Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/cxgbe/if_cxgbe/@/dev/random/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/cxgbe/if_cxgbe/@/dev/random/yarrow.c |
/*- * Copyright (c) 2000-2004 Mark R V Murray * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/random/yarrow.c 174073 2007-11-29 16:06:12Z simon $"); #include <sys/param.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/random.h> #include <sys/sysctl.h> #include <sys/systm.h> #include <crypto/rijndael/rijndael-api-fst.h> #include <crypto/sha2/sha2.h> #include <dev/random/hash.h> #include <dev/random/randomdev_soft.h> #include <dev/random/yarrow.h> RANDOM_CHECK_UINT(gengateinterval, 4, 64); RANDOM_CHECK_UINT(bins, 2, 16); RANDOM_CHECK_UINT(fastthresh, BLOCKSIZE/4, BLOCKSIZE); RANDOM_CHECK_UINT(slowthresh, BLOCKSIZE/4, BLOCKSIZE); RANDOM_CHECK_UINT(slowoverthresh, 1, 5); /* Structure holding the entropy state */ static struct random_state random_state; static void generator_gate(void); static void reseed(u_int); /* The reseed thread mutex */ struct mtx random_reseed_mtx; /* Process a single stochastic event off the harvest queue */ void random_process_event(struct harvest *event) { u_int pl, overthreshhold[2]; struct source *source; enum esource src; /* Unpack the event into the appropriate source accumulator */ pl = random_state.which; source = &random_state.pool[pl].source[event->source]; yarrow_hash_iterate(&random_state.pool[pl].hash, event->entropy, sizeof(event->entropy)); yarrow_hash_iterate(&random_state.pool[pl].hash, &event->somecounter, sizeof(event->somecounter)); source->frac += event->frac; source->bits += event->bits + source->frac/1024; source->frac %= 1024; /* Count the over-threshold sources in each pool */ for (pl = 0; pl < 2; pl++) { overthreshhold[pl] = 0; for (src = RANDOM_START; src < ENTROPYSOURCE; src++) { if (random_state.pool[pl].source[src].bits > random_state.pool[pl].thresh) overthreshhold[pl]++; } } /* if any fast source over threshhold, reseed */ if (overthreshhold[FAST]) reseed(FAST); /* if enough slow sources are over threshhold, reseed */ if (overthreshhold[SLOW] >= random_state.slowoverthresh) reseed(SLOW); /* Invert the fast/slow pool selector bit */ random_state.which = !random_state.which; } void random_yarrow_init_alg(struct sysctl_ctx_list *clist, struct sysctl_oid *in_o) { int i; struct sysctl_oid *random_yarrow_o; /* Yarrow parameters. Do not adjust these unless you have * have a very good clue about what they do! */ random_yarrow_o = SYSCTL_ADD_NODE(clist, SYSCTL_CHILDREN(in_o), OID_AUTO, "yarrow", CTLFLAG_RW, 0, "Yarrow Parameters"); SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO, "gengateinterval", CTLTYPE_INT|CTLFLAG_RW, &random_state.gengateinterval, 10, random_check_uint_gengateinterval, "I", "Generation gate interval"); SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO, "bins", CTLTYPE_INT|CTLFLAG_RW, &random_state.bins, 10, random_check_uint_bins, "I", "Execution time tuner"); SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO, "fastthresh", CTLTYPE_INT|CTLFLAG_RW, &random_state.pool[0].thresh, (3*BLOCKSIZE)/4, random_check_uint_fastthresh, "I", "Fast reseed threshold"); SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO, "slowthresh", CTLTYPE_INT|CTLFLAG_RW, &random_state.pool[1].thresh, BLOCKSIZE, random_check_uint_slowthresh, "I", "Slow reseed threshold"); SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO, "slowoverthresh", CTLTYPE_INT|CTLFLAG_RW, &random_state.slowoverthresh, 2, random_check_uint_slowoverthresh, "I", "Slow over-threshold reseed"); random_state.gengateinterval = 10; random_state.bins = 10; random_state.pool[0].thresh = (3*BLOCKSIZE)/4; random_state.pool[1].thresh = BLOCKSIZE; random_state.slowoverthresh = 2; random_state.which = FAST; /* Initialise the fast and slow entropy pools */ for (i = 0; i < 2; i++) yarrow_hash_init(&random_state.pool[i].hash); /* Clear the counter */ for (i = 0; i < 4; i++) random_state.counter[i] = 0; /* Set up a lock for the reseed process */ mtx_init(&random_reseed_mtx, "random reseed", NULL, MTX_DEF); } void random_yarrow_deinit_alg(void) { mtx_destroy(&random_reseed_mtx); } static void reseed(u_int fastslow) { /* Interrupt-context stack is a limited resource; make large * structures static. */ static u_char v[TIMEBIN][KEYSIZE]; /* v[i] */ static struct yarrowhash context; u_char hash[KEYSIZE]; /* h' */ u_char temp[KEYSIZE]; u_int i; enum esource j; /* The reseed task must not be jumped on */ mtx_lock(&random_reseed_mtx); /* 1. Hash the accumulated entropy into v[0] */ yarrow_hash_init(&context); /* Feed the slow pool hash in if slow */ if (fastslow == SLOW) yarrow_hash_iterate(&context, &random_state.pool[SLOW].hash, sizeof(struct yarrowhash)); yarrow_hash_iterate(&context, &random_state.pool[FAST].hash, sizeof(struct yarrowhash)); yarrow_hash_finish(&context, v[0]); /* 2. Compute hash values for all v. _Supposed_ to be computationally * intensive. */ if (random_state.bins > TIMEBIN) random_state.bins = TIMEBIN; for (i = 1; i < random_state.bins; i++) { yarrow_hash_init(&context); /* v[i] #= h(v[i - 1]) */ yarrow_hash_iterate(&context, v[i - 1], KEYSIZE); /* v[i] #= h(v[0]) */ yarrow_hash_iterate(&context, v[0], KEYSIZE); /* v[i] #= h(i) */ yarrow_hash_iterate(&context, &i, sizeof(u_int)); /* Return the hashval */ yarrow_hash_finish(&context, v[i]); } /* 3. Compute a new key; h' is the identity function here; * it is not being ignored! */ yarrow_hash_init(&context); yarrow_hash_iterate(&context, &random_state.key, KEYSIZE); for (i = 1; i < random_state.bins; i++) yarrow_hash_iterate(&context, &v[i], KEYSIZE); yarrow_hash_finish(&context, temp); yarrow_encrypt_init(&random_state.key, temp); /* 4. Recompute the counter */ for (i = 0; i < 4; i++) random_state.counter[i] = 0; yarrow_encrypt(&random_state.key, random_state.counter, temp); memcpy(random_state.counter, temp, sizeof(random_state.counter)); /* 5. Reset entropy estimate accumulators to zero */ for (i = 0; i <= fastslow; i++) { for (j = RANDOM_START; j < ENTROPYSOURCE; j++) { random_state.pool[i].source[j].bits = 0; random_state.pool[i].source[j].frac = 0; } } /* 6. Wipe memory of intermediate values */ memset((void *)v, 0, sizeof(v)); memset((void *)temp, 0, sizeof(temp)); memset((void *)hash, 0, sizeof(hash)); /* 7. Dump to seed file */ /* XXX Not done here yet */ /* Unblock the device if it was blocked due to being unseeded */ random_yarrow_unblock(); /* Release the reseed mutex */ mtx_unlock(&random_reseed_mtx); } /* Internal function to return processed entropy from the PRNG */ int random_yarrow_read(void *buf, int count) { static int cur = 0; static int gate = 1; static u_char genval[KEYSIZE]; size_t tomove; int i; int retval; /* The reseed task must not be jumped on */ mtx_lock(&random_reseed_mtx); if (gate) { generator_gate(); random_state.outputblocks = 0; gate = 0; } if (count > 0 && (size_t)count >= sizeof(random_state.counter)) { retval = 0; for (i = 0; i < count; i += (int)sizeof(random_state.counter)) { random_state.counter[0]++; yarrow_encrypt(&random_state.key, random_state.counter, genval); tomove = min(count - i, sizeof(random_state.counter)); memcpy((char *)buf + i, genval, tomove); if (++random_state.outputblocks >= random_state.gengateinterval) { generator_gate(); random_state.outputblocks = 0; } retval += (int)tomove; cur = 0; } } else { if (!cur) { random_state.counter[0]++; yarrow_encrypt(&random_state.key, random_state.counter, genval); memcpy(buf, genval, (size_t)count); cur = (int)sizeof(random_state.counter) - count; if (++random_state.outputblocks >= random_state.gengateinterval) { generator_gate(); random_state.outputblocks = 0; } retval = count; } else { retval = MIN(cur, count); memcpy(buf, &genval[(int)sizeof(random_state.counter) - cur], (size_t)retval); cur -= retval; } } mtx_unlock(&random_reseed_mtx); return retval; } static void generator_gate(void) { u_int i; u_char temp[KEYSIZE]; for (i = 0; i < KEYSIZE; i += sizeof(random_state.counter)) { random_state.counter[0]++; yarrow_encrypt(&random_state.key, random_state.counter, &(temp[i])); } yarrow_encrypt_init(&random_state.key, temp); memset((void *)temp, 0, KEYSIZE); } /* Helper routine to perform explicit reseeds */ void random_yarrow_reseed(void) { reseed(SLOW); }