Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/fbt/@/dev/aic7xxx/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/fbt/@/dev/aic7xxx/aic79xx_inline.h |
/*- * Inline routines shareable across OS platforms. * * Copyright (c) 1994-2001 Justin T. Gibbs. * Copyright (c) 2000-2003 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $Id: //depot/aic7xxx/aic7xxx/aic79xx_inline.h#57 $ * * $FreeBSD: release/9.1.0/sys/dev/aic7xxx/aic79xx_inline.h 139749 2005-01-06 01:43:34Z imp $ */ #ifndef _AIC79XX_INLINE_H_ #define _AIC79XX_INLINE_H_ /******************************** Debugging ***********************************/ static __inline char *ahd_name(struct ahd_softc *ahd); static __inline char * ahd_name(struct ahd_softc *ahd) { return (ahd->name); } /************************ Sequencer Execution Control *************************/ static __inline void ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst); static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst); static __inline void ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state, ahd_mode *src, ahd_mode *dst); static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst); static __inline void ahd_update_modes(struct ahd_softc *ahd); static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode, ahd_mode dstmode, const char *file, int line); static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd); static __inline void ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state); static __inline int ahd_is_paused(struct ahd_softc *ahd); static __inline void ahd_pause(struct ahd_softc *ahd); static __inline void ahd_unpause(struct ahd_softc *ahd); static __inline void ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst) { ahd->src_mode = src; ahd->dst_mode = dst; ahd->saved_src_mode = src; ahd->saved_dst_mode = dst; } static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst) { return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT)); } static __inline void ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state, ahd_mode *src, ahd_mode *dst) { *src = (state & SRC_MODE) >> SRC_MODE_SHIFT; *dst = (state & DST_MODE) >> DST_MODE_SHIFT; } static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst) { if (ahd->src_mode == src && ahd->dst_mode == dst) return; #ifdef AHD_DEBUG if (ahd->src_mode == AHD_MODE_UNKNOWN || ahd->dst_mode == AHD_MODE_UNKNOWN) panic("Setting mode prior to saving it.\n"); if ((ahd_debug & AHD_SHOW_MODEPTR) != 0) printf("%s: Setting mode 0x%x\n", ahd_name(ahd), ahd_build_mode_state(ahd, src, dst)); #endif ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst)); ahd->src_mode = src; ahd->dst_mode = dst; } static __inline void ahd_update_modes(struct ahd_softc *ahd) { ahd_mode_state mode_ptr; ahd_mode src; ahd_mode dst; mode_ptr = ahd_inb(ahd, MODE_PTR); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MODEPTR) != 0) printf("Reading mode 0x%x\n", mode_ptr); #endif ahd_extract_mode_state(ahd, mode_ptr, &src, &dst); ahd_known_modes(ahd, src, dst); } static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode, ahd_mode dstmode, const char *file, int line) { #ifdef AHD_DEBUG if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) { panic("%s:%s:%d: Mode assertion failed.\n", ahd_name(ahd), file, line); } #endif } static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd) { if (ahd->src_mode == AHD_MODE_UNKNOWN || ahd->dst_mode == AHD_MODE_UNKNOWN) ahd_update_modes(ahd); return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode)); } static __inline void ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state) { ahd_mode src; ahd_mode dst; ahd_extract_mode_state(ahd, state, &src, &dst); ahd_set_modes(ahd, src, dst); } #define AHD_ASSERT_MODES(ahd, source, dest) \ ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__); /* * Determine whether the sequencer has halted code execution. * Returns non-zero status if the sequencer is stopped. */ static __inline int ahd_is_paused(struct ahd_softc *ahd) { return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0); } /* * Request that the sequencer stop and wait, indefinitely, for it * to stop. The sequencer will only acknowledge that it is paused * once it has reached an instruction boundary and PAUSEDIS is * cleared in the SEQCTL register. The sequencer may use PAUSEDIS * for critical sections. */ static __inline void ahd_pause(struct ahd_softc *ahd) { ahd_outb(ahd, HCNTRL, ahd->pause); /* * Since the sequencer can disable pausing in a critical section, we * must loop until it actually stops. */ while (ahd_is_paused(ahd) == 0) ; } /* * Allow the sequencer to continue program execution. * We check here to ensure that no additional interrupt * sources that would cause the sequencer to halt have been * asserted. If, for example, a SCSI bus reset is detected * while we are fielding a different, pausing, interrupt type, * we don't want to release the sequencer before going back * into our interrupt handler and dealing with this new * condition. */ static __inline void ahd_unpause(struct ahd_softc *ahd) { /* * Automatically restore our modes to those saved * prior to the first change of the mode. */ if (ahd->saved_src_mode != AHD_MODE_UNKNOWN && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) { if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0) ahd_reset_cmds_pending(ahd); ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); } if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0) ahd_outb(ahd, HCNTRL, ahd->unpause); ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN); } /*********************** Scatter Gather List Handling *************************/ static __inline void *ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb, void *sgptr, bus_addr_t addr, bus_size_t len, int last); static __inline void ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb); static __inline void ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb); static __inline void ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb); static __inline void * ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb, void *sgptr, bus_addr_t addr, bus_size_t len, int last) { scb->sg_count++; if (sizeof(bus_addr_t) > 4 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) { struct ahd_dma64_seg *sg; sg = (struct ahd_dma64_seg *)sgptr; sg->addr = aic_htole64(addr); sg->len = aic_htole32(len | (last ? AHD_DMA_LAST_SEG : 0)); return (sg + 1); } else { struct ahd_dma_seg *sg; sg = (struct ahd_dma_seg *)sgptr; sg->addr = aic_htole32(addr & 0xFFFFFFFF); sg->len = aic_htole32(len | ((addr >> 8) & 0x7F000000) | (last ? AHD_DMA_LAST_SEG : 0)); return (sg + 1); } } static __inline void ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb) { /* XXX Handle target mode SCBs. */ scb->crc_retry_count = 0; if ((scb->flags & SCB_PACKETIZED) != 0) { /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */ scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE; } else { if (aic_get_transfer_length(scb) & 0x01) scb->hscb->task_attribute = SCB_XFERLEN_ODD; else scb->hscb->task_attribute = 0; } if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0) scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr = aic_htole32(scb->sense_busaddr); } static __inline void ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb) { /* * Copy the first SG into the "current" data ponter area. */ if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { struct ahd_dma64_seg *sg; sg = (struct ahd_dma64_seg *)scb->sg_list; scb->hscb->dataptr = sg->addr; scb->hscb->datacnt = sg->len; } else { struct ahd_dma_seg *sg; uint32_t *dataptr_words; sg = (struct ahd_dma_seg *)scb->sg_list; dataptr_words = (uint32_t*)&scb->hscb->dataptr; dataptr_words[0] = sg->addr; dataptr_words[1] = 0; if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { uint64_t high_addr; high_addr = aic_le32toh(sg->len) & 0x7F000000; scb->hscb->dataptr |= aic_htole64(high_addr << 8); } scb->hscb->datacnt = sg->len; } /* * Note where to find the SG entries in bus space. * We also set the full residual flag which the * sequencer will clear as soon as a data transfer * occurs. */ scb->hscb->sgptr = aic_htole32(scb->sg_list_busaddr|SG_FULL_RESID); } static __inline void ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb) { scb->hscb->sgptr = aic_htole32(SG_LIST_NULL); scb->hscb->dataptr = 0; scb->hscb->datacnt = 0; } /************************** Memory mapping routines ***************************/ static __inline size_t ahd_sg_size(struct ahd_softc *ahd); static __inline void * ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr); static __inline uint32_t ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg); static __inline void ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op); static __inline void ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op); static __inline void ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op); static __inline uint32_t ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index); static __inline size_t ahd_sg_size(struct ahd_softc *ahd) { if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) return (sizeof(struct ahd_dma64_seg)); return (sizeof(struct ahd_dma_seg)); } static __inline void * ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr) { bus_addr_t sg_offset; /* sg_list_phys points to entry 1, not 0 */ sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd)); return ((uint8_t *)scb->sg_list + sg_offset); } static __inline uint32_t ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg) { bus_addr_t sg_offset; /* sg_list_phys points to entry 1, not 0 */ sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list) - ahd_sg_size(ahd); return (scb->sg_list_busaddr + sg_offset); } static __inline void ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op) { aic_dmamap_sync(ahd, ahd->scb_data.hscb_dmat, scb->hscb_map->dmamap, /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr, /*len*/sizeof(*scb->hscb), op); } static __inline void ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op) { if (scb->sg_count == 0) return; aic_dmamap_sync(ahd, ahd->scb_data.sg_dmat, scb->sg_map->dmamap, /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd), /*len*/ahd_sg_size(ahd) * scb->sg_count, op); } static __inline void ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op) { aic_dmamap_sync(ahd, ahd->scb_data.sense_dmat, scb->sense_map->dmamap, /*offset*/scb->sense_busaddr, /*len*/AHD_SENSE_BUFSIZE, op); } static __inline uint32_t ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index) { return (((uint8_t *)&ahd->targetcmds[index]) - (uint8_t *)ahd->qoutfifo); } /*********************** Miscelaneous Support Functions ***********************/ static __inline void ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb); static __inline void ahd_update_residual(struct ahd_softc *ahd, struct scb *scb); static __inline struct ahd_initiator_tinfo * ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id, u_int remote_id, struct ahd_tmode_tstate **tstate); static __inline uint16_t ahd_inw(struct ahd_softc *ahd, u_int port); static __inline void ahd_outw(struct ahd_softc *ahd, u_int port, u_int value); static __inline uint32_t ahd_inl(struct ahd_softc *ahd, u_int port); static __inline void ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value); static __inline uint64_t ahd_inq(struct ahd_softc *ahd, u_int port); static __inline void ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value); static __inline u_int ahd_get_scbptr(struct ahd_softc *ahd); static __inline void ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr); static __inline u_int ahd_get_hnscb_qoff(struct ahd_softc *ahd); static __inline void ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value); static __inline u_int ahd_get_hescb_qoff(struct ahd_softc *ahd); static __inline void ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value); static __inline u_int ahd_get_snscb_qoff(struct ahd_softc *ahd); static __inline void ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value); static __inline u_int ahd_get_sescb_qoff(struct ahd_softc *ahd); static __inline void ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value); static __inline u_int ahd_get_sdscb_qoff(struct ahd_softc *ahd); static __inline void ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value); static __inline u_int ahd_inb_scbram(struct ahd_softc *ahd, u_int offset); static __inline u_int ahd_inw_scbram(struct ahd_softc *ahd, u_int offset); static __inline uint32_t ahd_inl_scbram(struct ahd_softc *ahd, u_int offset); static __inline uint64_t ahd_inq_scbram(struct ahd_softc *ahd, u_int offset); static __inline void ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb); static __inline void ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb); static __inline uint8_t * ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb); static __inline uint32_t ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb); static __inline void ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb) { uint32_t sgptr; sgptr = aic_le32toh(scb->hscb->sgptr); if ((sgptr & SG_STATUS_VALID) != 0) ahd_handle_scb_status(ahd, scb); else ahd_done(ahd, scb); } /* * Determine whether the sequencer reported a residual * for this SCB/transaction. */ static __inline void ahd_update_residual(struct ahd_softc *ahd, struct scb *scb) { uint32_t sgptr; sgptr = aic_le32toh(scb->hscb->sgptr); if ((sgptr & SG_STATUS_VALID) != 0) ahd_calc_residual(ahd, scb); } /* * Return pointers to the transfer negotiation information * for the specified our_id/remote_id pair. */ static __inline struct ahd_initiator_tinfo * ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id, u_int remote_id, struct ahd_tmode_tstate **tstate) { /* * Transfer data structures are stored from the perspective * of the target role. Since the parameters for a connection * in the initiator role to a given target are the same as * when the roles are reversed, we pretend we are the target. */ if (channel == 'B') our_id += 8; *tstate = ahd->enabled_targets[our_id]; return (&(*tstate)->transinfo[remote_id]); } #define AHD_COPY_COL_IDX(dst, src) \ do { \ dst->hscb->scsiid = src->hscb->scsiid; \ dst->hscb->lun = src->hscb->lun; \ } while (0) static __inline uint16_t ahd_inw(struct ahd_softc *ahd, u_int port) { /* * Read high byte first as some registers increment * or have other side effects when the low byte is * read. */ return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port)); } static __inline void ahd_outw(struct ahd_softc *ahd, u_int port, u_int value) { /* * Write low byte first to accomodate registers * such as PRGMCNT where the order maters. */ ahd_outb(ahd, port, value & 0xFF); ahd_outb(ahd, port+1, (value >> 8) & 0xFF); } static __inline uint32_t ahd_inl(struct ahd_softc *ahd, u_int port) { return ((ahd_inb(ahd, port)) | (ahd_inb(ahd, port+1) << 8) | (ahd_inb(ahd, port+2) << 16) | (ahd_inb(ahd, port+3) << 24)); } static __inline void ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value) { ahd_outb(ahd, port, (value) & 0xFF); ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF); ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF); ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF); } static __inline uint64_t ahd_inq(struct ahd_softc *ahd, u_int port) { return ((ahd_inb(ahd, port)) | (ahd_inb(ahd, port+1) << 8) | (ahd_inb(ahd, port+2) << 16) | (ahd_inb(ahd, port+3) << 24) | (((uint64_t)ahd_inb(ahd, port+4)) << 32) | (((uint64_t)ahd_inb(ahd, port+5)) << 40) | (((uint64_t)ahd_inb(ahd, port+6)) << 48) | (((uint64_t)ahd_inb(ahd, port+7)) << 56)); } static __inline void ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value) { ahd_outb(ahd, port, value & 0xFF); ahd_outb(ahd, port+1, (value >> 8) & 0xFF); ahd_outb(ahd, port+2, (value >> 16) & 0xFF); ahd_outb(ahd, port+3, (value >> 24) & 0xFF); ahd_outb(ahd, port+4, (value >> 32) & 0xFF); ahd_outb(ahd, port+5, (value >> 40) & 0xFF); ahd_outb(ahd, port+6, (value >> 48) & 0xFF); ahd_outb(ahd, port+7, (value >> 56) & 0xFF); } static __inline u_int ahd_get_scbptr(struct ahd_softc *ahd) { AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8)); } static __inline void ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr) { AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); ahd_outb(ahd, SCBPTR, scbptr & 0xFF); ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF); } static __inline u_int ahd_get_hnscb_qoff(struct ahd_softc *ahd) { return (ahd_inw_atomic(ahd, HNSCB_QOFF)); } static __inline void ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value) { ahd_outw_atomic(ahd, HNSCB_QOFF, value); } static __inline u_int ahd_get_hescb_qoff(struct ahd_softc *ahd) { return (ahd_inb(ahd, HESCB_QOFF)); } static __inline void ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value) { ahd_outb(ahd, HESCB_QOFF, value); } static __inline u_int ahd_get_snscb_qoff(struct ahd_softc *ahd) { u_int oldvalue; AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); oldvalue = ahd_inw(ahd, SNSCB_QOFF); ahd_outw(ahd, SNSCB_QOFF, oldvalue); return (oldvalue); } static __inline void ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); ahd_outw(ahd, SNSCB_QOFF, value); } static __inline u_int ahd_get_sescb_qoff(struct ahd_softc *ahd) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); return (ahd_inb(ahd, SESCB_QOFF)); } static __inline void ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); ahd_outb(ahd, SESCB_QOFF, value); } static __inline u_int ahd_get_sdscb_qoff(struct ahd_softc *ahd) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8)); } static __inline void ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); ahd_outb(ahd, SDSCB_QOFF, value & 0xFF); ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF); } static __inline u_int ahd_inb_scbram(struct ahd_softc *ahd, u_int offset) { u_int value; /* * Workaround PCI-X Rev A. hardware bug. * After a host read of SCB memory, the chip * may become confused into thinking prefetch * was required. This starts the discard timer * running and can cause an unexpected discard * timer interrupt. The work around is to read * a normal register prior to the exhaustion of * the discard timer. The mode pointer register * has no side effects and so serves well for * this purpose. * * Razor #528 */ value = ahd_inb(ahd, offset); if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0) ahd_inb(ahd, MODE_PTR); return (value); } static __inline u_int ahd_inw_scbram(struct ahd_softc *ahd, u_int offset) { return (ahd_inb_scbram(ahd, offset) | (ahd_inb_scbram(ahd, offset+1) << 8)); } static __inline uint32_t ahd_inl_scbram(struct ahd_softc *ahd, u_int offset) { return (ahd_inw_scbram(ahd, offset) | (ahd_inw_scbram(ahd, offset+2) << 16)); } static __inline uint64_t ahd_inq_scbram(struct ahd_softc *ahd, u_int offset) { return (ahd_inl_scbram(ahd, offset) | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32); } static __inline struct scb * ahd_lookup_scb(struct ahd_softc *ahd, u_int tag) { struct scb* scb; if (tag >= AHD_SCB_MAX) return (NULL); scb = ahd->scb_data.scbindex[tag]; if (scb != NULL) ahd_sync_scb(ahd, scb, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); return (scb); } static __inline void ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb) { struct hardware_scb *q_hscb; struct map_node *q_hscb_map; uint32_t saved_hscb_busaddr; /* * Our queuing method is a bit tricky. The card * knows in advance which HSCB (by address) to download, * and we can't disappoint it. To achieve this, the next * HSCB to download is saved off in ahd->next_queued_hscb. * When we are called to queue "an arbitrary scb", * we copy the contents of the incoming HSCB to the one * the sequencer knows about, swap HSCB pointers and * finally assign the SCB to the tag indexed location * in the scb_array. This makes sure that we can still * locate the correct SCB by SCB_TAG. */ q_hscb = ahd->next_queued_hscb; q_hscb_map = ahd->next_queued_hscb_map; saved_hscb_busaddr = q_hscb->hscb_busaddr; memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb)); q_hscb->hscb_busaddr = saved_hscb_busaddr; q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr; /* Now swap HSCB pointers. */ ahd->next_queued_hscb = scb->hscb; ahd->next_queued_hscb_map = scb->hscb_map; scb->hscb = q_hscb; scb->hscb_map = q_hscb_map; /* Now define the mapping from tag to SCB in the scbindex */ ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb; } /* * Tell the sequencer about a new transaction to execute. */ static __inline void ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb) { ahd_swap_with_next_hscb(ahd, scb); if (SCBID_IS_NULL(SCB_GET_TAG(scb))) panic("Attempt to queue invalid SCB tag %x\n", SCB_GET_TAG(scb)); /* * Keep a history of SCBs we've downloaded in the qinfifo. */ ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb); ahd->qinfifonext++; if (scb->sg_count != 0) ahd_setup_data_scb(ahd, scb); else ahd_setup_noxfer_scb(ahd, scb); ahd_setup_scb_common(ahd, scb); /* * Make sure our data is consistent from the * perspective of the adapter. */ ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_QUEUE) != 0) { uint64_t host_dataptr; host_dataptr = aic_le64toh(scb->hscb->dataptr); printf("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n", ahd_name(ahd), SCB_GET_TAG(scb), scb->hscb->scsiid, aic_le32toh(scb->hscb->hscb_busaddr), (u_int)((host_dataptr >> 32) & 0xFFFFFFFF), (u_int)(host_dataptr & 0xFFFFFFFF), aic_le32toh(scb->hscb->datacnt)); } #endif /* Tell the adapter about the newly queued SCB */ ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); } static __inline uint8_t * ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb) { return (scb->sense_data); } static __inline uint32_t ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb) { return (scb->sense_busaddr); } /************************** Interrupt Processing ******************************/ static __inline void ahd_sync_qoutfifo(struct ahd_softc *ahd, int op); static __inline void ahd_sync_tqinfifo(struct ahd_softc *ahd, int op); static __inline u_int ahd_check_cmdcmpltqueues(struct ahd_softc *ahd); static __inline int ahd_intr(struct ahd_softc *ahd); static __inline void ahd_sync_qoutfifo(struct ahd_softc *ahd, int op) { aic_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, /*offset*/0, /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op); } static __inline void ahd_sync_tqinfifo(struct ahd_softc *ahd, int op) { #ifdef AHD_TARGET_MODE if ((ahd->flags & AHD_TARGETROLE) != 0) { aic_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, ahd_targetcmd_offset(ahd, 0), sizeof(struct target_cmd) * AHD_TMODE_CMDS, op); } #endif } /* * See if the firmware has posted any completed commands * into our in-core command complete fifos. */ #define AHD_RUN_QOUTFIFO 0x1 #define AHD_RUN_TQINFIFO 0x2 static __inline u_int ahd_check_cmdcmpltqueues(struct ahd_softc *ahd) { u_int retval; retval = 0; aic_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo), /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD); if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag == ahd->qoutfifonext_valid_tag) retval |= AHD_RUN_QOUTFIFO; #ifdef AHD_TARGET_MODE if ((ahd->flags & AHD_TARGETROLE) != 0 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) { aic_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, ahd_targetcmd_offset(ahd, ahd->tqinfifofnext), /*len*/sizeof(struct target_cmd), BUS_DMASYNC_POSTREAD); if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0) retval |= AHD_RUN_TQINFIFO; } #endif return (retval); } /* * Catch an interrupt from the adapter */ static __inline int ahd_intr(struct ahd_softc *ahd) { u_int intstat; if ((ahd->pause & INTEN) == 0) { /* * Our interrupt is not enabled on the chip * and may be disabled for re-entrancy reasons, * so just return. This is likely just a shared * interrupt. */ return (0); } /* * Instead of directly reading the interrupt status register, * infer the cause of the interrupt by checking our in-core * completion queues. This avoids a costly PCI bus read in * most cases. */ if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0 && (ahd_check_cmdcmpltqueues(ahd) != 0)) intstat = CMDCMPLT; else intstat = ahd_inb(ahd, INTSTAT); if ((intstat & INT_PEND) == 0) return (0); if (intstat & CMDCMPLT) { ahd_outb(ahd, CLRINT, CLRCMDINT); /* * Ensure that the chip sees that we've cleared * this interrupt before we walk the output fifo. * Otherwise, we may, due to posted bus writes, * clear the interrupt after we finish the scan, * and after the sequencer has added new entries * and asserted the interrupt again. */ if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { if (ahd_is_paused(ahd)) { /* * Potentially lost SEQINT. * If SEQINTCODE is non-zero, * simulate the SEQINT. */ if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT) intstat |= SEQINT; } } else { ahd_flush_device_writes(ahd); } ahd_run_qoutfifo(ahd); ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++; ahd->cmdcmplt_total++; #ifdef AHD_TARGET_MODE if ((ahd->flags & AHD_TARGETROLE) != 0) ahd_run_tqinfifo(ahd, /*paused*/FALSE); #endif } /* * Handle statuses that may invalidate our cached * copy of INTSTAT separately. */ if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) { /* Hot eject. Do nothing */ } else if (intstat & HWERRINT) { ahd_handle_hwerrint(ahd); } else if ((intstat & (PCIINT|SPLTINT)) != 0) { ahd->bus_intr(ahd); } else { if ((intstat & SEQINT) != 0) ahd_handle_seqint(ahd, intstat); if ((intstat & SCSIINT) != 0) ahd_handle_scsiint(ahd, intstat); } return (1); } #endif /* _AIC79XX_INLINE_H_ */