Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/fbt/@/dev/safe/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/fbt/@/dev/safe/safe.c |
/*- * Copyright (c) 2003 Sam Leffler, Errno Consulting * Copyright (c) 2003 Global Technology Associates, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/safe/safe.c 233024 2012-03-16 08:46:58Z scottl $"); /* * SafeNet SafeXcel-1141 hardware crypto accelerator */ #include "opt_safe.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/proc.h> #include <sys/errno.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/mbuf.h> #include <sys/module.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/sysctl.h> #include <sys/endian.h> #include <vm/vm.h> #include <vm/pmap.h> #include <machine/bus.h> #include <machine/resource.h> #include <sys/bus.h> #include <sys/rman.h> #include <crypto/sha1.h> #include <opencrypto/cryptodev.h> #include <opencrypto/cryptosoft.h> #include <sys/md5.h> #include <sys/random.h> #include <sys/kobj.h> #include "cryptodev_if.h" #include <dev/pci/pcivar.h> #include <dev/pci/pcireg.h> #ifdef SAFE_RNDTEST #include <dev/rndtest/rndtest.h> #endif #include <dev/safe/safereg.h> #include <dev/safe/safevar.h> #ifndef bswap32 #define bswap32 NTOHL #endif /* * Prototypes and count for the pci_device structure */ static int safe_probe(device_t); static int safe_attach(device_t); static int safe_detach(device_t); static int safe_suspend(device_t); static int safe_resume(device_t); static int safe_shutdown(device_t); static int safe_newsession(device_t, u_int32_t *, struct cryptoini *); static int safe_freesession(device_t, u_int64_t); static int safe_process(device_t, struct cryptop *, int); static device_method_t safe_methods[] = { /* Device interface */ DEVMETHOD(device_probe, safe_probe), DEVMETHOD(device_attach, safe_attach), DEVMETHOD(device_detach, safe_detach), DEVMETHOD(device_suspend, safe_suspend), DEVMETHOD(device_resume, safe_resume), DEVMETHOD(device_shutdown, safe_shutdown), /* crypto device methods */ DEVMETHOD(cryptodev_newsession, safe_newsession), DEVMETHOD(cryptodev_freesession,safe_freesession), DEVMETHOD(cryptodev_process, safe_process), DEVMETHOD_END }; static driver_t safe_driver = { "safe", safe_methods, sizeof (struct safe_softc) }; static devclass_t safe_devclass; DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0); MODULE_DEPEND(safe, crypto, 1, 1, 1); #ifdef SAFE_RNDTEST MODULE_DEPEND(safe, rndtest, 1, 1, 1); #endif static void safe_intr(void *); static void safe_callback(struct safe_softc *, struct safe_ringentry *); static void safe_feed(struct safe_softc *, struct safe_ringentry *); static void safe_mcopy(struct mbuf *, struct mbuf *, u_int); #ifndef SAFE_NO_RNG static void safe_rng_init(struct safe_softc *); static void safe_rng(void *); #endif /* SAFE_NO_RNG */ static int safe_dma_malloc(struct safe_softc *, bus_size_t, struct safe_dma_alloc *, int); #define safe_dma_sync(_dma, _flags) \ bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags)) static void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *); static int safe_dmamap_aligned(const struct safe_operand *); static int safe_dmamap_uniform(const struct safe_operand *); static void safe_reset_board(struct safe_softc *); static void safe_init_board(struct safe_softc *); static void safe_init_pciregs(device_t dev); static void safe_cleanchip(struct safe_softc *); static void safe_totalreset(struct safe_softc *); static int safe_free_entry(struct safe_softc *, struct safe_ringentry *); SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters"); #ifdef SAFE_DEBUG static void safe_dump_dmastatus(struct safe_softc *, const char *); static void safe_dump_ringstate(struct safe_softc *, const char *); static void safe_dump_intrstate(struct safe_softc *, const char *); static void safe_dump_request(struct safe_softc *, const char *, struct safe_ringentry *); static struct safe_softc *safec; /* for use by hw.safe.dump */ static int safe_debug = 0; SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug, 0, "control debugging msgs"); #define DPRINTF(_x) if (safe_debug) printf _x #else #define DPRINTF(_x) #endif #define READ_REG(sc,r) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) #define WRITE_REG(sc,reg,val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) struct safe_stats safestats; SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats, safe_stats, "driver statistics"); #ifndef SAFE_NO_RNG static int safe_rnginterval = 1; /* poll once a second */ SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval, 0, "RNG polling interval (secs)"); static int safe_rngbufsize = 16; /* 64 bytes each poll */ SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize, 0, "RNG polling buffer size (32-bit words)"); static int safe_rngmaxalarm = 8; /* max alarms before reset */ SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm, 0, "RNG max alarms before reset"); #endif /* SAFE_NO_RNG */ static int safe_probe(device_t dev) { if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET && pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL) return (BUS_PROBE_DEFAULT); return (ENXIO); } static const char* safe_partname(struct safe_softc *sc) { /* XXX sprintf numbers when not decoded */ switch (pci_get_vendor(sc->sc_dev)) { case PCI_VENDOR_SAFENET: switch (pci_get_device(sc->sc_dev)) { case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141"; } return "SafeNet unknown-part"; } return "Unknown-vendor unknown-part"; } #ifndef SAFE_NO_RNG static void default_harvest(struct rndtest_state *rsp, void *buf, u_int count) { random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE); } #endif /* SAFE_NO_RNG */ static int safe_attach(device_t dev) { struct safe_softc *sc = device_get_softc(dev); u_int32_t raddr; u_int32_t cmd, i, devinfo; int rid; bzero(sc, sizeof (*sc)); sc->sc_dev = dev; /* XXX handle power management */ cmd = pci_read_config(dev, PCIR_COMMAND, 4); cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN; pci_write_config(dev, PCIR_COMMAND, cmd, 4); cmd = pci_read_config(dev, PCIR_COMMAND, 4); if (!(cmd & PCIM_CMD_MEMEN)) { device_printf(dev, "failed to enable memory mapping\n"); goto bad; } if (!(cmd & PCIM_CMD_BUSMASTEREN)) { device_printf(dev, "failed to enable bus mastering\n"); goto bad; } /* * Setup memory-mapping of PCI registers. */ rid = BS_BAR; sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->sc_sr == NULL) { device_printf(dev, "cannot map register space\n"); goto bad; } sc->sc_st = rman_get_bustag(sc->sc_sr); sc->sc_sh = rman_get_bushandle(sc->sc_sr); /* * Arrange interrupt line. */ rid = 0; sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE|RF_ACTIVE); if (sc->sc_irq == NULL) { device_printf(dev, "could not map interrupt\n"); goto bad1; } /* * NB: Network code assumes we are blocked with splimp() * so make sure the IRQ is mapped appropriately. */ if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, safe_intr, sc, &sc->sc_ih)) { device_printf(dev, "could not establish interrupt\n"); goto bad2; } sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE); if (sc->sc_cid < 0) { device_printf(dev, "could not get crypto driver id\n"); goto bad3; } sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) & (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN); /* * Setup DMA descriptor area. */ if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1, /* alignment */ SAFE_DMA_BOUNDARY, /* boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ SAFE_MAX_DMA, /* maxsize */ SAFE_MAX_PART, /* nsegments */ SAFE_MAX_SSIZE, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* locking */ &sc->sc_srcdmat)) { device_printf(dev, "cannot allocate DMA tag\n"); goto bad4; } if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1, /* alignment */ SAFE_MAX_DSIZE, /* boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ SAFE_MAX_DMA, /* maxsize */ SAFE_MAX_PART, /* nsegments */ SAFE_MAX_DSIZE, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* locking */ &sc->sc_dstdmat)) { device_printf(dev, "cannot allocate DMA tag\n"); goto bad4; } /* * Allocate packet engine descriptors. */ if (safe_dma_malloc(sc, SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry), &sc->sc_ringalloc, 0)) { device_printf(dev, "cannot allocate PE descriptor ring\n"); bus_dma_tag_destroy(sc->sc_srcdmat); goto bad4; } /* * Hookup the static portion of all our data structures. */ sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr; sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE; sc->sc_front = sc->sc_ring; sc->sc_back = sc->sc_ring; raddr = sc->sc_ringalloc.dma_paddr; bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry)); for (i = 0; i < SAFE_MAX_NQUEUE; i++) { struct safe_ringentry *re = &sc->sc_ring[i]; re->re_desc.d_sa = raddr + offsetof(struct safe_ringentry, re_sa); re->re_sa.sa_staterec = raddr + offsetof(struct safe_ringentry, re_sastate); raddr += sizeof (struct safe_ringentry); } mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev), "packet engine ring", MTX_DEF); /* * Allocate scatter and gather particle descriptors. */ if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc), &sc->sc_spalloc, 0)) { device_printf(dev, "cannot allocate source particle " "descriptor ring\n"); mtx_destroy(&sc->sc_ringmtx); safe_dma_free(sc, &sc->sc_ringalloc); bus_dma_tag_destroy(sc->sc_srcdmat); goto bad4; } sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr; sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART; sc->sc_spfree = sc->sc_spring; bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc)); if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc), &sc->sc_dpalloc, 0)) { device_printf(dev, "cannot allocate destination particle " "descriptor ring\n"); mtx_destroy(&sc->sc_ringmtx); safe_dma_free(sc, &sc->sc_spalloc); safe_dma_free(sc, &sc->sc_ringalloc); bus_dma_tag_destroy(sc->sc_dstdmat); goto bad4; } sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr; sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART; sc->sc_dpfree = sc->sc_dpring; bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc)); device_printf(sc->sc_dev, "%s", safe_partname(sc)); devinfo = READ_REG(sc, SAFE_DEVINFO); if (devinfo & SAFE_DEVINFO_RNG) { sc->sc_flags |= SAFE_FLAGS_RNG; printf(" rng"); } if (devinfo & SAFE_DEVINFO_PKEY) { #if 0 printf(" key"); sc->sc_flags |= SAFE_FLAGS_KEY; crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0); crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0); #endif } if (devinfo & SAFE_DEVINFO_DES) { printf(" des/3des"); crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0); } if (devinfo & SAFE_DEVINFO_AES) { printf(" aes"); crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0); } if (devinfo & SAFE_DEVINFO_MD5) { printf(" md5"); crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0); } if (devinfo & SAFE_DEVINFO_SHA1) { printf(" sha1"); crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0); } printf(" null"); crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0); crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0); /* XXX other supported algorithms */ printf("\n"); safe_reset_board(sc); /* reset h/w */ safe_init_pciregs(dev); /* init pci settings */ safe_init_board(sc); /* init h/w */ #ifndef SAFE_NO_RNG if (sc->sc_flags & SAFE_FLAGS_RNG) { #ifdef SAFE_RNDTEST sc->sc_rndtest = rndtest_attach(dev); if (sc->sc_rndtest) sc->sc_harvest = rndtest_harvest; else sc->sc_harvest = default_harvest; #else sc->sc_harvest = default_harvest; #endif safe_rng_init(sc); callout_init(&sc->sc_rngto, CALLOUT_MPSAFE); callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc); } #endif /* SAFE_NO_RNG */ #ifdef SAFE_DEBUG safec = sc; /* for use by hw.safe.dump */ #endif return (0); bad4: crypto_unregister_all(sc->sc_cid); bad3: bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); bad2: bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq); bad1: bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr); bad: return (ENXIO); } /* * Detach a device that successfully probed. */ static int safe_detach(device_t dev) { struct safe_softc *sc = device_get_softc(dev); /* XXX wait/abort active ops */ WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */ callout_stop(&sc->sc_rngto); crypto_unregister_all(sc->sc_cid); #ifdef SAFE_RNDTEST if (sc->sc_rndtest) rndtest_detach(sc->sc_rndtest); #endif safe_cleanchip(sc); safe_dma_free(sc, &sc->sc_dpalloc); safe_dma_free(sc, &sc->sc_spalloc); mtx_destroy(&sc->sc_ringmtx); safe_dma_free(sc, &sc->sc_ringalloc); bus_generic_detach(dev); bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq); bus_dma_tag_destroy(sc->sc_srcdmat); bus_dma_tag_destroy(sc->sc_dstdmat); bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr); return (0); } /* * Stop all chip i/o so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int safe_shutdown(device_t dev) { #ifdef notyet safe_stop(device_get_softc(dev)); #endif return (0); } /* * Device suspend routine. */ static int safe_suspend(device_t dev) { struct safe_softc *sc = device_get_softc(dev); #ifdef notyet /* XXX stop the device and save PCI settings */ #endif sc->sc_suspended = 1; return (0); } static int safe_resume(device_t dev) { struct safe_softc *sc = device_get_softc(dev); #ifdef notyet /* XXX retore PCI settings and start the device */ #endif sc->sc_suspended = 0; return (0); } /* * SafeXcel Interrupt routine */ static void safe_intr(void *arg) { struct safe_softc *sc = arg; volatile u_int32_t stat; stat = READ_REG(sc, SAFE_HM_STAT); if (stat == 0) /* shared irq, not for us */ return; WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */ if ((stat & SAFE_INT_PE_DDONE)) { /* * Descriptor(s) done; scan the ring and * process completed operations. */ mtx_lock(&sc->sc_ringmtx); while (sc->sc_back != sc->sc_front) { struct safe_ringentry *re = sc->sc_back; #ifdef SAFE_DEBUG if (safe_debug) { safe_dump_ringstate(sc, __func__); safe_dump_request(sc, __func__, re); } #endif /* * safe_process marks ring entries that were allocated * but not used with a csr of zero. This insures the * ring front pointer never needs to be set backwards * in the event that an entry is allocated but not used * because of a setup error. */ if (re->re_desc.d_csr != 0) { if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr)) break; if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len)) break; sc->sc_nqchip--; safe_callback(sc, re); } if (++(sc->sc_back) == sc->sc_ringtop) sc->sc_back = sc->sc_ring; } mtx_unlock(&sc->sc_ringmtx); } /* * Check to see if we got any DMA Error */ if (stat & SAFE_INT_PE_ERROR) { DPRINTF(("dmaerr dmastat %08x\n", READ_REG(sc, SAFE_PE_DMASTAT))); safestats.st_dmaerr++; safe_totalreset(sc); #if 0 safe_feed(sc); #endif } if (sc->sc_needwakeup) { /* XXX check high watermark */ int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ); DPRINTF(("%s: wakeup crypto %x\n", __func__, sc->sc_needwakeup)); sc->sc_needwakeup &= ~wakeup; crypto_unblock(sc->sc_cid, wakeup); } } /* * safe_feed() - post a request to chip */ static void safe_feed(struct safe_softc *sc, struct safe_ringentry *re) { bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE); if (re->re_dst_map != NULL) bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map, BUS_DMASYNC_PREREAD); /* XXX have no smaller granularity */ safe_dma_sync(&sc->sc_ringalloc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE); safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE); #ifdef SAFE_DEBUG if (safe_debug) { safe_dump_ringstate(sc, __func__); safe_dump_request(sc, __func__, re); } #endif sc->sc_nqchip++; if (sc->sc_nqchip > safestats.st_maxqchip) safestats.st_maxqchip = sc->sc_nqchip; /* poke h/w to check descriptor ring, any value can be written */ WRITE_REG(sc, SAFE_HI_RD_DESCR, 0); } #define N(a) (sizeof(a) / sizeof (a[0])) static void safe_setup_enckey(struct safe_session *ses, caddr_t key) { int i; bcopy(key, ses->ses_key, ses->ses_klen / 8); /* PE is little-endian, insure proper byte order */ for (i = 0; i < N(ses->ses_key); i++) ses->ses_key[i] = htole32(ses->ses_key[i]); } static void safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen) { MD5_CTX md5ctx; SHA1_CTX sha1ctx; int i; for (i = 0; i < klen; i++) key[i] ^= HMAC_IPAD_VAL; if (algo == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, key, klen); MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen); bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, key, klen); SHA1Update(&sha1ctx, hmac_ipad_buffer, SHA1_HMAC_BLOCK_LEN - klen); bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32)); } for (i = 0; i < klen; i++) key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); if (algo == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, key, klen); MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen); bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, key, klen); SHA1Update(&sha1ctx, hmac_opad_buffer, SHA1_HMAC_BLOCK_LEN - klen); bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32)); } for (i = 0; i < klen; i++) key[i] ^= HMAC_OPAD_VAL; /* PE is little-endian, insure proper byte order */ for (i = 0; i < N(ses->ses_hminner); i++) { ses->ses_hminner[i] = htole32(ses->ses_hminner[i]); ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]); } } #undef N /* * Allocate a new 'session' and return an encoded session id. 'sidp' * contains our registration id, and should contain an encoded session * id on successful allocation. */ static int safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) { struct safe_softc *sc = device_get_softc(dev); struct cryptoini *c, *encini = NULL, *macini = NULL; struct safe_session *ses = NULL; int sesn; if (sidp == NULL || cri == NULL || sc == NULL) return (EINVAL); for (c = cri; c != NULL; c = c->cri_next) { if (c->cri_alg == CRYPTO_MD5_HMAC || c->cri_alg == CRYPTO_SHA1_HMAC || c->cri_alg == CRYPTO_NULL_HMAC) { if (macini) return (EINVAL); macini = c; } else if (c->cri_alg == CRYPTO_DES_CBC || c->cri_alg == CRYPTO_3DES_CBC || c->cri_alg == CRYPTO_AES_CBC || c->cri_alg == CRYPTO_NULL_CBC) { if (encini) return (EINVAL); encini = c; } else return (EINVAL); } if (encini == NULL && macini == NULL) return (EINVAL); if (encini) { /* validate key length */ switch (encini->cri_alg) { case CRYPTO_DES_CBC: if (encini->cri_klen != 64) return (EINVAL); break; case CRYPTO_3DES_CBC: if (encini->cri_klen != 192) return (EINVAL); break; case CRYPTO_AES_CBC: if (encini->cri_klen != 128 && encini->cri_klen != 192 && encini->cri_klen != 256) return (EINVAL); break; } } if (sc->sc_sessions == NULL) { ses = sc->sc_sessions = (struct safe_session *)malloc( sizeof(struct safe_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); sesn = 0; sc->sc_nsessions = 1; } else { for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { if (sc->sc_sessions[sesn].ses_used == 0) { ses = &sc->sc_sessions[sesn]; break; } } if (ses == NULL) { sesn = sc->sc_nsessions; ses = (struct safe_session *)malloc((sesn + 1) * sizeof(struct safe_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); bcopy(sc->sc_sessions, ses, sesn * sizeof(struct safe_session)); bzero(sc->sc_sessions, sesn * sizeof(struct safe_session)); free(sc->sc_sessions, M_DEVBUF); sc->sc_sessions = ses; ses = &sc->sc_sessions[sesn]; sc->sc_nsessions++; } } bzero(ses, sizeof(struct safe_session)); ses->ses_used = 1; if (encini) { /* get an IV */ /* XXX may read fewer than requested */ read_random(ses->ses_iv, sizeof(ses->ses_iv)); ses->ses_klen = encini->cri_klen; if (encini->cri_key != NULL) safe_setup_enckey(ses, encini->cri_key); } if (macini) { ses->ses_mlen = macini->cri_mlen; if (ses->ses_mlen == 0) { if (macini->cri_alg == CRYPTO_MD5_HMAC) ses->ses_mlen = MD5_HASH_LEN; else ses->ses_mlen = SHA1_HASH_LEN; } if (macini->cri_key != NULL) { safe_setup_mackey(ses, macini->cri_alg, macini->cri_key, macini->cri_klen / 8); } } *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn); return (0); } /* * Deallocate a session. */ static int safe_freesession(device_t dev, u_int64_t tid) { struct safe_softc *sc = device_get_softc(dev); int session, ret; u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; if (sc == NULL) return (EINVAL); session = SAFE_SESSION(sid); if (session < sc->sc_nsessions) { bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session])); ret = 0; } else ret = EINVAL; return (ret); } static void safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error) { struct safe_operand *op = arg; DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__, (u_int) mapsize, nsegs, error)); if (error != 0) return; op->mapsize = mapsize; op->nsegs = nsegs; bcopy(seg, op->segs, nsegs * sizeof (seg[0])); } static int safe_process(device_t dev, struct cryptop *crp, int hint) { struct safe_softc *sc = device_get_softc(dev); int err = 0, i, nicealign, uniform; struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; int bypass, oplen, ivsize; caddr_t iv; int16_t coffset; struct safe_session *ses; struct safe_ringentry *re; struct safe_sarec *sa; struct safe_pdesc *pd; u_int32_t cmd0, cmd1, staterec; if (crp == NULL || crp->crp_callback == NULL || sc == NULL) { safestats.st_invalid++; return (EINVAL); } if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) { safestats.st_badsession++; return (EINVAL); } mtx_lock(&sc->sc_ringmtx); if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) { safestats.st_ringfull++; sc->sc_needwakeup |= CRYPTO_SYMQ; mtx_unlock(&sc->sc_ringmtx); return (ERESTART); } re = sc->sc_front; staterec = re->re_sa.sa_staterec; /* save */ /* NB: zero everything but the PE descriptor */ bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc)); re->re_sa.sa_staterec = staterec; /* restore */ re->re_crp = crp; re->re_sesn = SAFE_SESSION(crp->crp_sid); if (crp->crp_flags & CRYPTO_F_IMBUF) { re->re_src_m = (struct mbuf *)crp->crp_buf; re->re_dst_m = (struct mbuf *)crp->crp_buf; } else if (crp->crp_flags & CRYPTO_F_IOV) { re->re_src_io = (struct uio *)crp->crp_buf; re->re_dst_io = (struct uio *)crp->crp_buf; } else { safestats.st_badflags++; err = EINVAL; goto errout; /* XXX we don't handle contiguous blocks! */ } sa = &re->re_sa; ses = &sc->sc_sessions[re->re_sesn]; crd1 = crp->crp_desc; if (crd1 == NULL) { safestats.st_nodesc++; err = EINVAL; goto errout; } crd2 = crd1->crd_next; cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */ cmd1 = 0; if (crd2 == NULL) { if (crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC || crd1->crd_alg == CRYPTO_NULL_HMAC) { maccrd = crd1; enccrd = NULL; cmd0 |= SAFE_SA_CMD0_OP_HASH; } else if (crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC || crd1->crd_alg == CRYPTO_NULL_CBC) { maccrd = NULL; enccrd = crd1; cmd0 |= SAFE_SA_CMD0_OP_CRYPT; } else { safestats.st_badalg++; err = EINVAL; goto errout; } } else { if ((crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC || crd1->crd_alg == CRYPTO_NULL_HMAC) && (crd2->crd_alg == CRYPTO_DES_CBC || crd2->crd_alg == CRYPTO_3DES_CBC || crd2->crd_alg == CRYPTO_AES_CBC || crd2->crd_alg == CRYPTO_NULL_CBC) && ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { maccrd = crd1; enccrd = crd2; } else if ((crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC || crd1->crd_alg == CRYPTO_AES_CBC || crd1->crd_alg == CRYPTO_NULL_CBC) && (crd2->crd_alg == CRYPTO_MD5_HMAC || crd2->crd_alg == CRYPTO_SHA1_HMAC || crd2->crd_alg == CRYPTO_NULL_HMAC) && (crd1->crd_flags & CRD_F_ENCRYPT)) { enccrd = crd1; maccrd = crd2; } else { safestats.st_badalg++; err = EINVAL; goto errout; } cmd0 |= SAFE_SA_CMD0_OP_BOTH; } if (enccrd) { if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) safe_setup_enckey(ses, enccrd->crd_key); if (enccrd->crd_alg == CRYPTO_DES_CBC) { cmd0 |= SAFE_SA_CMD0_DES; cmd1 |= SAFE_SA_CMD1_CBC; ivsize = 2*sizeof(u_int32_t); } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) { cmd0 |= SAFE_SA_CMD0_3DES; cmd1 |= SAFE_SA_CMD1_CBC; ivsize = 2*sizeof(u_int32_t); } else if (enccrd->crd_alg == CRYPTO_AES_CBC) { cmd0 |= SAFE_SA_CMD0_AES; cmd1 |= SAFE_SA_CMD1_CBC; if (ses->ses_klen == 128) cmd1 |= SAFE_SA_CMD1_AES128; else if (ses->ses_klen == 192) cmd1 |= SAFE_SA_CMD1_AES192; else cmd1 |= SAFE_SA_CMD1_AES256; ivsize = 4*sizeof(u_int32_t); } else { cmd0 |= SAFE_SA_CMD0_CRYPT_NULL; ivsize = 0; } /* * Setup encrypt/decrypt state. When using basic ops * we can't use an inline IV because hash/crypt offset * must be from the end of the IV to the start of the * crypt data and this leaves out the preceding header * from the hash calculation. Instead we place the IV * in the state record and set the hash/crypt offset to * copy both the header+IV. */ if (enccrd->crd_flags & CRD_F_ENCRYPT) { cmd0 |= SAFE_SA_CMD0_OUTBOUND; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) iv = enccrd->crd_iv; else iv = (caddr_t) ses->ses_iv; if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { crypto_copyback(crp->crp_flags, crp->crp_buf, enccrd->crd_inject, ivsize, iv); } bcopy(iv, re->re_sastate.sa_saved_iv, ivsize); cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV; re->re_flags |= SAFE_QFLAGS_COPYOUTIV; } else { cmd0 |= SAFE_SA_CMD0_INBOUND; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) { bcopy(enccrd->crd_iv, re->re_sastate.sa_saved_iv, ivsize); } else { crypto_copydata(crp->crp_flags, crp->crp_buf, enccrd->crd_inject, ivsize, (caddr_t)re->re_sastate.sa_saved_iv); } cmd0 |= SAFE_SA_CMD0_IVLD_STATE; } /* * For basic encryption use the zero pad algorithm. * This pads results to an 8-byte boundary and * suppresses padding verification for inbound (i.e. * decrypt) operations. * * NB: Not sure if the 8-byte pad boundary is a problem. */ cmd0 |= SAFE_SA_CMD0_PAD_ZERO; /* XXX assert key bufs have the same size */ bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key)); } if (maccrd) { if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) { safe_setup_mackey(ses, maccrd->crd_alg, maccrd->crd_key, maccrd->crd_klen / 8); } if (maccrd->crd_alg == CRYPTO_MD5_HMAC) { cmd0 |= SAFE_SA_CMD0_MD5; cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) { cmd0 |= SAFE_SA_CMD0_SHA1; cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */ } else { cmd0 |= SAFE_SA_CMD0_HASH_NULL; } /* * Digest data is loaded from the SA and the hash * result is saved to the state block where we * retrieve it for return to the caller. */ /* XXX assert digest bufs have the same size */ bcopy(ses->ses_hminner, sa->sa_indigest, sizeof(sa->sa_indigest)); bcopy(ses->ses_hmouter, sa->sa_outdigest, sizeof(sa->sa_outdigest)); cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH; re->re_flags |= SAFE_QFLAGS_COPYOUTICV; } if (enccrd && maccrd) { /* * The offset from hash data to the start of * crypt data is the difference in the skips. */ bypass = maccrd->crd_skip; coffset = enccrd->crd_skip - maccrd->crd_skip; if (coffset < 0) { DPRINTF(("%s: hash does not precede crypt; " "mac skip %u enc skip %u\n", __func__, maccrd->crd_skip, enccrd->crd_skip)); safestats.st_skipmismatch++; err = EINVAL; goto errout; } oplen = enccrd->crd_skip + enccrd->crd_len; if (maccrd->crd_skip + maccrd->crd_len != oplen) { DPRINTF(("%s: hash amount %u != crypt amount %u\n", __func__, maccrd->crd_skip + maccrd->crd_len, oplen)); safestats.st_lenmismatch++; err = EINVAL; goto errout; } #ifdef SAFE_DEBUG if (safe_debug) { printf("mac: skip %d, len %d, inject %d\n", maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject); printf("enc: skip %d, len %d, inject %d\n", enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject); printf("bypass %d coffset %d oplen %d\n", bypass, coffset, oplen); } #endif if (coffset & 3) { /* offset must be 32-bit aligned */ DPRINTF(("%s: coffset %u misaligned\n", __func__, coffset)); safestats.st_coffmisaligned++; err = EINVAL; goto errout; } coffset >>= 2; if (coffset > 255) { /* offset must be <256 dwords */ DPRINTF(("%s: coffset %u too big\n", __func__, coffset)); safestats.st_cofftoobig++; err = EINVAL; goto errout; } /* * Tell the hardware to copy the header to the output. * The header is defined as the data from the end of * the bypass to the start of data to be encrypted. * Typically this is the inline IV. Note that you need * to do this even if src+dst are the same; it appears * that w/o this bit the crypted data is written * immediately after the bypass data. */ cmd1 |= SAFE_SA_CMD1_HDRCOPY; /* * Disable IP header mutable bit handling. This is * needed to get correct HMAC calculations. */ cmd1 |= SAFE_SA_CMD1_MUTABLE; } else { if (enccrd) { bypass = enccrd->crd_skip; oplen = bypass + enccrd->crd_len; } else { bypass = maccrd->crd_skip; oplen = bypass + maccrd->crd_len; } coffset = 0; } /* XXX verify multiple of 4 when using s/g */ if (bypass > 96) { /* bypass offset must be <= 96 bytes */ DPRINTF(("%s: bypass %u too big\n", __func__, bypass)); safestats.st_bypasstoobig++; err = EINVAL; goto errout; } if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) { safestats.st_nomap++; err = ENOMEM; goto errout; } if (crp->crp_flags & CRYPTO_F_IMBUF) { if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map, re->re_src_m, safe_op_cb, &re->re_src, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map); re->re_src_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } } else if (crp->crp_flags & CRYPTO_F_IOV) { if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map, re->re_src_io, safe_op_cb, &re->re_src, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map); re->re_src_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } } nicealign = safe_dmamap_aligned(&re->re_src); uniform = safe_dmamap_uniform(&re->re_src); DPRINTF(("src nicealign %u uniform %u nsegs %u\n", nicealign, uniform, re->re_src.nsegs)); if (re->re_src.nsegs > 1) { re->re_desc.d_src = sc->sc_spalloc.dma_paddr + ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring); for (i = 0; i < re->re_src_nsegs; i++) { /* NB: no need to check if there's space */ pd = sc->sc_spfree; if (++(sc->sc_spfree) == sc->sc_springtop) sc->sc_spfree = sc->sc_spring; KASSERT((pd->pd_flags&3) == 0 || (pd->pd_flags&3) == SAFE_PD_DONE, ("bogus source particle descriptor; flags %x", pd->pd_flags)); pd->pd_addr = re->re_src_segs[i].ds_addr; pd->pd_size = re->re_src_segs[i].ds_len; pd->pd_flags = SAFE_PD_READY; } cmd0 |= SAFE_SA_CMD0_IGATHER; } else { /* * No need for gather, reference the operand directly. */ re->re_desc.d_src = re->re_src_segs[0].ds_addr; } if (enccrd == NULL && maccrd != NULL) { /* * Hash op; no destination needed. */ } else { if (crp->crp_flags & CRYPTO_F_IOV) { if (!nicealign) { safestats.st_iovmisaligned++; err = EINVAL; goto errout; } if (uniform != 1) { /* * Source is not suitable for direct use as * the destination. Create a new scatter/gather * list based on the destination requirements * and check if that's ok. */ if (bus_dmamap_create(sc->sc_dstdmat, BUS_DMA_NOWAIT, &re->re_dst_map)) { safestats.st_nomap++; err = ENOMEM; goto errout; } if (bus_dmamap_load_uio(sc->sc_dstdmat, re->re_dst_map, re->re_dst_io, safe_op_cb, &re->re_dst, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map); re->re_dst_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } uniform = safe_dmamap_uniform(&re->re_dst); if (!uniform) { /* * There's no way to handle the DMA * requirements with this uio. We * could create a separate DMA area for * the result and then copy it back, * but for now we just bail and return * an error. Note that uio requests * > SAFE_MAX_DSIZE are handled because * the DMA map and segment list for the * destination wil result in a * destination particle list that does * the necessary scatter DMA. */ safestats.st_iovnotuniform++; err = EINVAL; goto errout; } } else re->re_dst = re->re_src; } else if (crp->crp_flags & CRYPTO_F_IMBUF) { if (nicealign && uniform == 1) { /* * Source layout is suitable for direct * sharing of the DMA map and segment list. */ re->re_dst = re->re_src; } else if (nicealign && uniform == 2) { /* * The source is properly aligned but requires a * different particle list to handle DMA of the * result. Create a new map and do the load to * create the segment list. The particle * descriptor setup code below will handle the * rest. */ if (bus_dmamap_create(sc->sc_dstdmat, BUS_DMA_NOWAIT, &re->re_dst_map)) { safestats.st_nomap++; err = ENOMEM; goto errout; } if (bus_dmamap_load_mbuf(sc->sc_dstdmat, re->re_dst_map, re->re_dst_m, safe_op_cb, &re->re_dst, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map); re->re_dst_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } } else { /* !(aligned and/or uniform) */ int totlen, len; struct mbuf *m, *top, **mp; /* * DMA constraints require that we allocate a * new mbuf chain for the destination. We * allocate an entire new set of mbufs of * optimal/required size and then tell the * hardware to copy any bits that are not * created as a byproduct of the operation. */ if (!nicealign) safestats.st_unaligned++; if (!uniform) safestats.st_notuniform++; totlen = re->re_src_mapsize; if (re->re_src_m->m_flags & M_PKTHDR) { len = MHLEN; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m && !m_dup_pkthdr(m, re->re_src_m, M_DONTWAIT)) { m_free(m); m = NULL; } } else { len = MLEN; MGET(m, M_DONTWAIT, MT_DATA); } if (m == NULL) { safestats.st_nombuf++; err = sc->sc_nqchip ? ERESTART : ENOMEM; goto errout; } if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); safestats.st_nomcl++; err = sc->sc_nqchip ? ERESTART : ENOMEM; goto errout; } len = MCLBYTES; } m->m_len = len; top = NULL; mp = ⊤ while (totlen > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == NULL) { m_freem(top); safestats.st_nombuf++; err = sc->sc_nqchip ? ERESTART : ENOMEM; goto errout; } len = MLEN; } if (top && totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { *mp = m; m_freem(top); safestats.st_nomcl++; err = sc->sc_nqchip ? ERESTART : ENOMEM; goto errout; } len = MCLBYTES; } m->m_len = len = min(totlen, len); totlen -= len; *mp = m; mp = &m->m_next; } re->re_dst_m = top; if (bus_dmamap_create(sc->sc_dstdmat, BUS_DMA_NOWAIT, &re->re_dst_map) != 0) { safestats.st_nomap++; err = ENOMEM; goto errout; } if (bus_dmamap_load_mbuf(sc->sc_dstdmat, re->re_dst_map, re->re_dst_m, safe_op_cb, &re->re_dst, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map); re->re_dst_map = NULL; safestats.st_noload++; err = ENOMEM; goto errout; } if (re->re_src.mapsize > oplen) { /* * There's data following what the * hardware will copy for us. If this * isn't just the ICV (that's going to * be written on completion), copy it * to the new mbufs */ if (!(maccrd && (re->re_src.mapsize-oplen) == 12 && maccrd->crd_inject == oplen)) safe_mcopy(re->re_src_m, re->re_dst_m, oplen); else safestats.st_noicvcopy++; } } } else { safestats.st_badflags++; err = EINVAL; goto errout; } if (re->re_dst.nsegs > 1) { re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr + ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring); for (i = 0; i < re->re_dst_nsegs; i++) { pd = sc->sc_dpfree; KASSERT((pd->pd_flags&3) == 0 || (pd->pd_flags&3) == SAFE_PD_DONE, ("bogus dest particle descriptor; flags %x", pd->pd_flags)); if (++(sc->sc_dpfree) == sc->sc_dpringtop) sc->sc_dpfree = sc->sc_dpring; pd->pd_addr = re->re_dst_segs[i].ds_addr; pd->pd_flags = SAFE_PD_READY; } cmd0 |= SAFE_SA_CMD0_OSCATTER; } else { /* * No need for scatter, reference the operand directly. */ re->re_desc.d_dst = re->re_dst_segs[0].ds_addr; } } /* * All done with setup; fillin the SA command words * and the packet engine descriptor. The operation * is now ready for submission to the hardware. */ sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI; sa->sa_cmd1 = cmd1 | (coffset << SAFE_SA_CMD1_OFFSET_S) | SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */ | SAFE_SA_CMD1_SRPCI ; /* * NB: the order of writes is important here. In case the * chip is scanning the ring because of an outstanding request * it might nab this one too. In that case we need to make * sure the setup is complete before we write the length * field of the descriptor as it signals the descriptor is * ready for processing. */ re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI; if (maccrd) re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL; re->re_desc.d_len = oplen | SAFE_PE_LEN_READY | (bypass << SAFE_PE_LEN_BYPASS_S) ; safestats.st_ipackets++; safestats.st_ibytes += oplen; if (++(sc->sc_front) == sc->sc_ringtop) sc->sc_front = sc->sc_ring; /* XXX honor batching */ safe_feed(sc, re); mtx_unlock(&sc->sc_ringmtx); return (0); errout: if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m)) m_freem(re->re_dst_m); if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) { bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map); bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map); } if (re->re_src_map != NULL) { bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map); bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map); } mtx_unlock(&sc->sc_ringmtx); if (err != ERESTART) { crp->crp_etype = err; crypto_done(crp); } else { sc->sc_needwakeup |= CRYPTO_SYMQ; } return (err); } static void safe_callback(struct safe_softc *sc, struct safe_ringentry *re) { struct cryptop *crp = (struct cryptop *)re->re_crp; struct cryptodesc *crd; safestats.st_opackets++; safestats.st_obytes += re->re_dst.mapsize; safe_dma_sync(&sc->sc_ringalloc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) { device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n", re->re_desc.d_csr, re->re_sa.sa_cmd0, re->re_sa.sa_cmd1); safestats.st_peoperr++; crp->crp_etype = EIO; /* something more meaningful? */ } if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) { bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map); bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map); } bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map); bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map); /* * If result was written to a differet mbuf chain, swap * it in as the return value and reclaim the original. */ if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) { m_freem(re->re_src_m); crp->crp_buf = (caddr_t)re->re_dst_m; } if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) { /* copy out IV for future use */ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { int ivsize; if (crd->crd_alg == CRYPTO_DES_CBC || crd->crd_alg == CRYPTO_3DES_CBC) { ivsize = 2*sizeof(u_int32_t); } else if (crd->crd_alg == CRYPTO_AES_CBC) { ivsize = 4*sizeof(u_int32_t); } else continue; crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip + crd->crd_len - ivsize, ivsize, (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv); break; } } if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) { /* copy out ICV result */ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { if (!(crd->crd_alg == CRYPTO_MD5_HMAC || crd->crd_alg == CRYPTO_SHA1_HMAC || crd->crd_alg == CRYPTO_NULL_HMAC)) continue; if (crd->crd_alg == CRYPTO_SHA1_HMAC) { /* * SHA-1 ICV's are byte-swapped; fix 'em up * before copy them to their destination. */ re->re_sastate.sa_saved_indigest[0] = bswap32(re->re_sastate.sa_saved_indigest[0]); re->re_sastate.sa_saved_indigest[1] = bswap32(re->re_sastate.sa_saved_indigest[1]); re->re_sastate.sa_saved_indigest[2] = bswap32(re->re_sastate.sa_saved_indigest[2]); } crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, sc->sc_sessions[re->re_sesn].ses_mlen, (caddr_t)re->re_sastate.sa_saved_indigest); break; } } crypto_done(crp); } /* * Copy all data past offset from srcm to dstm. */ static void safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset) { u_int j, dlen, slen; caddr_t dptr, sptr; /* * Advance src and dst to offset. */ j = offset; while (j >= 0) { if (srcm->m_len > j) break; j -= srcm->m_len; srcm = srcm->m_next; if (srcm == NULL) return; } sptr = mtod(srcm, caddr_t) + j; slen = srcm->m_len - j; j = offset; while (j >= 0) { if (dstm->m_len > j) break; j -= dstm->m_len; dstm = dstm->m_next; if (dstm == NULL) return; } dptr = mtod(dstm, caddr_t) + j; dlen = dstm->m_len - j; /* * Copy everything that remains. */ for (;;) { j = min(slen, dlen); bcopy(sptr, dptr, j); if (slen == j) { srcm = srcm->m_next; if (srcm == NULL) return; sptr = srcm->m_data; slen = srcm->m_len; } else sptr += j, slen -= j; if (dlen == j) { dstm = dstm->m_next; if (dstm == NULL) return; dptr = dstm->m_data; dlen = dstm->m_len; } else dptr += j, dlen -= j; } } #ifndef SAFE_NO_RNG #define SAFE_RNG_MAXWAIT 1000 static void safe_rng_init(struct safe_softc *sc) { u_int32_t w, v; int i; WRITE_REG(sc, SAFE_RNG_CTRL, 0); /* use default value according to the manual */ WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */ WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); /* * There is a bug in rev 1.0 of the 1140 that when the RNG * is brought out of reset the ready status flag does not * work until the RNG has finished its internal initialization. * * So in order to determine the device is through its * initialization we must read the data register, using the * status reg in the read in case it is initialized. Then read * the data register until it changes from the first read. * Once it changes read the data register until it changes * again. At this time the RNG is considered initialized. * This could take between 750ms - 1000ms in time. */ i = 0; w = READ_REG(sc, SAFE_RNG_OUT); do { v = READ_REG(sc, SAFE_RNG_OUT); if (v != w) { w = v; break; } DELAY(10); } while (++i < SAFE_RNG_MAXWAIT); /* Wait Until data changes again */ i = 0; do { v = READ_REG(sc, SAFE_RNG_OUT); if (v != w) break; DELAY(10); } while (++i < SAFE_RNG_MAXWAIT); } static __inline void safe_rng_disable_short_cycle(struct safe_softc *sc) { WRITE_REG(sc, SAFE_RNG_CTRL, READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN); } static __inline void safe_rng_enable_short_cycle(struct safe_softc *sc) { WRITE_REG(sc, SAFE_RNG_CTRL, READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN); } static __inline u_int32_t safe_rng_read(struct safe_softc *sc) { int i; i = 0; while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT) ; return READ_REG(sc, SAFE_RNG_OUT); } static void safe_rng(void *arg) { struct safe_softc *sc = arg; u_int32_t buf[SAFE_RNG_MAXBUFSIZ]; /* NB: maybe move to softc */ u_int maxwords; int i; safestats.st_rng++; /* * Fetch the next block of data. */ maxwords = safe_rngbufsize; if (maxwords > SAFE_RNG_MAXBUFSIZ) maxwords = SAFE_RNG_MAXBUFSIZ; retry: for (i = 0; i < maxwords; i++) buf[i] = safe_rng_read(sc); /* * Check the comparator alarm count and reset the h/w if * it exceeds our threshold. This guards against the * hardware oscillators resonating with external signals. */ if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) { u_int32_t freq_inc, w; DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__, READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm)); safestats.st_rngalarm++; safe_rng_enable_short_cycle(sc); freq_inc = 18; for (i = 0; i < 64; i++) { w = READ_REG(sc, SAFE_RNG_CNFG); freq_inc = ((w + freq_inc) & 0x3fL); w = ((w & ~0x3fL) | freq_inc); WRITE_REG(sc, SAFE_RNG_CNFG, w); WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); (void) safe_rng_read(sc); DELAY(25); if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) { safe_rng_disable_short_cycle(sc); goto retry; } freq_inc = 1; } safe_rng_disable_short_cycle(sc); } else WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0); (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t)); callout_reset(&sc->sc_rngto, hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc); } #endif /* SAFE_NO_RNG */ static void safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *paddr = (bus_addr_t*) arg; *paddr = segs->ds_addr; } static int safe_dma_malloc( struct safe_softc *sc, bus_size_t size, struct safe_dma_alloc *dma, int mapflags ) { int r; r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ sizeof(u_int32_t), 0, /* alignment, bounds */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ size, /* maxsize */ 1, /* nsegments */ size, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* locking */ &dma->dma_tag); if (r != 0) { device_printf(sc->sc_dev, "safe_dma_malloc: " "bus_dma_tag_create failed; error %u\n", r); goto fail_0; } r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map); if (r != 0) { device_printf(sc->sc_dev, "safe_dma_malloc: " "bus_dmamap_create failed; error %u\n", r); goto fail_1; } r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr, BUS_DMA_NOWAIT, &dma->dma_map); if (r != 0) { device_printf(sc->sc_dev, "safe_dma_malloc: " "bus_dmammem_alloc failed; size %zu, error %u\n", size, r); goto fail_2; } r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size, safe_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT); if (r != 0) { device_printf(sc->sc_dev, "safe_dma_malloc: " "bus_dmamap_load failed; error %u\n", r); goto fail_3; } dma->dma_size = size; return (0); fail_3: bus_dmamap_unload(dma->dma_tag, dma->dma_map); fail_2: bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); fail_1: bus_dmamap_destroy(dma->dma_tag, dma->dma_map); bus_dma_tag_destroy(dma->dma_tag); fail_0: dma->dma_map = NULL; dma->dma_tag = NULL; return (r); } static void safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma) { bus_dmamap_unload(dma->dma_tag, dma->dma_map); bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); bus_dmamap_destroy(dma->dma_tag, dma->dma_map); bus_dma_tag_destroy(dma->dma_tag); } /* * Resets the board. Values in the regesters are left as is * from the reset (i.e. initial values are assigned elsewhere). */ static void safe_reset_board(struct safe_softc *sc) { u_int32_t v; /* * Reset the device. The manual says no delay * is needed between marking and clearing reset. */ v = READ_REG(sc, SAFE_PE_DMACFG) &~ (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET | SAFE_PE_DMACFG_SGRESET); WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET | SAFE_PE_DMACFG_SGRESET); WRITE_REG(sc, SAFE_PE_DMACFG, v); } /* * Initialize registers we need to touch only once. */ static void safe_init_board(struct safe_softc *sc) { u_int32_t v, dwords; v = READ_REG(sc, SAFE_PE_DMACFG); v &=~ SAFE_PE_DMACFG_PEMODE; v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */ | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */ | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */ | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */ | SAFE_PE_DMACFG_ESSA /* endian-swap SA's */ | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */ ; WRITE_REG(sc, SAFE_PE_DMACFG, v); #if 0 /* XXX select byte swap based on host byte order */ WRITE_REG(sc, SAFE_ENDIAN, 0x1b); #endif if (sc->sc_chiprev == SAFE_REV(1,0)) { /* * Avoid large PCI DMA transfers. Rev 1.0 has a bug where * "target mode transfers" done while the chip is DMA'ing * >1020 bytes cause the hardware to lockup. To avoid this * we reduce the max PCI transfer size and use small source * particle descriptors (<= 256 bytes). */ WRITE_REG(sc, SAFE_DMA_CFG, 256); device_printf(sc->sc_dev, "Reduce max DMA size to %u words for rev %u.%u WAR\n", (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff, SAFE_REV_MAJ(sc->sc_chiprev), SAFE_REV_MIN(sc->sc_chiprev)); } /* NB: operands+results are overlaid */ WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr); WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr); /* * Configure ring entry size and number of items in the ring. */ KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0, ("PE ring entry not 32-bit aligned!")); dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t); WRITE_REG(sc, SAFE_PE_RINGCFG, (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE); WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */ WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr); WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr); WRITE_REG(sc, SAFE_PE_PARTSIZE, (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART); /* * NB: destination particles are fixed size. We use * an mbuf cluster and require all results go to * clusters or smaller. */ WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE); /* it's now safe to enable PE mode, do it */ WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE); /* * Configure hardware to use level-triggered interrupts and * to interrupt after each descriptor is processed. */ WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL); WRITE_REG(sc, SAFE_HI_DESC_CNT, 1); WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR); } /* * Init PCI registers */ static void safe_init_pciregs(device_t dev) { } /* * Clean up after a chip crash. * It is assumed that the caller in splimp() */ static void safe_cleanchip(struct safe_softc *sc) { if (sc->sc_nqchip != 0) { struct safe_ringentry *re = sc->sc_back; while (re != sc->sc_front) { if (re->re_desc.d_csr != 0) safe_free_entry(sc, re); if (++re == sc->sc_ringtop) re = sc->sc_ring; } sc->sc_back = re; sc->sc_nqchip = 0; } } /* * free a safe_q * It is assumed that the caller is within splimp(). */ static int safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re) { struct cryptop *crp; /* * Free header MCR */ if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m)) m_freem(re->re_dst_m); crp = (struct cryptop *)re->re_crp; re->re_desc.d_csr = 0; crp->crp_etype = EFAULT; crypto_done(crp); return(0); } /* * Routine to reset the chip and clean up. * It is assumed that the caller is in splimp() */ static void safe_totalreset(struct safe_softc *sc) { safe_reset_board(sc); safe_init_board(sc); safe_cleanchip(sc); } /* * Is the operand suitable aligned for direct DMA. Each * segment must be aligned on a 32-bit boundary and all * but the last segment must be a multiple of 4 bytes. */ static int safe_dmamap_aligned(const struct safe_operand *op) { int i; for (i = 0; i < op->nsegs; i++) { if (op->segs[i].ds_addr & 3) return (0); if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3)) return (0); } return (1); } /* * Is the operand suitable for direct DMA as the destination * of an operation. The hardware requires that each ``particle'' * but the last in an operation result have the same size. We * fix that size at SAFE_MAX_DSIZE bytes. This routine returns * 0 if some segment is not a multiple of of this size, 1 if all * segments are exactly this size, or 2 if segments are at worst * a multple of this size. */ static int safe_dmamap_uniform(const struct safe_operand *op) { int result = 1; if (op->nsegs > 0) { int i; for (i = 0; i < op->nsegs-1; i++) { if (op->segs[i].ds_len % SAFE_MAX_DSIZE) return (0); if (op->segs[i].ds_len != SAFE_MAX_DSIZE) result = 2; } } return (result); } #ifdef SAFE_DEBUG static void safe_dump_dmastatus(struct safe_softc *sc, const char *tag) { printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n" , tag , READ_REG(sc, SAFE_DMA_ENDIAN) , READ_REG(sc, SAFE_DMA_SRCADDR) , READ_REG(sc, SAFE_DMA_DSTADDR) , READ_REG(sc, SAFE_DMA_STAT) ); } static void safe_dump_intrstate(struct safe_softc *sc, const char *tag) { printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n" , tag , READ_REG(sc, SAFE_HI_CFG) , READ_REG(sc, SAFE_HI_MASK) , READ_REG(sc, SAFE_HI_DESC_CNT) , READ_REG(sc, SAFE_HU_STAT) , READ_REG(sc, SAFE_HM_STAT) ); } static void safe_dump_ringstate(struct safe_softc *sc, const char *tag) { u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT); /* NB: assume caller has lock on ring */ printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n", tag, estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S), (unsigned long)(sc->sc_back - sc->sc_ring), (unsigned long)(sc->sc_front - sc->sc_ring)); } static void safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re) { int ix, nsegs; ix = re - sc->sc_ring; printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n" , tag , re, ix , re->re_desc.d_csr , re->re_desc.d_src , re->re_desc.d_dst , re->re_desc.d_sa , re->re_desc.d_len ); if (re->re_src.nsegs > 1) { ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) / sizeof(struct safe_pdesc); for (nsegs = re->re_src.nsegs; nsegs; nsegs--) { printf(" spd[%u] %p: %p size %u flags %x" , ix, &sc->sc_spring[ix] , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr , sc->sc_spring[ix].pd_size , sc->sc_spring[ix].pd_flags ); if (sc->sc_spring[ix].pd_size == 0) printf(" (zero!)"); printf("\n"); if (++ix == SAFE_TOTAL_SPART) ix = 0; } } if (re->re_dst.nsegs > 1) { ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) / sizeof(struct safe_pdesc); for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) { printf(" dpd[%u] %p: %p flags %x\n" , ix, &sc->sc_dpring[ix] , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr , sc->sc_dpring[ix].pd_flags ); if (++ix == SAFE_TOTAL_DPART) ix = 0; } } printf("sa: cmd0 %08x cmd1 %08x staterec %x\n", re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec); printf("sa: key %x %x %x %x %x %x %x %x\n" , re->re_sa.sa_key[0] , re->re_sa.sa_key[1] , re->re_sa.sa_key[2] , re->re_sa.sa_key[3] , re->re_sa.sa_key[4] , re->re_sa.sa_key[5] , re->re_sa.sa_key[6] , re->re_sa.sa_key[7] ); printf("sa: indigest %x %x %x %x %x\n" , re->re_sa.sa_indigest[0] , re->re_sa.sa_indigest[1] , re->re_sa.sa_indigest[2] , re->re_sa.sa_indigest[3] , re->re_sa.sa_indigest[4] ); printf("sa: outdigest %x %x %x %x %x\n" , re->re_sa.sa_outdigest[0] , re->re_sa.sa_outdigest[1] , re->re_sa.sa_outdigest[2] , re->re_sa.sa_outdigest[3] , re->re_sa.sa_outdigest[4] ); printf("sr: iv %x %x %x %x\n" , re->re_sastate.sa_saved_iv[0] , re->re_sastate.sa_saved_iv[1] , re->re_sastate.sa_saved_iv[2] , re->re_sastate.sa_saved_iv[3] ); printf("sr: hashbc %u indigest %x %x %x %x %x\n" , re->re_sastate.sa_saved_hashbc , re->re_sastate.sa_saved_indigest[0] , re->re_sastate.sa_saved_indigest[1] , re->re_sastate.sa_saved_indigest[2] , re->re_sastate.sa_saved_indigest[3] , re->re_sastate.sa_saved_indigest[4] ); } static void safe_dump_ring(struct safe_softc *sc, const char *tag) { mtx_lock(&sc->sc_ringmtx); printf("\nSafeNet Ring State:\n"); safe_dump_intrstate(sc, tag); safe_dump_dmastatus(sc, tag); safe_dump_ringstate(sc, tag); if (sc->sc_nqchip) { struct safe_ringentry *re = sc->sc_back; do { safe_dump_request(sc, tag, re); if (++re == sc->sc_ringtop) re = sc->sc_ring; } while (re != sc->sc_front); } mtx_unlock(&sc->sc_ringmtx); } static int sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS) { char dmode[64]; int error; strncpy(dmode, "", sizeof(dmode) - 1); dmode[sizeof(dmode) - 1] = '\0'; error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req); if (error == 0 && req->newptr != NULL) { struct safe_softc *sc = safec; if (!sc) return EINVAL; if (strncmp(dmode, "dma", 3) == 0) safe_dump_dmastatus(sc, "safe0"); else if (strncmp(dmode, "int", 3) == 0) safe_dump_intrstate(sc, "safe0"); else if (strncmp(dmode, "ring", 4) == 0) safe_dump_ring(sc, "safe0"); else return EINVAL; } return error; } SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW, 0, 0, sysctl_hw_safe_dump, "A", "Dump driver state"); #endif /* SAFE_DEBUG */