Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/dtnfsclient/@/dev/pccard/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/dtnfsclient/@/dev/pccard/pccard_cis.c |
/* $NetBSD: pcmcia_cis.c,v 1.17 2000/02/10 09:01:52 chopps Exp $ */ /* $FreeBSD: release/9.1.0/sys/dev/pccard/pccard_cis.c 189682 2009-03-11 08:14:44Z imp $ */ /*- * Copyright (c) 1997 Marc Horowitz. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Marc Horowitz. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/param.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/module.h> #include <sys/kernel.h> #include <sys/queue.h> #include <sys/types.h> #include <sys/bus.h> #include <machine/bus.h> #include <sys/rman.h> #include <machine/resource.h> #include <dev/pccard/pccardreg.h> #include <dev/pccard/pccardvar.h> #include <dev/pccard/pccardvarp.h> #include <dev/pccard/pccard_cis.h> #include "card_if.h" extern int pccard_cis_debug; #define PCCARDCISDEBUG #ifdef PCCARDCISDEBUG #define DPRINTF(arg) do { if (pccard_cis_debug) printf arg; } while (0) #define DEVPRINTF(arg) do { if (pccard_cis_debug) device_printf arg; } while (0) #else #define DPRINTF(arg) #define DEVPRINTF(arg) #endif #define PCCARD_CIS_SIZE 4096 struct cis_state { int count; int gotmfc; struct pccard_config_entry temp_cfe; struct pccard_config_entry *default_cfe; struct pccard_card *card; struct pccard_function *pf; }; static int pccard_parse_cis_tuple(const struct pccard_tuple *, void *); static int decode_funce(const struct pccard_tuple *, struct pccard_function *); void pccard_read_cis(struct pccard_softc *sc) { struct cis_state state; bzero(&state, sizeof state); state.card = &sc->card; state.card->error = 0; state.card->cis1_major = -1; state.card->cis1_minor = -1; state.card->cis1_info[0] = NULL; state.card->cis1_info[1] = NULL; state.card->cis1_info[2] = NULL; state.card->cis1_info[3] = NULL; state.card->manufacturer = PCMCIA_VENDOR_INVALID; state.card->product = PCMCIA_PRODUCT_INVALID; STAILQ_INIT(&state.card->pf_head); state.pf = NULL; /* * XXX The following shouldn't be needed, but some slow cards * XXX seem to need it still. Need to investigate if there's * XXX a way to tell if the card is 'ready' or not rather than * XXX sleeping like this. We're called just after the power * XXX up of the socket. The standard timing diagrams don't * XXX seem to indicate that a delay is required. The old * XXX delay was 1s. This delay is .1s. */ pause("pccard", hz / 10); if (pccard_scan_cis(device_get_parent(sc->dev), sc->dev, pccard_parse_cis_tuple, &state) == -1) state.card->error++; } int pccard_scan_cis(device_t bus, device_t dev, pccard_scan_t fct, void *arg) { struct resource *res; int rid; struct pccard_tuple tuple; int longlink_present; int longlink_common; u_long longlink_addr; /* Type suspect */ int mfc_count; int mfc_index; #ifdef PCCARDCISDEBUG int cis_none_cnt = 10; /* Only report 10 CIS_NONEs */ #endif struct { int common; u_long addr; } mfc[256 / 5]; int ret; ret = 0; /* allocate some memory */ /* * Some reports from the field suggest that a 64k memory boundary * helps card CIS being able to be read. Try it here and see what * the results actually are. I'm not sure I understand why this * would make cards work better, but it is easy enough to test. */ rid = 0; res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0, ~0, PCCARD_CIS_SIZE, RF_ACTIVE | rman_make_alignment_flags(64*1024)); if (res == NULL) { device_printf(dev, "can't alloc memory to read attributes\n"); return -1; } CARD_SET_RES_FLAGS(bus, dev, SYS_RES_MEMORY, rid, PCCARD_A_MEM_ATTR); tuple.memt = rman_get_bustag(res); tuple.memh = rman_get_bushandle(res); tuple.ptr = 0; DPRINTF(("cis mem map %#x (resource: %#lx)\n", (unsigned int) tuple.memh, rman_get_start(res))); tuple.mult = 2; longlink_present = 1; longlink_common = 1; longlink_addr = 0; mfc_count = 0; mfc_index = 0; DEVPRINTF((dev, "CIS tuple chain:\n")); while (1) { while (1) { /* * Perform boundary check for insane cards. * If CIS is too long, simulate CIS end. * (This check may not be sufficient for * malicious cards.) */ if (tuple.mult * tuple.ptr >= PCCARD_CIS_SIZE - 1 - 32 /* ad hoc value */ ) { printf("CIS is too long -- truncating\n"); tuple.code = CISTPL_END; } else { /* get the tuple code */ tuple.code = pccard_cis_read_1(&tuple, tuple.ptr); } /* two special-case tuples */ if (tuple.code == CISTPL_NULL) { #ifdef PCCARDCISDEBUG if (cis_none_cnt > 0) DPRINTF(("CISTPL_NONE\n 00\n")); else if (cis_none_cnt == 0) DPRINTF(("TOO MANY CIS_NONE\n")); cis_none_cnt--; #endif if ((*fct)(&tuple, arg)) { ret = 1; goto done; } tuple.ptr++; continue; } else if (tuple.code == CISTPL_END) { DPRINTF(("CISTPL_END\n ff\n")); /* Call the function for the END tuple, since the CIS semantics depend on it */ if ((*fct)(&tuple, arg)) { ret = 1; goto done; } tuple.ptr++; break; } /* now all the normal tuples */ tuple.length = pccard_cis_read_1(&tuple, tuple.ptr + 1); switch (tuple.code) { case CISTPL_LONGLINK_A: case CISTPL_LONGLINK_C: if ((*fct)(&tuple, arg)) { ret = 1; goto done; } if (tuple.length < 4) { DPRINTF(("CISTPL_LONGLINK_%s too " "short %d\n", longlink_common ? "C" : "A", tuple.length)); break; } longlink_present = 1; longlink_common = (tuple.code == CISTPL_LONGLINK_C) ? 1 : 0; longlink_addr = pccard_tuple_read_4(&tuple, 0); DPRINTF(("CISTPL_LONGLINK_%s %#lx\n", longlink_common ? "C" : "A", longlink_addr)); break; case CISTPL_NO_LINK: if ((*fct)(&tuple, arg)) { ret = 1; goto done; } longlink_present = 0; DPRINTF(("CISTPL_NO_LINK\n")); break; case CISTPL_CHECKSUM: if ((*fct)(&tuple, arg)) { ret = 1; goto done; } if (tuple.length < 5) { DPRINTF(("CISTPL_CHECKSUM too " "short %d\n", tuple.length)); break; } { int16_t offset; u_long addr, length; u_int cksum, sum; int i; offset = (uint16_t) pccard_tuple_read_2(&tuple, 0); length = pccard_tuple_read_2(&tuple, 2); cksum = pccard_tuple_read_1(&tuple, 4); addr = tuple.ptr + offset; DPRINTF(("CISTPL_CHECKSUM addr=%#lx " "len=%#lx cksum=%#x", addr, length, cksum)); /* * XXX do more work to deal with * distant regions */ if ((addr >= PCCARD_CIS_SIZE) || ((addr + length) >= PCCARD_CIS_SIZE)) { DPRINTF((" skipped, " "too distant\n")); break; } sum = 0; for (i = 0; i < length; i++) sum += bus_space_read_1(tuple.memt, tuple.memh, addr + tuple.mult * i); if (cksum != (sum & 0xff)) { DPRINTF((" failed sum=%#x\n", sum)); device_printf(dev, "CIS checksum failed\n"); #if 0 /* * XXX Some working cards have * XXX bad checksums!! */ ret = -1; #endif } else { DPRINTF((" ok\n")); } } break; case CISTPL_LONGLINK_MFC: if (tuple.length < 1) { DPRINTF(("CISTPL_LONGLINK_MFC too " "short %d\n", tuple.length)); break; } if (((tuple.length - 1) % 5) != 0) { DPRINTF(("CISTPL_LONGLINK_MFC bogus " "length %d\n", tuple.length)); break; } /* * this is kind of ad hoc, as I don't have * any real documentation */ { int i, tmp_count; /* * put count into tmp var so that * if we have to bail (because it's * a bogus count) it won't be * remembered for later use. */ tmp_count = pccard_tuple_read_1(&tuple, 0); DPRINTF(("CISTPL_LONGLINK_MFC %d", tmp_count)); /* * make _sure_ it's the right size; * if too short, it may be a weird * (unknown/undefined) format */ if (tuple.length != (tmp_count*5 + 1)) { DPRINTF((" bogus length %d\n", tuple.length)); break; } /* * sanity check for a programming * error which is difficult to find * when debugging. */ if (tmp_count > howmany(sizeof mfc, sizeof mfc[0])) panic("CISTPL_LONGLINK_MFC mfc " "count would blow stack"); mfc_count = tmp_count; for (i = 0; i < mfc_count; i++) { mfc[i].common = (pccard_tuple_read_1(&tuple, 1 + 5 * i) == PCCARD_MFC_MEM_COMMON) ? 1 : 0; mfc[i].addr = pccard_tuple_read_4(&tuple, 1 + 5 * i + 1); DPRINTF((" %s:%#lx", mfc[i].common ? "common" : "attr", mfc[i].addr)); } DPRINTF(("\n")); } /* * for LONGLINK_MFC, fall through to the * function. This tuple has structural and * semantic content. */ default: { if ((*fct)(&tuple, arg)) { ret = 1; goto done; } } break; } /* switch */ #ifdef PCCARDCISDEBUG /* print the tuple */ { int i; DPRINTF((" %#02x %#02x", tuple.code, tuple.length)); for (i = 0; i < tuple.length; i++) { DPRINTF((" %#02x", pccard_tuple_read_1(&tuple, i))); if ((i % 16) == 13) DPRINTF(("\n")); } if ((i % 16) != 14) DPRINTF(("\n")); } #endif /* skip to the next tuple */ tuple.ptr += 2 + tuple.length; } /* * the chain is done. Clean up and move onto the next one, * if any. The loop is here in the case that there is an MFC * card with no longlink (which defaults to existing, == 0). * In general, this means that if one pointer fails, it will * try the next one, instead of just bailing. */ while (1) { if (longlink_present) { CARD_SET_RES_FLAGS(bus, dev, SYS_RES_MEMORY, rid, longlink_common ? PCCARD_A_MEM_COM : PCCARD_A_MEM_ATTR); DPRINTF(("cis mem map %#x\n", (unsigned int) tuple.memh)); tuple.mult = longlink_common ? 1 : 2; tuple.ptr = longlink_addr; longlink_present = 0; longlink_common = 1; longlink_addr = 0; } else if (mfc_count && (mfc_index < mfc_count)) { CARD_SET_RES_FLAGS(bus, dev, SYS_RES_MEMORY, rid, mfc[mfc_index].common ? PCCARD_A_MEM_COM : PCCARD_A_MEM_ATTR); DPRINTF(("cis mem map %#x\n", (unsigned int) tuple.memh)); /* set parse state, and point at the next one */ tuple.mult = mfc[mfc_index].common ? 1 : 2; tuple.ptr = mfc[mfc_index].addr; mfc_index++; } else { goto done; } /* make sure that the link is valid */ tuple.code = pccard_cis_read_1(&tuple, tuple.ptr); if (tuple.code != CISTPL_LINKTARGET) { DPRINTF(("CISTPL_LINKTARGET expected, " "code %#02x observed\n", tuple.code)); continue; } tuple.length = pccard_cis_read_1(&tuple, tuple.ptr + 1); if (tuple.length < 3) { DPRINTF(("CISTPL_LINKTARGET too short %d\n", tuple.length)); continue; } if ((pccard_tuple_read_1(&tuple, 0) != 'C') || (pccard_tuple_read_1(&tuple, 1) != 'I') || (pccard_tuple_read_1(&tuple, 2) != 'S')) { DPRINTF(("CISTPL_LINKTARGET magic " "%02x%02x%02x incorrect\n", pccard_tuple_read_1(&tuple, 0), pccard_tuple_read_1(&tuple, 1), pccard_tuple_read_1(&tuple, 2))); continue; } tuple.ptr += 2 + tuple.length; break; } } done: bus_release_resource(dev, SYS_RES_MEMORY, rid, res); return (ret); } /* XXX this is incredibly verbose. Not sure what trt is */ void pccard_print_cis(device_t dev) { struct pccard_softc *sc = PCCARD_SOFTC(dev); struct pccard_card *card = &sc->card; struct pccard_function *pf; struct pccard_config_entry *cfe; int i; device_printf(dev, "CIS version "); if (card->cis1_major == 4) { if (card->cis1_minor == 0) printf("PCCARD 1.0\n"); else if (card->cis1_minor == 1) printf("PCCARD 2.0 or 2.1\n"); } else if (card->cis1_major >= 5) printf("PC Card Standard %d.%d\n", card->cis1_major, card->cis1_minor); else printf("unknown (major=%d, minor=%d)\n", card->cis1_major, card->cis1_minor); device_printf(dev, "CIS info: "); for (i = 0; i < 4; i++) { if (card->cis1_info[i] == NULL) break; if (i) printf(", "); printf("%s", card->cis1_info[i]); } printf("\n"); device_printf(dev, "Manufacturer code %#x, product %#x\n", card->manufacturer, card->product); STAILQ_FOREACH(pf, &card->pf_head, pf_list) { device_printf(dev, "function %d: ", pf->number); switch (pf->function) { case PCCARD_FUNCTION_UNSPEC: printf("unspecified"); break; case PCCARD_FUNCTION_MULTIFUNCTION: printf("multi-function"); break; case PCCARD_FUNCTION_MEMORY: printf("memory"); break; case PCCARD_FUNCTION_SERIAL: printf("serial port"); break; case PCCARD_FUNCTION_PARALLEL: printf("parallel port"); break; case PCCARD_FUNCTION_DISK: printf("fixed disk"); break; case PCCARD_FUNCTION_VIDEO: printf("video adapter"); break; case PCCARD_FUNCTION_NETWORK: printf("network adapter"); break; case PCCARD_FUNCTION_AIMS: printf("auto incrementing mass storage"); break; case PCCARD_FUNCTION_SCSI: printf("SCSI bridge"); break; case PCCARD_FUNCTION_SECURITY: printf("Security services"); break; case PCCARD_FUNCTION_INSTRUMENT: printf("Instrument"); break; default: printf("unknown (%d)", pf->function); break; } printf(", ccr addr %#x mask %#x\n", pf->ccr_base, pf->ccr_mask); STAILQ_FOREACH(cfe, &pf->cfe_head, cfe_list) { device_printf(dev, "function %d, config table entry " "%d: ", pf->number, cfe->number); switch (cfe->iftype) { case PCCARD_IFTYPE_MEMORY: printf("memory card"); break; case PCCARD_IFTYPE_IO: printf("I/O card"); break; default: printf("card type unknown"); break; } printf("; irq mask %#x", cfe->irqmask); if (cfe->num_iospace) { printf("; iomask %#lx, iospace", cfe->iomask); for (i = 0; i < cfe->num_iospace; i++) { printf(" %#lx", cfe->iospace[i].start); if (cfe->iospace[i].length) printf("-%#lx", cfe->iospace[i].start + cfe->iospace[i].length - 1); } } if (cfe->num_memspace) { printf("; memspace"); for (i = 0; i < cfe->num_memspace; i++) { printf(" %#lx", cfe->memspace[i].cardaddr); if (cfe->memspace[i].length) printf("-%#lx", cfe->memspace[i].cardaddr + cfe->memspace[i].length - 1); if (cfe->memspace[i].hostaddr) printf("@%#lx", cfe->memspace[i].hostaddr); } } if (cfe->maxtwins) printf("; maxtwins %d", cfe->maxtwins); printf(";"); if (cfe->flags & PCCARD_CFE_MWAIT_REQUIRED) printf(" mwait_required"); if (cfe->flags & PCCARD_CFE_RDYBSY_ACTIVE) printf(" rdybsy_active"); if (cfe->flags & PCCARD_CFE_WP_ACTIVE) printf(" wp_active"); if (cfe->flags & PCCARD_CFE_BVD_ACTIVE) printf(" bvd_active"); if (cfe->flags & PCCARD_CFE_IO8) printf(" io8"); if (cfe->flags & PCCARD_CFE_IO16) printf(" io16"); if (cfe->flags & PCCARD_CFE_IRQSHARE) printf(" irqshare"); if (cfe->flags & PCCARD_CFE_IRQPULSE) printf(" irqpulse"); if (cfe->flags & PCCARD_CFE_IRQLEVEL) printf(" irqlevel"); if (cfe->flags & PCCARD_CFE_POWERDOWN) printf(" powerdown"); if (cfe->flags & PCCARD_CFE_READONLY) printf(" readonly"); if (cfe->flags & PCCARD_CFE_AUDIO) printf(" audio"); printf("\n"); } } if (card->error) device_printf(dev, "%d errors found while parsing CIS\n", card->error); } static int pccard_parse_cis_tuple(const struct pccard_tuple *tuple, void *arg) { /* most of these are educated guesses */ static struct pccard_config_entry init_cfe = { -1, PCCARD_CFE_RDYBSY_ACTIVE | PCCARD_CFE_WP_ACTIVE | PCCARD_CFE_BVD_ACTIVE, PCCARD_IFTYPE_MEMORY, }; struct cis_state *state = arg; switch (tuple->code) { case CISTPL_END: /* if we've seen a LONGLINK_MFC, and this is the first * END after it, reset the function list. * * XXX This might also be the right place to start a * new function, but that assumes that a function * definition never crosses any longlink, and I'm not * sure about that. This is probably safe for MFC * cards, but what we have now isn't broken, so I'd * rather not change it. */ if (state->gotmfc == 1) { struct pccard_function *pf, *pfnext; for (pf = STAILQ_FIRST(&state->card->pf_head); pf != NULL; pf = pfnext) { pfnext = STAILQ_NEXT(pf, pf_list); free(pf, M_DEVBUF); } STAILQ_INIT(&state->card->pf_head); state->count = 0; state->gotmfc = 2; state->pf = NULL; } break; case CISTPL_LONGLINK_MFC: /* * this tuple's structure was dealt with in scan_cis. here, * record the fact that the MFC tuple was seen, so that * functions declared before the MFC link can be cleaned * up. */ state->gotmfc = 1; break; #ifdef PCCARDCISDEBUG case CISTPL_DEVICE: case CISTPL_DEVICE_A: { u_int reg, dtype, dspeed; reg = pccard_tuple_read_1(tuple, 0); dtype = reg & PCCARD_DTYPE_MASK; dspeed = reg & PCCARD_DSPEED_MASK; DPRINTF(("CISTPL_DEVICE%s type=", (tuple->code == CISTPL_DEVICE) ? "" : "_A")); switch (dtype) { case PCCARD_DTYPE_NULL: DPRINTF(("null")); break; case PCCARD_DTYPE_ROM: DPRINTF(("rom")); break; case PCCARD_DTYPE_OTPROM: DPRINTF(("otprom")); break; case PCCARD_DTYPE_EPROM: DPRINTF(("eprom")); break; case PCCARD_DTYPE_EEPROM: DPRINTF(("eeprom")); break; case PCCARD_DTYPE_FLASH: DPRINTF(("flash")); break; case PCCARD_DTYPE_SRAM: DPRINTF(("sram")); break; case PCCARD_DTYPE_DRAM: DPRINTF(("dram")); break; case PCCARD_DTYPE_FUNCSPEC: DPRINTF(("funcspec")); break; case PCCARD_DTYPE_EXTEND: DPRINTF(("extend")); break; default: DPRINTF(("reserved")); break; } DPRINTF((" speed=")); switch (dspeed) { case PCCARD_DSPEED_NULL: DPRINTF(("null")); break; case PCCARD_DSPEED_250NS: DPRINTF(("250ns")); break; case PCCARD_DSPEED_200NS: DPRINTF(("200ns")); break; case PCCARD_DSPEED_150NS: DPRINTF(("150ns")); break; case PCCARD_DSPEED_100NS: DPRINTF(("100ns")); break; case PCCARD_DSPEED_EXT: DPRINTF(("ext")); break; default: DPRINTF(("reserved")); break; } } DPRINTF(("\n")); break; #endif case CISTPL_VERS_1: if (tuple->length < 6) { DPRINTF(("CISTPL_VERS_1 too short %d\n", tuple->length)); break; } { int start, i, ch, count; state->card->cis1_major = pccard_tuple_read_1(tuple, 0); state->card->cis1_minor = pccard_tuple_read_1(tuple, 1); for (count = 0, start = 0, i = 0; (count < 4) && ((i + 4) < 256); i++) { ch = pccard_tuple_read_1(tuple, 2 + i); if (ch == 0xff) break; state->card->cis1_info_buf[i] = ch; if (ch == 0) { state->card->cis1_info[count] = state->card->cis1_info_buf + start; start = i + 1; count++; } } DPRINTF(("CISTPL_VERS_1\n")); } break; case CISTPL_MANFID: if (tuple->length < 4) { DPRINTF(("CISTPL_MANFID too short %d\n", tuple->length)); break; } state->card->manufacturer = pccard_tuple_read_2(tuple, 0); state->card->product = pccard_tuple_read_2(tuple, 2); /* * This is for xe driver. But not limited to that driver. * In PC Card Standard, * Manufacturer ID: 2byte. * Product ID: typically 2bytes, but there's no limit on its * size. prodext is a two byte field, so maybe we should * also handle the '6' case. So far no cards have surfaced * with a length of '6'. */ if (tuple->length == 5 ) state->card->prodext = pccard_tuple_read_1(tuple, 4); DPRINTF(("CISTPL_MANFID\n")); break; case CISTPL_FUNCID: if (tuple->length < 1) { DPRINTF(("CISTPL_FUNCID too short %d\n", tuple->length)); break; } if ((state->pf == NULL) || (state->gotmfc == 2)) { state->pf = malloc(sizeof(*state->pf), M_DEVBUF, M_NOWAIT | M_ZERO); state->pf->number = state->count++; state->pf->last_config_index = -1; STAILQ_INIT(&state->pf->cfe_head); STAILQ_INSERT_TAIL(&state->card->pf_head, state->pf, pf_list); } state->pf->function = pccard_tuple_read_1(tuple, 0); DPRINTF(("CISTPL_FUNCID\n")); break; case CISTPL_FUNCE: if (state->pf == NULL || state->pf->function <= 0) { DPRINTF(("CISTPL_FUNCE is not followed by " "valid CISTPL_FUNCID\n")); break; } if (tuple->length >= 2) decode_funce(tuple, state->pf); DPRINTF(("CISTPL_FUNCE\n")); break; case CISTPL_CONFIG: if (tuple->length < 3) { DPRINTF(("CISTPL_CONFIG too short %d\n", tuple->length)); break; } { u_int reg, rasz, rmsz, rfsz; int i; reg = pccard_tuple_read_1(tuple, 0); rasz = 1 + ((reg & PCCARD_TPCC_RASZ_MASK) >> PCCARD_TPCC_RASZ_SHIFT); rmsz = 1 + ((reg & PCCARD_TPCC_RMSZ_MASK) >> PCCARD_TPCC_RMSZ_SHIFT); rfsz = ((reg & PCCARD_TPCC_RFSZ_MASK) >> PCCARD_TPCC_RFSZ_SHIFT); if (tuple->length < (rasz + rmsz + rfsz)) { DPRINTF(("CISTPL_CONFIG (%d,%d,%d) too " "short %d\n", rasz, rmsz, rfsz, tuple->length)); break; } if (state->pf == NULL) { state->pf = malloc(sizeof(*state->pf), M_DEVBUF, M_NOWAIT | M_ZERO); state->pf->number = state->count++; state->pf->last_config_index = -1; STAILQ_INIT(&state->pf->cfe_head); STAILQ_INSERT_TAIL(&state->card->pf_head, state->pf, pf_list); state->pf->function = PCCARD_FUNCTION_UNSPEC; } state->pf->last_config_index = pccard_tuple_read_1(tuple, 1); state->pf->ccr_base = 0; for (i = 0; i < rasz; i++) state->pf->ccr_base |= ((pccard_tuple_read_1(tuple, 2 + i)) << (i * 8)); state->pf->ccr_mask = 0; for (i = 0; i < rmsz; i++) state->pf->ccr_mask |= ((pccard_tuple_read_1(tuple, 2 + rasz + i)) << (i * 8)); /* skip the reserved area and subtuples */ /* reset the default cfe for each cfe list */ state->temp_cfe = init_cfe; state->default_cfe = &state->temp_cfe; } DPRINTF(("CISTPL_CONFIG\n")); break; case CISTPL_CFTABLE_ENTRY: { int idx, i; u_int reg, reg2; u_int intface, def, num; u_int power, timing, iospace, irq, memspace, misc; struct pccard_config_entry *cfe; idx = 0; reg = pccard_tuple_read_1(tuple, idx++); intface = reg & PCCARD_TPCE_INDX_INTFACE; def = reg & PCCARD_TPCE_INDX_DEFAULT; num = reg & PCCARD_TPCE_INDX_NUM_MASK; /* * this is a little messy. Some cards have only a * cfentry with the default bit set. So, as we go * through the list, we add new indexes to the queue, * and keep a pointer to the last one with the * default bit set. if we see a record with the same * index, as the default, we stash the default and * replace the queue entry. otherwise, we just add * new entries to the queue, pointing the default ptr * at them if the default bit is set. if we get to * the end with the default pointer pointing at a * record which hasn't had a matching index, that's * ok; it just becomes a cfentry like any other. */ /* * if the index in the cis differs from the default * cis, create new entry in the queue and start it * with the current default */ if (num != state->default_cfe->number) { cfe = (struct pccard_config_entry *) malloc(sizeof(*cfe), M_DEVBUF, M_NOWAIT); if (cfe == NULL) { DPRINTF(("no memory for config entry\n")); goto abort_cfe; } *cfe = *state->default_cfe; STAILQ_INSERT_TAIL(&state->pf->cfe_head, cfe, cfe_list); cfe->number = num; /* * if the default bit is set in the cis, then * point the new default at whatever is being * filled in */ if (def) state->default_cfe = cfe; } else { /* * the cis index matches the default index, * fill in the default cfentry. It is * assumed that the cfdefault index is in the * queue. For it to be otherwise, the cis * index would have to be -1 (initial * condition) which is not possible, or there * would have to be a preceding cis entry * which had the same cis index and had the * default bit unset. Neither condition * should happen. If it does, this cfentry * is lost (written into temp space), which * is an acceptable failure mode. */ cfe = state->default_cfe; /* * if the cis entry does not have the default * bit set, copy the default out of the way * first. */ if (!def) { state->temp_cfe = *state->default_cfe; state->default_cfe = &state->temp_cfe; } } if (intface) { reg = pccard_tuple_read_1(tuple, idx++); cfe->flags &= ~(PCCARD_CFE_MWAIT_REQUIRED | PCCARD_CFE_RDYBSY_ACTIVE | PCCARD_CFE_WP_ACTIVE | PCCARD_CFE_BVD_ACTIVE); if (reg & PCCARD_TPCE_IF_MWAIT) cfe->flags |= PCCARD_CFE_MWAIT_REQUIRED; if (reg & PCCARD_TPCE_IF_RDYBSY) cfe->flags |= PCCARD_CFE_RDYBSY_ACTIVE; if (reg & PCCARD_TPCE_IF_WP) cfe->flags |= PCCARD_CFE_WP_ACTIVE; if (reg & PCCARD_TPCE_IF_BVD) cfe->flags |= PCCARD_CFE_BVD_ACTIVE; cfe->iftype = reg & PCCARD_TPCE_IF_IFTYPE; } reg = pccard_tuple_read_1(tuple, idx++); power = reg & PCCARD_TPCE_FS_POWER_MASK; timing = reg & PCCARD_TPCE_FS_TIMING; iospace = reg & PCCARD_TPCE_FS_IOSPACE; irq = reg & PCCARD_TPCE_FS_IRQ; memspace = reg & PCCARD_TPCE_FS_MEMSPACE_MASK; misc = reg & PCCARD_TPCE_FS_MISC; if (power) { /* skip over power, don't save */ /* for each parameter selection byte */ for (i = 0; i < power; i++) { reg = pccard_tuple_read_1(tuple, idx++); for (; reg; reg >>= 1) { /* set bit -> read */ if ((reg & 1) == 0) continue; /* skip over bytes */ do { reg2 = pccard_tuple_read_1(tuple, idx++); /* * until non-extension * byte */ } while (reg2 & 0x80); } } } if (timing) { /* skip over timing, don't save */ reg = pccard_tuple_read_1(tuple, idx++); if ((reg & PCCARD_TPCE_TD_RESERVED_MASK) != PCCARD_TPCE_TD_RESERVED_MASK) idx++; if ((reg & PCCARD_TPCE_TD_RDYBSY_MASK) != PCCARD_TPCE_TD_RDYBSY_MASK) idx++; if ((reg & PCCARD_TPCE_TD_WAIT_MASK) != PCCARD_TPCE_TD_WAIT_MASK) idx++; } if (iospace) { if (tuple->length <= idx) { DPRINTF(("ran out of space before TCPE_IO\n")); goto abort_cfe; } reg = pccard_tuple_read_1(tuple, idx++); cfe->flags &= ~(PCCARD_CFE_IO8 | PCCARD_CFE_IO16); if (reg & PCCARD_TPCE_IO_BUSWIDTH_8BIT) cfe->flags |= PCCARD_CFE_IO8; if (reg & PCCARD_TPCE_IO_BUSWIDTH_16BIT) cfe->flags |= PCCARD_CFE_IO16; cfe->iomask = reg & PCCARD_TPCE_IO_IOADDRLINES_MASK; if (reg & PCCARD_TPCE_IO_HASRANGE) { reg = pccard_tuple_read_1(tuple, idx++); cfe->num_iospace = 1 + (reg & PCCARD_TPCE_IO_RANGE_COUNT); if (cfe->num_iospace > (sizeof(cfe->iospace) / sizeof(cfe->iospace[0]))) { DPRINTF(("too many io " "spaces %d", cfe->num_iospace)); state->card->error++; break; } for (i = 0; i < cfe->num_iospace; i++) { switch (reg & PCCARD_TPCE_IO_RANGE_ADDRSIZE_MASK) { case PCCARD_TPCE_IO_RANGE_ADDRSIZE_ONE: cfe->iospace[i].start = pccard_tuple_read_1(tuple, idx++); break; case PCCARD_TPCE_IO_RANGE_ADDRSIZE_TWO: cfe->iospace[i].start = pccard_tuple_read_2(tuple, idx); idx += 2; break; case PCCARD_TPCE_IO_RANGE_ADDRSIZE_FOUR: cfe->iospace[i].start = pccard_tuple_read_4(tuple, idx); idx += 4; break; } switch (reg & PCCARD_TPCE_IO_RANGE_LENGTHSIZE_MASK) { case PCCARD_TPCE_IO_RANGE_LENGTHSIZE_ONE: cfe->iospace[i].length = pccard_tuple_read_1(tuple, idx++); break; case PCCARD_TPCE_IO_RANGE_LENGTHSIZE_TWO: cfe->iospace[i].length = pccard_tuple_read_2(tuple, idx); idx += 2; break; case PCCARD_TPCE_IO_RANGE_LENGTHSIZE_FOUR: cfe->iospace[i].length = pccard_tuple_read_4(tuple, idx); idx += 4; break; } cfe->iospace[i].length++; } } else { cfe->num_iospace = 1; cfe->iospace[0].start = 0; cfe->iospace[0].length = (1 << cfe->iomask); } } if (irq) { if (tuple->length <= idx) { DPRINTF(("ran out of space before TCPE_IR\n")); goto abort_cfe; } reg = pccard_tuple_read_1(tuple, idx++); cfe->flags &= ~(PCCARD_CFE_IRQSHARE | PCCARD_CFE_IRQPULSE | PCCARD_CFE_IRQLEVEL); if (reg & PCCARD_TPCE_IR_SHARE) cfe->flags |= PCCARD_CFE_IRQSHARE; if (reg & PCCARD_TPCE_IR_PULSE) cfe->flags |= PCCARD_CFE_IRQPULSE; if (reg & PCCARD_TPCE_IR_LEVEL) cfe->flags |= PCCARD_CFE_IRQLEVEL; if (reg & PCCARD_TPCE_IR_HASMASK) { /* * it's legal to ignore the * special-interrupt bits, so I will */ cfe->irqmask = pccard_tuple_read_2(tuple, idx); idx += 2; } else { cfe->irqmask = (1 << (reg & PCCARD_TPCE_IR_IRQ)); } } else { cfe->irqmask = 0xffff; } if (memspace) { if (tuple->length <= idx) { DPRINTF(("ran out of space before TCPE_MS\n")); goto abort_cfe; } if (memspace == PCCARD_TPCE_FS_MEMSPACE_LENGTH) { cfe->num_memspace = 1; cfe->memspace[0].length = 256 * pccard_tuple_read_2(tuple, idx); idx += 2; cfe->memspace[0].cardaddr = 0; cfe->memspace[0].hostaddr = 0; } else if (memspace == PCCARD_TPCE_FS_MEMSPACE_LENGTHADDR) { cfe->num_memspace = 1; cfe->memspace[0].length = 256 * pccard_tuple_read_2(tuple, idx); idx += 2; cfe->memspace[0].cardaddr = 256 * pccard_tuple_read_2(tuple, idx); idx += 2; cfe->memspace[0].hostaddr = cfe->memspace[0].cardaddr; } else { int lengthsize; int cardaddrsize; int hostaddrsize; reg = pccard_tuple_read_1(tuple, idx++); cfe->num_memspace = (reg & PCCARD_TPCE_MS_COUNT) + 1; if (cfe->num_memspace > (sizeof(cfe->memspace) / sizeof(cfe->memspace[0]))) { DPRINTF(("too many mem " "spaces %d", cfe->num_memspace)); state->card->error++; break; } lengthsize = ((reg & PCCARD_TPCE_MS_LENGTH_SIZE_MASK) >> PCCARD_TPCE_MS_LENGTH_SIZE_SHIFT); cardaddrsize = ((reg & PCCARD_TPCE_MS_CARDADDR_SIZE_MASK) >> PCCARD_TPCE_MS_CARDADDR_SIZE_SHIFT); hostaddrsize = (reg & PCCARD_TPCE_MS_HOSTADDR) ? cardaddrsize : 0; if (lengthsize == 0) { DPRINTF(("cfe memspace " "lengthsize == 0\n")); } for (i = 0; i < cfe->num_memspace; i++) { if (lengthsize) { cfe->memspace[i].length = 256 * pccard_tuple_read_n(tuple, lengthsize, idx); idx += lengthsize; } else { cfe->memspace[i].length = 0; } if (cfe->memspace[i].length == 0) { DPRINTF(("cfe->memspace[%d].length == 0\n", i)); } if (cardaddrsize) { cfe->memspace[i].cardaddr = 256 * pccard_tuple_read_n(tuple, cardaddrsize, idx); idx += cardaddrsize; } else { cfe->memspace[i].cardaddr = 0; } if (hostaddrsize) { cfe->memspace[i].hostaddr = 256 * pccard_tuple_read_n(tuple, hostaddrsize, idx); idx += hostaddrsize; } else { cfe->memspace[i].hostaddr = 0; } } } } else cfe->num_memspace = 0; if (misc) { if (tuple->length <= idx) { DPRINTF(("ran out of space before TCPE_MI\n")); goto abort_cfe; } reg = pccard_tuple_read_1(tuple, idx++); cfe->flags &= ~(PCCARD_CFE_POWERDOWN | PCCARD_CFE_READONLY | PCCARD_CFE_AUDIO); if (reg & PCCARD_TPCE_MI_PWRDOWN) cfe->flags |= PCCARD_CFE_POWERDOWN; if (reg & PCCARD_TPCE_MI_READONLY) cfe->flags |= PCCARD_CFE_READONLY; if (reg & PCCARD_TPCE_MI_AUDIO) cfe->flags |= PCCARD_CFE_AUDIO; cfe->maxtwins = reg & PCCARD_TPCE_MI_MAXTWINS; while (reg & PCCARD_TPCE_MI_EXT) { reg = pccard_tuple_read_1(tuple, idx++); } } /* skip all the subtuples */ } abort_cfe: DPRINTF(("CISTPL_CFTABLE_ENTRY\n")); break; default: DPRINTF(("unhandled CISTPL %#x\n", tuple->code)); break; } return (0); } static int decode_funce(const struct pccard_tuple *tuple, struct pccard_function *pf) { int i; int len; int type = pccard_tuple_read_1(tuple, 0); switch (pf->function) { case PCCARD_FUNCTION_DISK: if (type == PCCARD_TPLFE_TYPE_DISK_DEVICE_INTERFACE) { pf->pf_funce_disk_interface = pccard_tuple_read_1(tuple, 1); pf->pf_funce_disk_power = pccard_tuple_read_1(tuple, 2); } break; case PCCARD_FUNCTION_NETWORK: if (type == PCCARD_TPLFE_TYPE_LAN_NID) { len = pccard_tuple_read_1(tuple, 1); if (tuple->length < 2 + len || len > 8) { /* tuple length not enough or nid too long */ break; } for (i = 0; i < len; i++) { pf->pf_funce_lan_nid[i] = pccard_tuple_read_1(tuple, i + 2); } pf->pf_funce_lan_nidlen = len; } break; default: break; } return 0; }