Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/dtrace_test/@/dev/sym/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/dtrace_test/@/dev/sym/sym_fw2.h |
/*- * Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010 * PCI-SCSI controllers. * * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> * * This driver also supports the following Symbios/LSI PCI-SCSI chips: * 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895, * 53C810, 53C815, 53C825 and the 53C1510D is 53C8XX mode. * * * This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver. * Copyright (C) 1998-1999 Gerard Roudier * * The sym53c8xx driver is derived from the ncr53c8xx driver that had been * a port of the FreeBSD ncr driver to Linux-1.2.13. * * The original ncr driver has been written for 386bsd and FreeBSD by * Wolfgang Stanglmeier <wolf@cologne.de> * Stefan Esser <se@mi.Uni-Koeln.de> * Copyright (C) 1994 Wolfgang Stanglmeier * * The initialisation code, and part of the code that addresses * FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM * written by Justin T. Gibbs. * * Other major contributions: * * NVRAM detection and reading. * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> * *----------------------------------------------------------------------------- * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* $FreeBSD: release/9.1.0/sys/dev/sym/sym_fw2.h 220950 2011-04-22 12:46:39Z marius $ */ /* * Scripts for SYMBIOS-Processor * * We have to know the offsets of all labels before we reach * them (for forward jumps). Therefore we declare a struct * here. If you make changes inside the script, * * DONT FORGET TO CHANGE THE LENGTHS HERE! */ /* * Script fragments which are loaded into the on-chip RAM * of 825A, 875, 876, 895, 895A, 896 and 1010 chips. * Must not exceed 4K bytes. */ struct SYM_FWA_SCR { u32 start [ 14]; u32 getjob_begin [ 4]; u32 getjob_end [ 4]; u32 select [ 8]; u32 wf_sel_done [ 2]; u32 sel_done [ 2]; u32 send_ident [ 2]; #ifdef SYM_CONF_IARB_SUPPORT u32 select2 [ 8]; #else u32 select2 [ 2]; #endif u32 command [ 2]; u32 dispatch [ 28]; u32 sel_no_cmd [ 10]; u32 init [ 6]; u32 clrack [ 4]; u32 disp_status [ 4]; u32 datai_done [ 26]; u32 datao_done [ 12]; u32 datai_phase [ 2]; u32 datao_phase [ 4]; u32 msg_in [ 2]; u32 msg_in2 [ 10]; #ifdef SYM_CONF_IARB_SUPPORT u32 status [ 14]; #else u32 status [ 10]; #endif u32 complete [ 8]; u32 complete2 [ 12]; u32 complete_error [ 4]; u32 done [ 14]; u32 done_end [ 2]; u32 save_dp [ 8]; u32 restore_dp [ 4]; u32 disconnect [ 20]; #ifdef SYM_CONF_IARB_SUPPORT u32 idle [ 4]; #else u32 idle [ 2]; #endif #ifdef SYM_CONF_IARB_SUPPORT u32 ungetjob [ 6]; #else u32 ungetjob [ 4]; #endif u32 reselect [ 4]; u32 reselected [ 22]; u32 resel_scntl4 [ 20]; u32 resel_lun0 [ 6]; #if SYM_CONF_MAX_TASK*4 > 512 u32 resel_tag [ 26]; #elif SYM_CONF_MAX_TASK*4 > 256 u32 resel_tag [ 20]; #else u32 resel_tag [ 16]; #endif u32 resel_dsa [ 2]; u32 resel_dsa1 [ 6]; u32 resel_no_tag [ 6]; u32 data_in [SYM_CONF_MAX_SG * 2]; u32 data_in2 [ 4]; u32 data_out [SYM_CONF_MAX_SG * 2]; u32 data_out2 [ 4]; u32 pm0_data [ 12]; u32 pm0_data_out [ 6]; u32 pm0_data_end [ 6]; u32 pm1_data [ 12]; u32 pm1_data_out [ 6]; u32 pm1_data_end [ 6]; }; /* * Script fragments which stay in main memory for all chips * except for chips that support 8K on-chip RAM. */ struct SYM_FWB_SCR { u32 start64 [ 2]; u32 no_data [ 2]; u32 sel_for_abort [ 18]; u32 sel_for_abort_1 [ 2]; u32 msg_in_etc [ 12]; u32 msg_received [ 4]; u32 msg_weird_seen [ 4]; u32 msg_extended [ 20]; u32 msg_bad [ 6]; u32 msg_weird [ 4]; u32 msg_weird1 [ 8]; u32 wdtr_resp [ 6]; u32 send_wdtr [ 4]; u32 sdtr_resp [ 6]; u32 send_sdtr [ 4]; u32 ppr_resp [ 6]; u32 send_ppr [ 4]; u32 nego_bad_phase [ 4]; u32 msg_out [ 4]; u32 msg_out_done [ 4]; u32 data_ovrun [ 2]; u32 data_ovrun1 [ 22]; u32 data_ovrun2 [ 8]; u32 abort_resel [ 16]; u32 resend_ident [ 4]; u32 ident_break [ 4]; u32 ident_break_atn [ 4]; u32 sdata_in [ 6]; u32 resel_bad_lun [ 4]; u32 bad_i_t_l [ 4]; u32 bad_i_t_l_q [ 4]; u32 bad_status [ 6]; u32 pm_handle [ 20]; u32 pm_handle1 [ 4]; u32 pm_save [ 4]; u32 pm0_save [ 14]; u32 pm1_save [ 14]; /* WSR handling */ u32 pm_wsr_handle [ 42]; u32 wsr_ma_helper [ 4]; /* Data area */ u32 zero [ 1]; u32 scratch [ 1]; u32 pm0_data_addr [ 1]; u32 pm1_data_addr [ 1]; u32 saved_dsa [ 1]; u32 saved_drs [ 1]; u32 done_pos [ 1]; u32 startpos [ 1]; u32 targtbl [ 1]; /* End of data area */ u32 snooptest [ 6]; u32 snoopend [ 2]; }; static const struct SYM_FWA_SCR SYM_FWA_SCR = { /*--------------------------< START >----------------------------*/ { /* * Switch the LED on. * Will be patched with a NO_OP if LED * not needed or not desired. */ SCR_REG_REG (gpreg, SCR_AND, 0xfe), 0, /* * Clear SIGP. */ SCR_FROM_REG (ctest2), 0, /* * Stop here if the C code wants to perform * some error recovery procedure manually. * (Indicate this by setting SEM in ISTAT) */ SCR_FROM_REG (istat), 0, /* * Report to the C code the next position in * the start queue the SCRIPTS will schedule. * The C code must not change SCRATCHA. */ SCR_LOAD_ABS (scratcha, 4), PADDR_B (startpos), SCR_INT ^ IFTRUE (MASK (SEM, SEM)), SIR_SCRIPT_STOPPED, /* * Start the next job. * * @DSA = start point for this job. * SCRATCHA = address of this job in the start queue. * * We will restore startpos with SCRATCHA if we fails the * arbitration or if it is the idle job. * * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS * is a critical path. If it is partially executed, it then * may happen that the job address is not yet in the DSA * and the next queue position points to the next JOB. */ SCR_LOAD_ABS (dsa, 4), PADDR_B (startpos), SCR_LOAD_REL (temp, 4), 4, }/*-------------------------< GETJOB_BEGIN >---------------------*/,{ SCR_STORE_ABS (temp, 4), PADDR_B (startpos), SCR_LOAD_REL (dsa, 4), 0, }/*-------------------------< GETJOB_END >-----------------------*/,{ SCR_LOAD_REL (temp, 4), 0, SCR_RETURN, 0, }/*-------------------------< SELECT >---------------------------*/,{ /* * DSA contains the address of a scheduled * data structure. * * SCRATCHA contains the address of the start queue * entry which points to the next job. * * Set Initiator mode. * * (Target mode is left as an exercise for the reader) */ SCR_CLR (SCR_TRG), 0, /* * And try to select this target. */ SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select), PADDR_A (ungetjob), /* * Now there are 4 possibilities: * * (1) The chip loses arbitration. * This is ok, because it will try again, * when the bus becomes idle. * (But beware of the timeout function!) * * (2) The chip is reselected. * Then the script processor takes the jump * to the RESELECT label. * * (3) The chip wins arbitration. * Then it will execute SCRIPTS instruction until * the next instruction that checks SCSI phase. * Then will stop and wait for selection to be * complete or selection time-out to occur. * * After having won arbitration, the SCRIPTS * processor is able to execute instructions while * the SCSI core is performing SCSI selection. */ /* * load the savep (saved data pointer) into * the actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.head.savep), /* * Initialize the status registers */ SCR_LOAD_REL (scr0, 4), offsetof (struct sym_ccb, phys.head.status), }/*-------------------------< WF_SEL_DONE >----------------------*/,{ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)), SIR_SEL_ATN_NO_MSG_OUT, }/*-------------------------< SEL_DONE >-------------------------*/,{ /* * C1010-33 errata work-around. * Due to a race, the SCSI core may not have * loaded SCNTL3 on SEL_TBL instruction. * We reload it once phase is stable. * Patched with a NOOP for other chips. */ SCR_LOAD_REL (scntl3, 1), offsetof(struct sym_dsb, select.sel_scntl3), }/*-------------------------< SEND_IDENT >-----------------------*/,{ /* * Selection complete. * Send the IDENTIFY and possibly the TAG message * and negotiation message if present. */ SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct sym_dsb, smsg), }/*-------------------------< SELECT2 >--------------------------*/,{ #ifdef SYM_CONF_IARB_SUPPORT /* * Set IMMEDIATE ARBITRATION if we have been given * a hint to do so. (Some job to do after this one). */ SCR_FROM_REG (HF_REG), 0, SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)), 8, SCR_REG_REG (scntl1, SCR_OR, IARB), 0, #endif /* * Anticipate the COMMAND phase. * This is the PHASE we expect at this point. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), PADDR_A (sel_no_cmd), }/*-------------------------< COMMAND >--------------------------*/,{ /* * ... and send the command */ SCR_MOVE_TBL ^ SCR_COMMAND, offsetof (struct sym_dsb, cmd), }/*-------------------------< DISPATCH >-------------------------*/,{ /* * MSG_IN is the only phase that shall be * entered at least once for each (re)selection. * So we test it first. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR_A (msg_in), SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)), PADDR_A (datao_phase), SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)), PADDR_A (datai_phase), SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), PADDR_A (status), SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), PADDR_A (command), SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), PADDR_B (msg_out), /* * Discard as many illegal phases as * required and tell the C code about. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)), 16, SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, HADDR_1 (scratch), SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)), -16, SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)), 16, SCR_MOVE_ABS (1) ^ SCR_ILG_IN, HADDR_1 (scratch), SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)), -16, SCR_INT, SIR_BAD_PHASE, SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< SEL_NO_CMD >-----------------------*/,{ /* * The target does not switch to command * phase after IDENTIFY has been sent. * * If it stays in MSG OUT phase send it * the IDENTIFY again. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDR_B (resend_ident), /* * If target does not switch to MSG IN phase * and we sent a negotiation, assert the * failure immediately. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR_A (dispatch), SCR_FROM_REG (HS_REG), 0, SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), SIR_NEGO_FAILED, /* * Jump to dispatcher. */ SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< INIT >-----------------------------*/,{ /* * Wait for the SCSI RESET signal to be * inactive before restarting operations, * since the chip may hang on SEL_ATN * if SCSI RESET is active. */ SCR_FROM_REG (sstat0), 0, SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)), -16, SCR_JUMP, PADDR_A (start), }/*-------------------------< CLRACK >---------------------------*/,{ /* * Terminate possible pending message phase. */ SCR_CLR (SCR_ACK), 0, SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< DISP_STATUS >----------------------*/,{ /* * Anticipate STATUS phase. * * Does spare 3 SCRIPTS instructions when we have * completed the INPUT of the data. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), PADDR_A (status), SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< DATAI_DONE >-----------------------*/,{ /* * If the device still wants to send us data, * we must count the extra bytes. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_IN)), PADDR_B (data_ovrun), /* * If the SWIDE is not full, jump to dispatcher. * We anticipate a STATUS phase. */ SCR_FROM_REG (scntl2), 0, SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)), PADDR_A (disp_status), /* * The SWIDE is full. * Clear this condition. */ SCR_REG_REG (scntl2, SCR_OR, WSR), 0, /* * We are expecting an IGNORE RESIDUE message * from the device, otherwise we are in data * overrun condition. Check against MSG_IN phase. */ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), SIR_SWIDE_OVERRUN, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR_A (disp_status), /* * We are in MSG_IN phase, * Read the first byte of the message. * If it is not an IGNORE RESIDUE message, * signal overrun and jump to message * processing. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, HADDR_1 (msgin[0]), SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)), SIR_SWIDE_OVERRUN, SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)), PADDR_A (msg_in2), /* * We got the message we expected. * Read the 2nd byte, and jump to dispatcher. */ SCR_CLR (SCR_ACK), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, HADDR_1 (msgin[1]), SCR_CLR (SCR_ACK), 0, SCR_JUMP, PADDR_A (disp_status), }/*-------------------------< DATAO_DONE >-----------------------*/,{ /* * If the device wants us to send more data, * we must count the extra bytes. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)), PADDR_B (data_ovrun), /* * If the SODL is not full jump to dispatcher. * We anticipate a STATUS phase. */ SCR_FROM_REG (scntl2), 0, SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)), PADDR_A (disp_status), /* * The SODL is full, clear this condition. */ SCR_REG_REG (scntl2, SCR_OR, WSS), 0, /* * And signal a DATA UNDERRUN condition * to the C code. */ SCR_INT, SIR_SODL_UNDERRUN, SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< DATAI_PHASE >----------------------*/,{ SCR_RETURN, 0, }/*-------------------------< DATAO_PHASE >----------------------*/,{ /* * C1010-66 errata work-around. * Extra clocks of data hold must be inserted * in DATA OUT phase on 33 MHz PCI BUS. * Patched with a NOOP for other chips. */ SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)), 0, SCR_RETURN, 0, }/*-------------------------< MSG_IN >---------------------------*/,{ /* * Get the first byte of the message. * * The script processor doesn't negate the * ACK signal after this transfer. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, HADDR_1 (msgin[0]), }/*-------------------------< MSG_IN2 >--------------------------*/,{ /* * Check first against 1 byte messages * that we handle from SCRIPTS. */ SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)), PADDR_A (complete), SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)), PADDR_A (disconnect), SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)), PADDR_A (save_dp), SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)), PADDR_A (restore_dp), /* * We handle all other messages from the * C code, so no need to waste on-chip RAM * for those ones. */ SCR_JUMP, PADDR_B (msg_in_etc), }/*-------------------------< STATUS >---------------------------*/,{ /* * get the status */ SCR_MOVE_ABS (1) ^ SCR_STATUS, HADDR_1 (scratch), #ifdef SYM_CONF_IARB_SUPPORT /* * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, * since we may have to tamper the start queue from * the C code. */ SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)), 8, SCR_REG_REG (scntl1, SCR_AND, ~IARB), 0, #endif /* * save status to scsi_status. * mark as complete. */ SCR_TO_REG (SS_REG), 0, SCR_LOAD_REG (HS_REG, HS_COMPLETE), 0, /* * Anticipate the MESSAGE PHASE for * the TASK COMPLETE message. */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), PADDR_A (msg_in), SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< COMPLETE >-------------------------*/,{ /* * Complete message. * * Copy the data pointer to LASTP. */ SCR_STORE_REL (temp, 4), offsetof (struct sym_ccb, phys.head.lastp), /* * When we terminate the cycle by clearing ACK, * the target may disconnect immediately. * * We don't want to be told of an "unexpected disconnect", * so we disable this feature. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, /* * Terminate cycle ... */ SCR_CLR (SCR_ACK|SCR_ATN), 0, /* * ... and wait for the disconnect. */ SCR_WAIT_DISC, 0, }/*-------------------------< COMPLETE2 >------------------------*/,{ /* * Save host status. */ SCR_STORE_REL (scr0, 4), offsetof (struct sym_ccb, phys.head.status), /* * Some bridges may reorder DMA writes to memory. * We donnot want the CPU to deal with completions * without all the posted write having been flushed * to memory. This DUMMY READ should flush posted * buffers prior to the CPU having to deal with * completions. */ SCR_LOAD_REL (scr0, 4), /* DUMMY READ */ offsetof (struct sym_ccb, phys.head.status), /* * If command resulted in not GOOD status, * call the C code if needed. */ SCR_FROM_REG (SS_REG), 0, SCR_CALL ^ IFFALSE (DATA (S_GOOD)), PADDR_B (bad_status), /* * If we performed an auto-sense, call * the C code to synchronyze task aborts * with UNIT ATTENTION conditions. */ SCR_FROM_REG (HF_REG), 0, SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))), 16, }/*-------------------------< COMPLETE_ERROR >-------------------*/,{ SCR_LOAD_ABS (scratcha, 4), PADDR_B (startpos), SCR_INT, SIR_COMPLETE_ERROR, }/*-------------------------< DONE >-----------------------------*/,{ /* * Copy the DSA to the DONE QUEUE and * signal completion to the host. * If we are interrupted between DONE * and DONE_END, we must reset, otherwise * the completed CCB may be lost. */ SCR_STORE_ABS (dsa, 4), PADDR_B (saved_dsa), SCR_LOAD_ABS (dsa, 4), PADDR_B (done_pos), SCR_LOAD_ABS (scratcha, 4), PADDR_B (saved_dsa), SCR_STORE_REL (scratcha, 4), 0, /* * The instruction below reads the DONE QUEUE next * free position from memory. * In addition it ensures that all PCI posted writes * are flushed and so the DSA value of the done * CCB is visible by the CPU before INTFLY is raised. */ SCR_LOAD_REL (temp, 4), 4, SCR_INT_FLY, 0, SCR_STORE_ABS (temp, 4), PADDR_B (done_pos), }/*-------------------------< DONE_END >-------------------------*/,{ SCR_JUMP, PADDR_A (start), }/*-------------------------< SAVE_DP >--------------------------*/,{ /* * Clear ACK immediately. * No need to delay it. */ SCR_CLR (SCR_ACK), 0, /* * Keep track we received a SAVE DP, so * we will switch to the other PM context * on the next PM since the DP may point * to the current PM context. */ SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), 0, /* * SAVE_DP message: * Copy the data pointer to SAVEP. */ SCR_STORE_REL (temp, 4), offsetof (struct sym_ccb, phys.head.savep), SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< RESTORE_DP >-----------------------*/,{ /* * RESTORE_DP message: * Copy SAVEP to actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.head.savep), SCR_JUMP, PADDR_A (clrack), }/*-------------------------< DISCONNECT >-----------------------*/,{ /* * DISCONNECTing ... * * disable the "unexpected disconnect" feature, * and remove the ACK signal. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_CLR (SCR_ACK|SCR_ATN), 0, /* * Wait for the disconnect. */ SCR_WAIT_DISC, 0, /* * Status is: DISCONNECTED. */ SCR_LOAD_REG (HS_REG, HS_DISCONNECT), 0, /* * Save host status. */ SCR_STORE_REL (scr0, 4), offsetof (struct sym_ccb, phys.head.status), /* * If QUIRK_AUTOSAVE is set, * do a "save pointer" operation. */ SCR_FROM_REG (QU_REG), 0, SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)), PADDR_A (start), /* * like SAVE_DP message: * Remember we saved the data pointer. * Copy data pointer to SAVEP. */ SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), 0, SCR_STORE_REL (temp, 4), offsetof (struct sym_ccb, phys.head.savep), SCR_JUMP, PADDR_A (start), }/*-------------------------< IDLE >-----------------------------*/,{ /* * Nothing to do? * Switch the LED off and wait for reselect. * Will be patched with a NO_OP if LED * not needed or not desired. */ SCR_REG_REG (gpreg, SCR_OR, 0x01), 0, #ifdef SYM_CONF_IARB_SUPPORT SCR_JUMPR, 8, #endif }/*-------------------------< UNGETJOB >-------------------------*/,{ #ifdef SYM_CONF_IARB_SUPPORT /* * Set IMMEDIATE ARBITRATION, for the next time. * This will give us better chance to win arbitration * for the job we just wanted to do. */ SCR_REG_REG (scntl1, SCR_OR, IARB), 0, #endif /* * We are not able to restart the SCRIPTS if we are * interrupted and these instruction haven't been * all executed. BTW, this is very unlikely to * happen, but we check that from the C code. */ SCR_LOAD_REG (dsa, 0xff), 0, SCR_STORE_ABS (scratcha, 4), PADDR_B (startpos), }/*-------------------------< RESELECT >-------------------------*/,{ /* * Make sure we are in initiator mode. */ SCR_CLR (SCR_TRG), 0, /* * Sleep waiting for a reselection. */ SCR_WAIT_RESEL, PADDR_A(start), }/*-------------------------< RESELECTED >-----------------------*/,{ /* * Switch the LED on. * Will be patched with a NO_OP if LED * not needed or not desired. */ SCR_REG_REG (gpreg, SCR_AND, 0xfe), 0, /* * load the target id into the sdid */ SCR_REG_SFBR (ssid, SCR_AND, 0x8F), 0, SCR_TO_REG (sdid), 0, /* * Load the target control block address */ SCR_LOAD_ABS (dsa, 4), PADDR_B (targtbl), SCR_SFBR_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_AND, 0x3c), 0, SCR_LOAD_REL (dsa, 4), 0, /* * We expect MESSAGE IN phase. * If not, get help from the C code. */ SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), SIR_RESEL_NO_MSG_IN, /* * Load the legacy synchronous transfer registers. */ SCR_LOAD_REL (scntl3, 1), offsetof(struct sym_tcb, head.wval), SCR_LOAD_REL (sxfer, 1), offsetof(struct sym_tcb, head.sval), }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{ /* * The C1010 uses a new synchronous timing scheme. * Will be patched with a NO_OP if not a C1010. */ SCR_LOAD_REL (scntl4, 1), offsetof(struct sym_tcb, head.uval), /* * Get the IDENTIFY message. */ SCR_MOVE_ABS (1) ^ SCR_MSG_IN, HADDR_1 (msgin), /* * If IDENTIFY LUN #0, use a faster path * to find the LCB structure. */ SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)), PADDR_A (resel_lun0), /* * If message isn't an IDENTIFY, * tell the C code about. */ SCR_INT ^ IFFALSE (MASK (0x80, 0x80)), SIR_RESEL_NO_IDENTIFY, /* * It is an IDENTIFY message, * Load the LUN control block address. */ SCR_LOAD_REL (dsa, 4), offsetof(struct sym_tcb, head.luntbl_sa), SCR_SFBR_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_SHL, 0), 0, SCR_REG_REG (dsa, SCR_AND, 0xfc), 0, SCR_LOAD_REL (dsa, 4), 0, SCR_JUMPR, 8, }/*-------------------------< RESEL_LUN0 >-----------------------*/,{ /* * LUN 0 special case (but usual one :)) */ SCR_LOAD_REL (dsa, 4), offsetof(struct sym_tcb, head.lun0_sa), /* * Jump indirectly to the reselect action for this LUN. */ SCR_LOAD_REL (temp, 4), offsetof(struct sym_lcb, head.resel_sa), SCR_RETURN, 0, /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */ }/*-------------------------< RESEL_TAG >------------------------*/,{ /* * ACK the IDENTIFY previously received. */ SCR_CLR (SCR_ACK), 0, /* * It shall be a tagged command. * Read SIMPLE+TAG. * The C code will deal with errors. * Aggressive optimization, isn't it? :) */ SCR_MOVE_ABS (2) ^ SCR_MSG_IN, HADDR_1 (msgin), /* * Load the pointer to the tagged task * table for this LUN. */ SCR_LOAD_REL (dsa, 4), offsetof(struct sym_lcb, head.itlq_tbl_sa), /* * The SIDL still contains the TAG value. * Aggressive optimization, isn't it? :):) */ SCR_REG_SFBR (sidl, SCR_SHL, 0), 0, #if SYM_CONF_MAX_TASK*4 > 512 SCR_JUMPR ^ IFFALSE (CARRYSET), 8, SCR_REG_REG (dsa1, SCR_OR, 2), 0, SCR_REG_REG (sfbr, SCR_SHL, 0), 0, SCR_JUMPR ^ IFFALSE (CARRYSET), 8, SCR_REG_REG (dsa1, SCR_OR, 1), 0, #elif SYM_CONF_MAX_TASK*4 > 256 SCR_JUMPR ^ IFFALSE (CARRYSET), 8, SCR_REG_REG (dsa1, SCR_OR, 1), 0, #endif /* * Retrieve the DSA of this task. * JUMP indirectly to the restart point of the CCB. */ SCR_SFBR_REG (dsa, SCR_AND, 0xfc), 0, SCR_LOAD_REL (dsa, 4), 0, SCR_LOAD_REL (temp, 4), offsetof(struct sym_ccb, phys.head.go.restart), SCR_RETURN, 0, /* In normal situations we branch to RESEL_DSA */ }/*-------------------------< RESEL_DSA >------------------------*/,{ /* * ACK the IDENTIFY or TAG previously received. */ SCR_CLR (SCR_ACK), 0, }/*-------------------------< RESEL_DSA1 >-----------------------*/,{ /* * load the savep (saved pointer) into * the actual data pointer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.head.savep), /* * Initialize the status registers */ SCR_LOAD_REL (scr0, 4), offsetof (struct sym_ccb, phys.head.status), /* * Jump to dispatcher. */ SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< RESEL_NO_TAG >---------------------*/,{ /* * Load the DSA with the unique ITL task. */ SCR_LOAD_REL (dsa, 4), offsetof(struct sym_lcb, head.itl_task_sa), /* * JUMP indirectly to the restart point of the CCB. */ SCR_LOAD_REL (temp, 4), offsetof(struct sym_ccb, phys.head.go.restart), SCR_RETURN, 0, /* In normal situations we branch to RESEL_DSA */ }/*-------------------------< DATA_IN >--------------------------*/,{ /* * Because the size depends on the * #define SYM_CONF_MAX_SG parameter, * it is filled in at runtime. * * ##===========< i=0; i<SYM_CONF_MAX_SG >========= * || SCR_CHMOV_TBL ^ SCR_DATA_IN, * || offsetof (struct sym_dsb, data[ i]), * ##========================================== */ 0 }/*-------------------------< DATA_IN2 >-------------------------*/,{ SCR_CALL, PADDR_A (datai_done), SCR_JUMP, PADDR_B (data_ovrun), }/*-------------------------< DATA_OUT >-------------------------*/,{ /* * Because the size depends on the * #define SYM_CONF_MAX_SG parameter, * it is filled in at runtime. * * ##===========< i=0; i<SYM_CONF_MAX_SG >========= * || SCR_CHMOV_TBL ^ SCR_DATA_OUT, * || offsetof (struct sym_dsb, data[ i]), * ##========================================== */ 0 }/*-------------------------< DATA_OUT2 >------------------------*/,{ SCR_CALL, PADDR_A (datao_done), SCR_JUMP, PADDR_B (data_ovrun), }/*-------------------------< PM0_DATA >-------------------------*/,{ /* * Read our host flags to SFBR, so we will be able * to check against the data direction we expect. */ SCR_FROM_REG (HF_REG), 0, /* * Check against actual DATA PHASE. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), PADDR_A (pm0_data_out), /* * Actual phase is DATA IN. * Check against expected direction. */ SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)), PADDR_B (data_ovrun), /* * Keep track we are moving data from the * PM0 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), 0, /* * Move the data to memory. */ SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct sym_ccb, phys.pm0.sg), SCR_JUMP, PADDR_A (pm0_data_end), }/*-------------------------< PM0_DATA_OUT >---------------------*/,{ /* * Actual phase is DATA OUT. * Check against expected direction. */ SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)), PADDR_B (data_ovrun), /* * Keep track we are moving data from the * PM0 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), 0, /* * Move the data from memory. */ SCR_CHMOV_TBL ^ SCR_DATA_OUT, offsetof (struct sym_ccb, phys.pm0.sg), }/*-------------------------< PM0_DATA_END >---------------------*/,{ /* * Clear the flag that told we were moving * data from the PM0 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)), 0, /* * Return to the previous DATA script which * is guaranteed by design (if no bug) to be * the main DATA script for this transfer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.pm0.ret), SCR_RETURN, 0, }/*-------------------------< PM1_DATA >-------------------------*/,{ /* * Read our host flags to SFBR, so we will be able * to check against the data direction we expect. */ SCR_FROM_REG (HF_REG), 0, /* * Check against actual DATA PHASE. */ SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), PADDR_A (pm1_data_out), /* * Actual phase is DATA IN. * Check against expected direction. */ SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)), PADDR_B (data_ovrun), /* * Keep track we are moving data from the * PM1 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), 0, /* * Move the data to memory. */ SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct sym_ccb, phys.pm1.sg), SCR_JUMP, PADDR_A (pm1_data_end), }/*-------------------------< PM1_DATA_OUT >---------------------*/,{ /* * Actual phase is DATA OUT. * Check against expected direction. */ SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)), PADDR_B (data_ovrun), /* * Keep track we are moving data from the * PM1 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), 0, /* * Move the data from memory. */ SCR_CHMOV_TBL ^ SCR_DATA_OUT, offsetof (struct sym_ccb, phys.pm1.sg), }/*-------------------------< PM1_DATA_END >---------------------*/,{ /* * Clear the flag that told we were moving * data from the PM1 DATA mini-script. */ SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)), 0, /* * Return to the previous DATA script which * is guaranteed by design (if no bug) to be * the main DATA script for this transfer. */ SCR_LOAD_REL (temp, 4), offsetof (struct sym_ccb, phys.pm1.ret), SCR_RETURN, 0, }/*-------------------------<>-----------------------------------*/ }; static const struct SYM_FWB_SCR SYM_FWB_SCR = { /*--------------------------< START64 >--------------------------*/ { /* * SCRIPT entry point for the 895A, 896 and 1010. * For now, there is no specific stuff for those * chips at this point, but this may come. */ SCR_JUMP, PADDR_A (init), }/*-------------------------< NO_DATA >--------------------------*/,{ SCR_JUMP, PADDR_B (data_ovrun), }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{ /* * We are jumped here by the C code, if we have * some target to reset or some disconnected * job to abort. Since error recovery is a serious * busyness, we will really reset the SCSI BUS, if * case of a SCSI interrupt occurring in this path. */ /* * Set initiator mode. */ SCR_CLR (SCR_TRG), 0, /* * And try to select this target. */ SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel), PADDR_A (reselect), /* * Wait for the selection to complete or * the selection to time out. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), -8, /* * Call the C code. */ SCR_INT, SIR_TARGET_SELECTED, /* * The C code should let us continue here. * Send the 'kiss of death' message. * We expect an immediate disconnect once * the target has eaten the message. */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_MOVE_TBL ^ SCR_MSG_OUT, offsetof (struct sym_hcb, abrt_tbl), SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, /* * Tell the C code that we are done. */ SCR_INT, SIR_ABORT_SENT, }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{ /* * Jump at scheduler. */ SCR_JUMP, PADDR_A (start), }/*-------------------------< MSG_IN_ETC >-----------------------*/,{ /* * If it is an EXTENDED (variable size message) * Handle it. */ SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), PADDR_B (msg_extended), /* * Let the C code handle any other * 1 byte message. */ SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)), PADDR_B (msg_received), SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)), PADDR_B (msg_received), /* * We donnot handle 2 bytes messages from SCRIPTS. * So, let the C code deal with these ones too. */ SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)), PADDR_B (msg_weird_seen), SCR_CLR (SCR_ACK), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, HADDR_1 (msgin[1]), }/*-------------------------< MSG_RECEIVED >---------------------*/,{ SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ 0, SCR_INT, SIR_MSG_RECEIVED, }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{ SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ 0, SCR_INT, SIR_MSG_WEIRD, }/*-------------------------< MSG_EXTENDED >---------------------*/,{ /* * Clear ACK and get the next byte * assumed to be the message length. */ SCR_CLR (SCR_ACK), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_IN, HADDR_1 (msgin[1]), /* * Try to catch some unlikely situations as 0 length * or too large the length. */ SCR_JUMP ^ IFTRUE (DATA (0)), PADDR_B (msg_weird_seen), SCR_TO_REG (scratcha), 0, SCR_REG_REG (sfbr, SCR_ADD, (256-8)), 0, SCR_JUMP ^ IFTRUE (CARRYSET), PADDR_B (msg_weird_seen), /* * We donnot handle extended messages from SCRIPTS. * Read the amount of data corresponding to the * message length and call the C code. */ SCR_STORE_REL (scratcha, 1), offsetof (struct sym_dsb, smsg_ext.size), SCR_CLR (SCR_ACK), 0, SCR_MOVE_TBL ^ SCR_MSG_IN, offsetof (struct sym_dsb, smsg_ext), SCR_JUMP, PADDR_B (msg_received), }/*-------------------------< MSG_BAD >--------------------------*/,{ /* * unimplemented message - reject it. */ SCR_INT, SIR_REJECT_TO_SEND, SCR_SET (SCR_ATN), 0, SCR_JUMP, PADDR_A (clrack), }/*-------------------------< MSG_WEIRD >------------------------*/,{ /* * weird message received * ignore all MSG IN phases and reject it. */ SCR_INT, SIR_REJECT_TO_SEND, SCR_SET (SCR_ATN), 0, }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{ SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), PADDR_A (dispatch), SCR_MOVE_ABS (1) ^ SCR_MSG_IN, HADDR_1 (scratch), SCR_JUMP, PADDR_B (msg_weird1), }/*-------------------------< WDTR_RESP >------------------------*/,{ /* * let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDR_B (nego_bad_phase), }/*-------------------------< SEND_WDTR >------------------------*/,{ /* * Send the M_X_WIDE_REQ */ SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, HADDR_1 (msgout), SCR_JUMP, PADDR_B (msg_out_done), }/*-------------------------< SDTR_RESP >------------------------*/,{ /* * let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDR_B (nego_bad_phase), }/*-------------------------< SEND_SDTR >------------------------*/,{ /* * Send the M_X_SYNC_REQ */ SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, HADDR_1 (msgout), SCR_JUMP, PADDR_B (msg_out_done), }/*-------------------------< PPR_RESP >-------------------------*/,{ /* * let the target fetch our answer. */ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), PADDR_B (nego_bad_phase), }/*-------------------------< SEND_PPR >-------------------------*/,{ /* * Send the M_X_PPR_REQ */ SCR_MOVE_ABS (8) ^ SCR_MSG_OUT, HADDR_1 (msgout), SCR_JUMP, PADDR_B (msg_out_done), }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{ SCR_INT, SIR_NEGO_PROTO, SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< MSG_OUT >--------------------------*/,{ /* * The target requests a message. * We donnot send messages that may * require the device to go to bus free. */ SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, HADDR_1 (msgout), /* * ... wait for the next phase * if it's a message out, send it again, ... */ SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), PADDR_B (msg_out), }/*-------------------------< MSG_OUT_DONE >---------------------*/,{ /* * Let the C code be aware of the * sent message and clear the message. */ SCR_INT, SIR_MSG_OUT_DONE, /* * ... and process the next phase */ SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< DATA_OVRUN >-----------------------*/,{ /* * Use scratcha to count the extra bytes. */ SCR_LOAD_ABS (scratcha, 4), PADDR_B (zero), }/*-------------------------< DATA_OVRUN1 >----------------------*/,{ /* * The target may want to transfer too much data. * * If phase is DATA OUT write 1 byte and count it. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), 16, SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT, HADDR_1 (scratch), SCR_JUMP, PADDR_B (data_ovrun2), /* * If WSR is set, clear this condition, and * count this byte. */ SCR_FROM_REG (scntl2), 0, SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), 16, SCR_REG_REG (scntl2, SCR_OR, WSR), 0, SCR_JUMP, PADDR_B (data_ovrun2), /* * Finally check against DATA IN phase. * Signal data overrun to the C code * and jump to dispatcher if not so. * Read 1 byte otherwise and count it. */ SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)), 16, SCR_INT, SIR_DATA_OVERRUN, SCR_JUMP, PADDR_A (dispatch), SCR_CHMOV_ABS (1) ^ SCR_DATA_IN, HADDR_1 (scratch), }/*-------------------------< DATA_OVRUN2 >----------------------*/,{ /* * Count this byte. * This will allow to return a negative * residual to user. */ SCR_REG_REG (scratcha, SCR_ADD, 0x01), 0, SCR_REG_REG (scratcha1, SCR_ADDC, 0), 0, SCR_REG_REG (scratcha2, SCR_ADDC, 0), 0, /* * .. and repeat as required. */ SCR_JUMP, PADDR_B (data_ovrun1), }/*-------------------------< ABORT_RESEL >----------------------*/,{ SCR_SET (SCR_ATN), 0, SCR_CLR (SCR_ACK), 0, /* * send the abort/abortag/reset message * we expect an immediate disconnect */ SCR_REG_REG (scntl2, SCR_AND, 0x7f), 0, SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, HADDR_1 (msgout), SCR_CLR (SCR_ACK|SCR_ATN), 0, SCR_WAIT_DISC, 0, SCR_INT, SIR_RESEL_ABORTED, SCR_JUMP, PADDR_A (start), }/*-------------------------< RESEND_IDENT >---------------------*/,{ /* * The target stays in MSG OUT phase after having acked * Identify [+ Tag [+ Extended message ]]. Targets shall * behave this way on parity error. * We must send it again all the messages. */ SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */ SCR_JUMP, PADDR_A (send_ident), }/*-------------------------< IDENT_BREAK >----------------------*/,{ SCR_CLR (SCR_ATN), 0, SCR_JUMP, PADDR_A (select2), }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{ SCR_SET (SCR_ATN), 0, SCR_JUMP, PADDR_A (select2), }/*-------------------------< SDATA_IN >-------------------------*/,{ SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct sym_dsb, sense), SCR_CALL, PADDR_A (datai_done), SCR_JUMP, PADDR_B (data_ovrun), }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{ /* * Message is an IDENTIFY, but lun is unknown. * Signal problem to C code for logging the event. * Send a M_ABORT to clear all pending tasks. */ SCR_INT, SIR_RESEL_BAD_LUN, SCR_JUMP, PADDR_B (abort_resel), }/*-------------------------< BAD_I_T_L >------------------------*/,{ /* * We donnot have a task for that I_T_L. * Signal problem to C code for logging the event. * Send a M_ABORT message. */ SCR_INT, SIR_RESEL_BAD_I_T_L, SCR_JUMP, PADDR_B (abort_resel), }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{ /* * We donnot have a task that matches the tag. * Signal problem to C code for logging the event. * Send a M_ABORTTAG message. */ SCR_INT, SIR_RESEL_BAD_I_T_L_Q, SCR_JUMP, PADDR_B (abort_resel), }/*-------------------------< BAD_STATUS >-----------------------*/,{ /* * Anything different from INTERMEDIATE * CONDITION MET should be a bad SCSI status, * given that GOOD status has already been tested. * Call the C code. */ SCR_LOAD_ABS (scratcha, 4), PADDR_B (startpos), SCR_INT ^ IFFALSE (DATA (S_COND_MET)), SIR_BAD_SCSI_STATUS, SCR_RETURN, 0, }/*-------------------------< PM_HANDLE >------------------------*/,{ /* * Phase mismatch handling. * * Since we have to deal with 2 SCSI data pointers * (current and saved), we need at least 2 contexts. * Each context (pm0 and pm1) has a saved area, a * SAVE mini-script and a DATA phase mini-script. */ /* * Get the PM handling flags. */ SCR_FROM_REG (HF_REG), 0, /* * If no flags (1rst PM for example), avoid * all the below heavy flags testing. * This makes the normal case a bit faster. */ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))), PADDR_B (pm_handle1), /* * If we received a SAVE DP, switch to the * other PM context since the savep may point * to the current PM context. */ SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)), 8, SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM), 0, /* * If we have been interrupt in a PM DATA mini-script, * we take the return address from the corresponding * saved area. * This ensure the return address always points to the * main DATA script for this transfer. */ SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))), PADDR_B (pm_handle1), SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)), 16, SCR_LOAD_REL (ia, 4), offsetof(struct sym_ccb, phys.pm0.ret), SCR_JUMP, PADDR_B (pm_save), SCR_LOAD_REL (ia, 4), offsetof(struct sym_ccb, phys.pm1.ret), SCR_JUMP, PADDR_B (pm_save), }/*-------------------------< PM_HANDLE1 >-----------------------*/,{ /* * Normal case. * Update the return address so that it * will point after the interrupted MOVE. */ SCR_REG_REG (ia, SCR_ADD, 8), 0, SCR_REG_REG (ia1, SCR_ADDC, 0), 0, }/*-------------------------< PM_SAVE >--------------------------*/,{ /* * Clear all the flags that told us if we were * interrupted in a PM DATA mini-script and/or * we received a SAVE DP. */ SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))), 0, /* * Choose the current PM context. */ SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)), PADDR_B (pm1_save), }/*-------------------------< PM0_SAVE >-------------------------*/,{ SCR_STORE_REL (ia, 4), offsetof(struct sym_ccb, phys.pm0.ret), /* * If WSR bit is set, either UA and RBC may * have to be changed whether the device wants * to ignore this residue or not. */ SCR_FROM_REG (scntl2), 0, SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), PADDR_B (pm_wsr_handle), /* * Save the remaining byte count, the updated * address and the return address. */ SCR_STORE_REL (rbc, 4), offsetof(struct sym_ccb, phys.pm0.sg.size), SCR_STORE_REL (ua, 4), offsetof(struct sym_ccb, phys.pm0.sg.addr), /* * Set the current pointer at the PM0 DATA mini-script. */ SCR_LOAD_ABS (temp, 4), PADDR_B (pm0_data_addr), SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< PM1_SAVE >-------------------------*/,{ SCR_STORE_REL (ia, 4), offsetof(struct sym_ccb, phys.pm1.ret), /* * If WSR bit is set, either UA and RBC may * have to be changed whether the device wants * to ignore this residue or not. */ SCR_FROM_REG (scntl2), 0, SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), PADDR_B (pm_wsr_handle), /* * Save the remaining byte count, the updated * address and the return address. */ SCR_STORE_REL (rbc, 4), offsetof(struct sym_ccb, phys.pm1.sg.size), SCR_STORE_REL (ua, 4), offsetof(struct sym_ccb, phys.pm1.sg.addr), /* * Set the current pointer at the PM1 DATA mini-script. */ SCR_LOAD_ABS (temp, 4), PADDR_B (pm1_data_addr), SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{ /* * Phase mismatch handling from SCRIPT with WSR set. * Such a condition can occur if the chip wants to * execute a CHMOV(size > 1) when the WSR bit is * set and the target changes PHASE. * * We must move the residual byte to memory. * * UA contains bit 0..31 of the address to * move the residual byte. * Move it to the table indirect. */ SCR_STORE_REL (ua, 4), offsetof (struct sym_ccb, phys.wresid.addr), /* * Increment UA (move address to next position). */ SCR_REG_REG (ua, SCR_ADD, 1), 0, SCR_REG_REG (ua1, SCR_ADDC, 0), 0, SCR_REG_REG (ua2, SCR_ADDC, 0), 0, SCR_REG_REG (ua3, SCR_ADDC, 0), 0, /* * Compute SCRATCHA as: * - size to transfer = 1 byte. * - bit 24..31 = high address bit [32...39]. */ SCR_LOAD_ABS (scratcha, 4), PADDR_B (zero), SCR_REG_REG (scratcha, SCR_OR, 1), 0, SCR_FROM_REG (rbc3), 0, SCR_TO_REG (scratcha3), 0, /* * Move this value to the table indirect. */ SCR_STORE_REL (scratcha, 4), offsetof (struct sym_ccb, phys.wresid.size), /* * Wait for a valid phase. * While testing with bogus QUANTUM drives, the C1010 * sometimes raised a spurious phase mismatch with * WSR and the CHMOV(1) triggered another PM. * Waiting explicitely for the PHASE seemed to avoid * the nested phase mismatch. Btw, this didn't happen * using my IBM drives. */ SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), 0, /* * Perform the move of the residual byte. */ SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct sym_ccb, phys.wresid), /* * We can now handle the phase mismatch with UA fixed. * RBC[0..23]=0 is a special case that does not require * a PM context. The C code also checks against this. */ SCR_FROM_REG (rbc), 0, SCR_RETURN ^ IFFALSE (DATA (0)), 0, SCR_FROM_REG (rbc1), 0, SCR_RETURN ^ IFFALSE (DATA (0)), 0, SCR_FROM_REG (rbc2), 0, SCR_RETURN ^ IFFALSE (DATA (0)), 0, /* * RBC[0..23]=0. * Not only we donnot need a PM context, but this would * lead to a bogus CHMOV(0). This condition means that * the residual was the last byte to move from this CHMOV. * So, we just have to move the current data script pointer * (i.e. TEMP) to the SCRIPTS address following the * interrupted CHMOV and jump to dispatcher. */ SCR_STORE_ABS (ia, 4), PADDR_B (scratch), SCR_LOAD_ABS (temp, 4), PADDR_B (scratch), SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< WSR_MA_HELPER >--------------------*/,{ /* * Helper for the C code when WSR bit is set. * Perform the move of the residual byte. */ SCR_CHMOV_TBL ^ SCR_DATA_IN, offsetof (struct sym_ccb, phys.wresid), SCR_JUMP, PADDR_A (dispatch), }/*-------------------------< ZERO >-----------------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SCRATCH >--------------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SAVED_DSA >------------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SAVED_DRS >------------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< DONE_POS >-------------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< STARTPOS >-------------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< TARGTBL >--------------------------*/,{ SCR_DATA_ZERO, }/*-------------------------< SNOOPTEST >------------------------*/,{ /* * Read the variable from memory. */ SCR_LOAD_REL (scratcha, 4), offsetof(struct sym_hcb, cache), /* * Write the variable to memory. */ SCR_STORE_REL (temp, 4), offsetof(struct sym_hcb, cache), /* * Read back the variable from memory. */ SCR_LOAD_REL (temp, 4), offsetof(struct sym_hcb, cache), }/*-------------------------< SNOOPEND >-------------------------*/,{ /* * And stop. */ SCR_INT, 99, }/*-------------------------<>-----------------------------------*/ };