSBASE
#define	MSR_FSBASE	0xc0000100
#endif
static __inline void
load_fs(u_short sel)
{
	/* Preserve the fsbase value across the selector load */
	__asm __volatile("rdmsr; movw %0,%%fs; wrmsr"
	    : : "rm" (sel), "c" (MSR_FSBASE) : "eax", "edx");
}

#ifndef	MSR_GSBASE
#define	MSR_GSBASE	0xc0000101
#endif
static __inline void
load_gs(u_short sel)
{
	/*
	 * Preserve the gsbase value across the selector load.
	 * Note that we have to disable interrupts because the gsbase
	 * being trashed happens to be the kernel gsbase at the time.
	 */
	__asm __volatile("pushfq; cli; rdmsr; movw %0,%%gs; wrmsr; popfq"
	    : : "rm" (sel), "c" (MSR_GSBASE) : "eax", "edx");
}
#else
/* Usable by userland */
static __inline void
load_fs(u_short sel)
{
	__asm __volatile("movw %0,%%fs" : : "rm" (sel));
}

static __inline void
load_gs(u_short sel)
{
	__asm __volatile("movw %0,%%gs" : : "rm" (sel));
}
#endif

static __inline void
lidt(struct region_descriptor *addr)
{
	__asm __volatile("lidt (%0)" : : "r" (addr));
}

static __inline void
lldt(u_short sel)
{
	__asm __volatile("lldt %0" : : "r" (sel));
}

static __inline void
ltr(u_short sel)
{
	__asm __volatile("ltr %0" : : "r" (sel));
}

static __inline uint64_t
rdr0(void)
{
	uint64_t data;
	__asm __volatile("movq %%dr0,%0" : "=r" (data));
	return (data);
}

static __inline void
load_dr0(uint64_t dr0)
{
	__asm __volatile("movq %0,%%dr0" : : "r" (dr0));
}

static __inline uint64_t
rdr1(void)
{
	uint64_t data;
	__asm __volatile("movq %%dr1,%0" : "=r" (data));
	return (data);
}

static __inline void
load_dr1(uint64_t dr1)
{
	__asm __volatile("movq %0,%%dr1" : : "r" (dr1));
}

static __inline uint64_t
rdr2(void)
{
	uint64_t data;
	__asm __volatile("movq %%dr2,%0" : "=r" (data));
	return (data);
}

static __inline void
load_dr2(uint64_t dr2)
{
	__asm __volatile("movq %0,%%dr2" : : "r" (dr2));
}

static __inline uint64_t
rdr3(void)
{
	uint64_t data;
	__asm __volatile("movq %%dr3,%0" : "=r" (data));
	return (data);
}

static __inline void
load_dr3(uint64_t dr3)
{
	__asm __volatile("movq %0,%%dr3" : : "r" (dr3));
}

static __inline uint64_t
rdr4(void)
{
	uint64_t data;
	__asm __volatile("movq %%dr4,%0" : "=r" (data));
	return (data);
}

static __inline void
load_dr4(uint64_t dr4)
{
	__asm __volatile("movq %0,%%dr4" : : "r" (dr4));
}

static __inline uint64_t
rdr5(void)
{
	uint64_t data;
	__asm __volatile("movq %%dr5,%0" : "=r" (data));
	return (data);
}

static __inline void
load_dr5(uint64_t dr5)
{
	__asm __volatile("movq %0,%%dr5" : : "r" (dr5));
}

static __inline uint64_t
rdr6(void)
{
	uint64_t data;
	__asm __volatile("movq %%dr6,%0" : "=r" (data));
	return (data);
}

static __inline void
load_dr6(uint64_t dr6)
{
	__asm __volatile("movq %0,%%dr6" : : "r" (dr6));
}

static __inline uint64_t
rdr7(void)
{
	uint64_t data;
	__asm __volatile("movq %%dr7,%0" : "=r" (data));
	return (data);
}

static __inline void
load_dr7(uint64_t dr7)
{
	__asm __volatile("movq %0,%%dr7" : : "r" (dr7));
}

static __inline register_t
intr_disable(void)
{
	register_t rflags;

	rflags = read_rflags();
	disable_intr();
	return (rflags);
}

static __inline void
intr_restore(register_t rflags)
{
	write_rflags(rflags);
}

#else /* !(__GNUCLIKE_ASM && __CC_SUPPORTS___INLINE) */

int	breakpoint(void);
u_int	bsfl(u_int mask);
u_int	bsrl(u_int mask);
void	disable_intr(void);
void	do_cpuid(u_int ax, u_int *p);
void	enable_intr(void);
void	halt(void);
void	ia32_pause(void);
u_char	inb(u_int port);
u_int	inl(u_int port);
void	insb(u_int port, void *addr, size_t count);
void	insl(u_int port, void *addr, size_t count);
void	insw(u_int port, void *addr, size_t count);
register_t	intr_disable(void);
void	intr_restore(register_t rf);
void	invd(void);
void	invlpg(u_int addr);
void	invltlb(void);
u_short	inw(u_int port);
void	lidt(struct region_descriptor *addr);
void	lldt(u_short sel);
void	load_cr0(u_long cr0);
void	load_cr3(u_long cr3);
void	load_cr4(u_long cr4);
void	load_dr0(uint64_t dr0);
void	load_dr1(uint64_t dr1);
void	load_dr2(uint64_t dr2);
void	load_dr3(uint64_t dr3);
void	load_dr4(uint64_t dr4);
void	load_dr5(uint64_t dr5);
void	load_dr6(uint64_t dr6);
void	load_dr7(uint64_t dr7);
void	load_fs(u_short sel);
void	load_gs(u_short sel);
void	ltr(u_short sel);
void	outb(u_int port, u_char data);
void	outl(u_int port, u_int data);
void	outsb(u_int port, const void *addr, size_t count);
void	outsl(u_int port, const void *addr, size_t count);
void	outsw(u_int port, const void *addr, size_t count);
void	outw(u_int port, u_short data);
u_long	rcr0(void);
u_long	rcr2(void);
u_long	rcr3(void);
u_long	rcr4(void);
uint64_t rdmsr(u_int msr);
uint64_t rdpmc(u_int pmc);
uint64_t rdr0(void);
uint64_t rdr1(void);
uint64_t rdr2(void);
uint64_t rdr3(void);
uint64_t rdr4(void);
uint64_t rdr5(void);
uint64_t rdr6(void);
uint64_t rdr7(void);
uint64_t rdtsc(void);
u_int	read_rflags(void);
u_int	rfs(void);
u_int	rgs(void);
void	wbinvd(void);
void	write_rflags(u_int rf);
void	wrmsr(u_int msr, uint64_t newval);

#endif	/* __GNUCLIKE_ASM && __CC_SUPPORTS___INLINE */

void	reset_dbregs(void);

#ifdef _KERNEL
int	rdmsr_safe(u_int msr, uint64_t *val);
int	wrmsr_safe(u_int msr, uint64_t newval);
#endif

#endif /* !_MACHINE_CPUFUNC_H_ */

Man Man