Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/fbt/@/arm/include/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/fbt/@/arm/include/pte.h |
/* $NetBSD: pte.h,v 1.1 2001/11/23 17:39:04 thorpej Exp $ */ /*- * Copyright (c) 1994 Mark Brinicombe. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the RiscBSD team. * 4. The name "RiscBSD" nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY RISCBSD ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL RISCBSD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/sys/arm/include/pte.h 171621 2007-07-27 14:45:33Z cognet $ */ #ifndef _MACHINE_PTE_H_ #define _MACHINE_PTE_H_ #define PDSHIFT 20 /* LOG2(NBPDR) */ #define NBPD (1 << PDSHIFT) /* bytes/page dir */ #define NPTEPD (NBPD / PAGE_SIZE) #ifndef LOCORE typedef uint32_t pd_entry_t; /* page directory entry */ typedef uint32_t pt_entry_t; /* page table entry */ #endif #define PD_MASK 0xfff00000 /* page directory address bits */ #define PT_MASK 0x000ff000 /* page table address bits */ #define PG_FRAME 0xfffff000 /* The PT_SIZE definition is misleading... A page table is only 0x400 * bytes long. But since VM mapping can only be done to 0x1000 a single * 1KB blocks cannot be steered to a va by itself. Therefore the * pages tables are allocated in blocks of 4. i.e. if a 1 KB block * was allocated for a PT then the other 3KB would also get mapped * whenever the 1KB was mapped. */ #define PT_RSIZE 0x0400 /* Real page table size */ #define PT_SIZE 0x1000 #define PD_SIZE 0x4000 /* Page table types and masks */ #define L1_PAGE 0x01 /* L1 page table mapping */ #define L1_SECTION 0x02 /* L1 section mapping */ #define L1_FPAGE 0x03 /* L1 fine page mapping */ #define L1_MASK 0x03 /* Mask for L1 entry type */ #define L2_LPAGE 0x01 /* L2 large page (64KB) */ #define L2_SPAGE 0x02 /* L2 small page (4KB) */ #define L2_MASK 0x03 /* Mask for L2 entry type */ #define L2_INVAL 0x00 /* L2 invalid type */ /* PTE construction macros */ #define L2_LPTE(p, a, f) ((p) | PT_AP(a) | L2_LPAGE | (f)) #define L2_SPTE(p, a, f) ((p) | PT_AP(a) | L2_SPAGE | (f)) #define L2_PTE(p, a) L2_SPTE((p), (a), PT_CACHEABLE) #define L2_PTE_NC(p, a) L2_SPTE((p), (a), PT_B) #define L2_PTE_NC_NB(p, a) L2_SPTE((p), (a), 0) #define L1_SECPTE(p, a, f) ((p) | ((a) << AP_SECTION_SHIFT) | (f) \ | L1_SECTION | PT_U) #define L1_PTE(p) ((p) | 0x00 | L1_PAGE | PT_U) #define L1_SEC(p, c) L1_SECPTE((p), AP_KRW, (c)) #define L1_SEC_SIZE (1 << PDSHIFT) #define L2_LPAGE_SIZE (NBPG * 16) /* Domain types */ #define DOMAIN_FAULT 0x00 #define DOMAIN_CLIENT 0x01 #define DOMAIN_RESERVED 0x02 #define DOMAIN_MANAGER 0x03 /* L1 and L2 address masks */ #define L1_ADDR_MASK 0xfffffc00 #define L2_ADDR_MASK 0xfffff000 /* * The ARM MMU architecture was introduced with ARM v3 (previous ARM * architecture versions used an optional off-CPU memory controller * to perform address translation). * * The ARM MMU consists of a TLB and translation table walking logic. * There is typically one TLB per memory interface (or, put another * way, one TLB per software-visible cache). * * The ARM MMU is capable of mapping memory in the following chunks: * * 1M Sections (L1 table) * * 64K Large Pages (L2 table) * * 4K Small Pages (L2 table) * * 1K Tiny Pages (L2 table) * * There are two types of L2 tables: Coarse Tables and Fine Tables. * Coarse Tables can map Large and Small Pages. Fine Tables can * map Tiny Pages. * * Coarse Tables can define 4 Subpages within Large and Small pages. * Subpages define different permissions for each Subpage within * a Page. * * Coarse Tables are 1K in length. Fine tables are 4K in length. * * The Translation Table Base register holds the pointer to the * L1 Table. The L1 Table is a 16K contiguous chunk of memory * aligned to a 16K boundary. Each entry in the L1 Table maps * 1M of virtual address space, either via a Section mapping or * via an L2 Table. * * In addition, the Fast Context Switching Extension (FCSE) is available * on some ARM v4 and ARM v5 processors. FCSE is a way of eliminating * TLB/cache flushes on context switch by use of a smaller address space * and a "process ID" that modifies the virtual address before being * presented to the translation logic. */ /* ARMv6 super-sections. */ #define L1_SUP_SIZE 0x01000000 /* 16M */ #define L1_SUP_OFFSET (L1_SUP_SIZE - 1) #define L1_SUP_FRAME (~L1_SUP_OFFSET) #define L1_SUP_SHIFT 24 #define L1_S_SIZE 0x00100000 /* 1M */ #define L1_S_OFFSET (L1_S_SIZE - 1) #define L1_S_FRAME (~L1_S_OFFSET) #define L1_S_SHIFT 20 #define L2_L_SIZE 0x00010000 /* 64K */ #define L2_L_OFFSET (L2_L_SIZE - 1) #define L2_L_FRAME (~L2_L_OFFSET) #define L2_L_SHIFT 16 #define L2_S_SIZE 0x00001000 /* 4K */ #define L2_S_OFFSET (L2_S_SIZE - 1) #define L2_S_FRAME (~L2_S_OFFSET) #define L2_S_SHIFT 12 #define L2_T_SIZE 0x00000400 /* 1K */ #define L2_T_OFFSET (L2_T_SIZE - 1) #define L2_T_FRAME (~L2_T_OFFSET) #define L2_T_SHIFT 10 /* * The NetBSD VM implementation only works on whole pages (4K), * whereas the ARM MMU's Coarse tables are sized in terms of 1K * (16K L1 table, 1K L2 table). * * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2 * table. */ #define L1_ADDR_BITS 0xfff00000 /* L1 PTE address bits */ #define L2_ADDR_BITS 0x000ff000 /* L2 PTE address bits */ #define L1_TABLE_SIZE 0x4000 /* 16K */ #define L2_TABLE_SIZE 0x1000 /* 4K */ /* * The new pmap deals with the 1KB coarse L2 tables by * allocating them from a pool. Until every port has been converted, * keep the old L2_TABLE_SIZE define lying around. Converted ports * should use L2_TABLE_SIZE_REAL until then. */ #define L2_TABLE_SIZE_REAL 0x400 /* 1K */ /* * ARM L1 Descriptors */ #define L1_TYPE_INV 0x00 /* Invalid (fault) */ #define L1_TYPE_C 0x01 /* Coarse L2 */ #define L1_TYPE_S 0x02 /* Section */ #define L1_TYPE_F 0x03 /* Fine L2 */ #define L1_TYPE_MASK 0x03 /* mask of type bits */ /* L1 Section Descriptor */ #define L1_S_B 0x00000004 /* bufferable Section */ #define L1_S_C 0x00000008 /* cacheable Section */ #define L1_S_IMP 0x00000010 /* implementation defined */ #define L1_S_DOM(x) ((x) << 5) /* domain */ #define L1_S_DOM_MASK L1_S_DOM(0xf) #define L1_S_AP(x) ((x) << 10) /* access permissions */ #define L1_S_ADDR_MASK 0xfff00000 /* phys address of section */ #define L1_SHARED (1 << 16) #define L1_S_XSCALE_P 0x00000200 /* ECC enable for this section */ #define L1_S_XSCALE_TEX(x) ((x) << 12) /* Type Extension */ #define L1_S_SUPERSEC ((1) << 18) /* Section is a super-section. */ /* L1 Coarse Descriptor */ #define L1_C_IMP0 0x00000004 /* implementation defined */ #define L1_C_IMP1 0x00000008 /* implementation defined */ #define L1_C_IMP2 0x00000010 /* implementation defined */ #define L1_C_DOM(x) ((x) << 5) /* domain */ #define L1_C_DOM_MASK L1_C_DOM(0xf) #define L1_C_ADDR_MASK 0xfffffc00 /* phys address of L2 Table */ #define L1_C_XSCALE_P 0x00000200 /* ECC enable for this section */ /* L1 Fine Descriptor */ #define L1_F_IMP0 0x00000004 /* implementation defined */ #define L1_F_IMP1 0x00000008 /* implementation defined */ #define L1_F_IMP2 0x00000010 /* implementation defined */ #define L1_F_DOM(x) ((x) << 5) /* domain */ #define L1_F_DOM_MASK L1_F_DOM(0xf) #define L1_F_ADDR_MASK 0xfffff000 /* phys address of L2 Table */ #define L1_F_XSCALE_P 0x00000200 /* ECC enable for this section */ /* * ARM L2 Descriptors */ #define L2_TYPE_INV 0x00 /* Invalid (fault) */ #define L2_TYPE_L 0x01 /* Large Page */ #define L2_TYPE_S 0x02 /* Small Page */ #define L2_TYPE_T 0x03 /* Tiny Page */ #define L2_TYPE_MASK 0x03 /* mask of type bits */ /* * This L2 Descriptor type is available on XScale processors * when using a Coarse L1 Descriptor. The Extended Small * Descriptor has the same format as the XScale Tiny Descriptor, * but describes a 4K page, rather than a 1K page. */ #define L2_TYPE_XSCALE_XS 0x03 /* XScale Extended Small Page */ #define L2_B 0x00000004 /* Bufferable page */ #define L2_C 0x00000008 /* Cacheable page */ #define L2_AP0(x) ((x) << 4) /* access permissions (sp 0) */ #define L2_AP1(x) ((x) << 6) /* access permissions (sp 1) */ #define L2_AP2(x) ((x) << 8) /* access permissions (sp 2) */ #define L2_AP3(x) ((x) << 10) /* access permissions (sp 3) */ #define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x)) #define L2_XSCALE_L_TEX(x) ((x) << 12) /* Type Extension */ #define L2_XSCALE_L_S(x) (1 << 15) /* Shared */ #define L2_XSCALE_T_TEX(x) ((x) << 6) /* Type Extension */ /* * Access Permissions for L1 and L2 Descriptors. */ #define AP_W 0x01 /* writable */ #define AP_U 0x02 /* user */ /* * Short-hand for common AP_* constants. * * Note: These values assume the S (System) bit is set and * the R (ROM) bit is clear in CP15 register 1. */ #define AP_KR 0x00 /* kernel read */ #define AP_KRW 0x01 /* kernel read/write */ #define AP_KRWUR 0x02 /* kernel read/write usr read */ #define AP_KRWURW 0x03 /* kernel read/write usr read/write */ /* * Domain Types for the Domain Access Control Register. */ #define DOMAIN_FAULT 0x00 /* no access */ #define DOMAIN_CLIENT 0x01 /* client */ #define DOMAIN_RESERVED 0x02 /* reserved */ #define DOMAIN_MANAGER 0x03 /* manager */ /* * Type Extension bits for XScale processors. * * Behavior of C and B when X == 0: * * C B Cacheable Bufferable Write Policy Line Allocate Policy * 0 0 N N - - * 0 1 N Y - - * 1 0 Y Y Write-through Read Allocate * 1 1 Y Y Write-back Read Allocate * * Behavior of C and B when X == 1: * C B Cacheable Bufferable Write Policy Line Allocate Policy * 0 0 - - - - DO NOT USE * 0 1 N Y - - * 1 0 Mini-Data - - - * 1 1 Y Y Write-back R/W Allocate */ #define TEX_XSCALE_X 0x01 /* X modifies C and B */ #define TEX_XSCALE_E 0x02 #define TEX_XSCALE_T 0x04 /* Xscale core 3 */ /* * * Cache attributes with L2 present, S = 0 * T E X C B L1 i-cache L1 d-cache L1 DC WP L2 cacheable write coalesce * 0 0 0 0 0 N N - N N * 0 0 0 0 1 N N - N Y * 0 0 0 1 0 Y Y WT N Y * 0 0 0 1 1 Y Y WB Y Y * 0 0 1 0 0 N N - Y Y * 0 0 1 0 1 N N - N N * 0 0 1 1 0 Y Y - - N * 0 0 1 1 1 Y Y WT Y Y * 0 1 0 0 0 N N - N N * 0 1 0 0 1 N/A N/A N/A N/A N/A * 0 1 0 1 0 N/A N/A N/A N/A N/A * 0 1 0 1 1 N/A N/A N/A N/A N/A * 0 1 1 X X N/A N/A N/A N/A N/A * 1 X 0 0 0 N N - N Y * 1 X 0 0 1 Y N WB N Y * 1 X 0 1 0 Y N WT N Y * 1 X 0 1 1 Y N WB Y Y * 1 X 1 0 0 N N - Y Y * 1 X 1 0 1 Y Y WB Y Y * 1 X 1 1 0 Y Y WT Y Y * 1 X 1 1 1 Y Y WB Y Y * * * * * Cache attributes with L2 present, S = 1 * T E X C B L1 i-cache L1 d-cache L1 DC WP L2 cacheable write coalesce * 0 0 0 0 0 N N - N N * 0 0 0 0 1 N N - N Y * 0 0 0 1 0 Y Y - N Y * 0 0 0 1 1 Y Y WT Y Y * 0 0 1 0 0 N N - Y Y * 0 0 1 0 1 N N - N N * 0 0 1 1 0 Y Y - - N * 0 0 1 1 1 Y Y WT Y Y * 0 1 0 0 0 N N - N N * 0 1 0 0 1 N/A N/A N/A N/A N/A * 0 1 0 1 0 N/A N/A N/A N/A N/A * 0 1 0 1 1 N/A N/A N/A N/A N/A * 0 1 1 X X N/A N/A N/A N/A N/A * 1 X 0 0 0 N N - N Y * 1 X 0 0 1 Y N - N Y * 1 X 0 1 0 Y N - N Y * 1 X 0 1 1 Y N - Y Y * 1 X 1 0 0 N N - Y Y * 1 X 1 0 1 Y Y WT Y Y * 1 X 1 1 0 Y Y WT Y Y * 1 X 1 1 1 Y Y WT Y Y */ #endif /* !_MACHINE_PTE_H_ */ /* End of pte.h */