Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/fbt/@/net/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/fbt/@/net/if_var.h |
/*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)if.h 8.1 (Berkeley) 6/10/93 * $FreeBSD: release/9.1.0/sys/net/if_var.h 231157 2012-02-07 19:55:58Z jhb $ */ #ifndef _NET_IF_VAR_H_ #define _NET_IF_VAR_H_ /* * Structures defining a network interface, providing a packet * transport mechanism (ala level 0 of the PUP protocols). * * Each interface accepts output datagrams of a specified maximum * length, and provides higher level routines with input datagrams * received from its medium. * * Output occurs when the routine if_output is called, with three parameters: * (*ifp->if_output)(ifp, m, dst, rt) * Here m is the mbuf chain to be sent and dst is the destination address. * The output routine encapsulates the supplied datagram if necessary, * and then transmits it on its medium. * * On input, each interface unwraps the data received by it, and either * places it on the input queue of an internetwork datagram routine * and posts the associated software interrupt, or passes the datagram to a raw * packet input routine. * * Routines exist for locating interfaces by their addresses * or for locating an interface on a certain network, as well as more general * routing and gateway routines maintaining information used to locate * interfaces. These routines live in the files if.c and route.c */ #ifdef __STDC__ /* * Forward structure declarations for function prototypes [sic]. */ struct mbuf; struct thread; struct rtentry; struct rt_addrinfo; struct socket; struct ether_header; struct carp_if; struct ifvlantrunk; struct route; struct vnet; #endif #include <sys/queue.h> /* get TAILQ macros */ #ifdef _KERNEL #include <sys/mbuf.h> #include <sys/eventhandler.h> #include <sys/buf_ring.h> #include <net/vnet.h> #endif /* _KERNEL */ #include <sys/lock.h> /* XXX */ #include <sys/mutex.h> /* XXX */ #include <sys/rwlock.h> /* XXX */ #include <sys/sx.h> /* XXX */ #include <sys/event.h> /* XXX */ #include <sys/_task.h> #define IF_DUNIT_NONE -1 #include <altq/if_altq.h> TAILQ_HEAD(ifnethead, ifnet); /* we use TAILQs so that the order of */ TAILQ_HEAD(ifaddrhead, ifaddr); /* instantiation is preserved in the list */ TAILQ_HEAD(ifprefixhead, ifprefix); TAILQ_HEAD(ifmultihead, ifmultiaddr); TAILQ_HEAD(ifgrouphead, ifg_group); /* * Structure defining a queue for a network interface. */ struct ifqueue { struct mbuf *ifq_head; struct mbuf *ifq_tail; int ifq_len; int ifq_maxlen; int ifq_drops; struct mtx ifq_mtx; }; /* * Structure defining a network interface. * * (Would like to call this struct ``if'', but C isn't PL/1.) */ struct ifnet { void *if_softc; /* pointer to driver state */ void *if_l2com; /* pointer to protocol bits */ struct vnet *if_vnet; /* pointer to network stack instance */ TAILQ_ENTRY(ifnet) if_link; /* all struct ifnets are chained */ char if_xname[IFNAMSIZ]; /* external name (name + unit) */ const char *if_dname; /* driver name */ int if_dunit; /* unit or IF_DUNIT_NONE */ u_int if_refcount; /* reference count */ struct ifaddrhead if_addrhead; /* linked list of addresses per if */ /* * if_addrhead is the list of all addresses associated to * an interface. * Some code in the kernel assumes that first element * of the list has type AF_LINK, and contains sockaddr_dl * addresses which store the link-level address and the name * of the interface. * However, access to the AF_LINK address through this * field is deprecated. Use if_addr or ifaddr_byindex() instead. */ int if_pcount; /* number of promiscuous listeners */ struct carp_if *if_carp; /* carp interface structure */ struct bpf_if *if_bpf; /* packet filter structure */ u_short if_index; /* numeric abbreviation for this if */ short if_index_reserved; /* spare space to grow if_index */ struct ifvlantrunk *if_vlantrunk; /* pointer to 802.1q data */ int if_flags; /* up/down, broadcast, etc. */ int if_capabilities; /* interface features & capabilities */ int if_capenable; /* enabled features & capabilities */ void *if_linkmib; /* link-type-specific MIB data */ size_t if_linkmiblen; /* length of above data */ struct if_data if_data; struct ifmultihead if_multiaddrs; /* multicast addresses configured */ int if_amcount; /* number of all-multicast requests */ /* procedure handles */ int (*if_output) /* output routine (enqueue) */ (struct ifnet *, struct mbuf *, struct sockaddr *, struct route *); void (*if_input) /* input routine (from h/w driver) */ (struct ifnet *, struct mbuf *); void (*if_start) /* initiate output routine */ (struct ifnet *); int (*if_ioctl) /* ioctl routine */ (struct ifnet *, u_long, caddr_t); void (*if_init) /* Init routine */ (void *); int (*if_resolvemulti) /* validate/resolve multicast */ (struct ifnet *, struct sockaddr **, struct sockaddr *); void (*if_qflush) /* flush any queues */ (struct ifnet *); int (*if_transmit) /* initiate output routine */ (struct ifnet *, struct mbuf *); void (*if_reassign) /* reassign to vnet routine */ (struct ifnet *, struct vnet *, char *); struct vnet *if_home_vnet; /* where this ifnet originates from */ struct ifaddr *if_addr; /* pointer to link-level address */ void *if_llsoftc; /* link layer softc */ int if_drv_flags; /* driver-managed status flags */ struct ifaltq if_snd; /* output queue (includes altq) */ const u_int8_t *if_broadcastaddr; /* linklevel broadcast bytestring */ void *if_bridge; /* bridge glue */ struct label *if_label; /* interface MAC label */ /* these are only used by IPv6 */ struct ifprefixhead if_prefixhead; /* list of prefixes per if */ void *if_afdata[AF_MAX]; int if_afdata_initialized; struct rwlock if_afdata_lock; struct task if_linktask; /* task for link change events */ struct mtx if_addr_mtx; /* mutex to protect address lists */ LIST_ENTRY(ifnet) if_clones; /* interfaces of a cloner */ TAILQ_HEAD(, ifg_list) if_groups; /* linked list of groups per if */ /* protected by if_addr_mtx */ void *if_pf_kif; void *if_lagg; /* lagg glue */ char *if_description; /* interface description */ u_int if_fib; /* interface FIB */ u_char if_alloctype; /* if_type at time of allocation */ /* * Spare fields are added so that we can modify sensitive data * structures without changing the kernel binary interface, and must * be used with care where binary compatibility is required. */ char if_cspare[3]; int if_ispare[4]; void *if_pspare[8]; /* 1 netmap, 7 TDB */ }; typedef void if_init_f_t(void *); /* * XXX These aliases are terribly dangerous because they could apply * to anything. */ #define if_mtu if_data.ifi_mtu #define if_type if_data.ifi_type #define if_physical if_data.ifi_physical #define if_addrlen if_data.ifi_addrlen #define if_hdrlen if_data.ifi_hdrlen #define if_metric if_data.ifi_metric #define if_link_state if_data.ifi_link_state #define if_baudrate if_data.ifi_baudrate #define if_hwassist if_data.ifi_hwassist #define if_ipackets if_data.ifi_ipackets #define if_ierrors if_data.ifi_ierrors #define if_opackets if_data.ifi_opackets #define if_oerrors if_data.ifi_oerrors #define if_collisions if_data.ifi_collisions #define if_ibytes if_data.ifi_ibytes #define if_obytes if_data.ifi_obytes #define if_imcasts if_data.ifi_imcasts #define if_omcasts if_data.ifi_omcasts #define if_iqdrops if_data.ifi_iqdrops #define if_noproto if_data.ifi_noproto #define if_lastchange if_data.ifi_lastchange /* for compatibility with other BSDs */ #define if_addrlist if_addrhead #define if_list if_link #define if_name(ifp) ((ifp)->if_xname) /* * Locks for address lists on the network interface. */ #define IF_ADDR_LOCK_INIT(if) mtx_init(&(if)->if_addr_mtx, \ "if_addr_mtx", NULL, MTX_DEF) #define IF_ADDR_LOCK_DESTROY(if) mtx_destroy(&(if)->if_addr_mtx) #define IF_ADDR_WLOCK(if) mtx_lock(&(if)->if_addr_mtx) #define IF_ADDR_WUNLOCK(if) mtx_unlock(&(if)->if_addr_mtx) #define IF_ADDR_RLOCK(if) mtx_lock(&(if)->if_addr_mtx) #define IF_ADDR_RUNLOCK(if) mtx_unlock(&(if)->if_addr_mtx) #define IF_ADDR_LOCK_ASSERT(if) mtx_assert(&(if)->if_addr_mtx, MA_OWNED) #define IF_ADDR_WLOCK_ASSERT(if) mtx_assert(&(if)->if_addr_mtx, MA_OWNED) /* XXX: Compat. */ #define IF_ADDR_LOCK(if) IF_ADDR_WLOCK(if) #define IF_ADDR_UNLOCK(if) IF_ADDR_WUNLOCK(if) /* * Function variations on locking macros intended to be used by loadable * kernel modules in order to divorce them from the internals of address list * locking. */ void if_addr_rlock(struct ifnet *ifp); /* if_addrhead */ void if_addr_runlock(struct ifnet *ifp); /* if_addrhead */ void if_maddr_rlock(struct ifnet *ifp); /* if_multiaddrs */ void if_maddr_runlock(struct ifnet *ifp); /* if_multiaddrs */ /* * Output queues (ifp->if_snd) and slow device input queues (*ifp->if_slowq) * are queues of messages stored on ifqueue structures * (defined above). Entries are added to and deleted from these structures * by these macros, which should be called with ipl raised to splimp(). */ #define IF_LOCK(ifq) mtx_lock(&(ifq)->ifq_mtx) #define IF_UNLOCK(ifq) mtx_unlock(&(ifq)->ifq_mtx) #define IF_LOCK_ASSERT(ifq) mtx_assert(&(ifq)->ifq_mtx, MA_OWNED) #define _IF_QFULL(ifq) ((ifq)->ifq_len >= (ifq)->ifq_maxlen) #define _IF_DROP(ifq) ((ifq)->ifq_drops++) #define _IF_QLEN(ifq) ((ifq)->ifq_len) #define _IF_ENQUEUE(ifq, m) do { \ (m)->m_nextpkt = NULL; \ if ((ifq)->ifq_tail == NULL) \ (ifq)->ifq_head = m; \ else \ (ifq)->ifq_tail->m_nextpkt = m; \ (ifq)->ifq_tail = m; \ (ifq)->ifq_len++; \ } while (0) #define IF_ENQUEUE(ifq, m) do { \ IF_LOCK(ifq); \ _IF_ENQUEUE(ifq, m); \ IF_UNLOCK(ifq); \ } while (0) #define _IF_PREPEND(ifq, m) do { \ (m)->m_nextpkt = (ifq)->ifq_head; \ if ((ifq)->ifq_tail == NULL) \ (ifq)->ifq_tail = (m); \ (ifq)->ifq_head = (m); \ (ifq)->ifq_len++; \ } while (0) #define IF_PREPEND(ifq, m) do { \ IF_LOCK(ifq); \ _IF_PREPEND(ifq, m); \ IF_UNLOCK(ifq); \ } while (0) #define _IF_DEQUEUE(ifq, m) do { \ (m) = (ifq)->ifq_head; \ if (m) { \ if (((ifq)->ifq_head = (m)->m_nextpkt) == NULL) \ (ifq)->ifq_tail = NULL; \ (m)->m_nextpkt = NULL; \ (ifq)->ifq_len--; \ } \ } while (0) #define IF_DEQUEUE(ifq, m) do { \ IF_LOCK(ifq); \ _IF_DEQUEUE(ifq, m); \ IF_UNLOCK(ifq); \ } while (0) #define _IF_DEQUEUE_ALL(ifq, m) do { \ (m) = (ifq)->ifq_head; \ (ifq)->ifq_head = (ifq)->ifq_tail = NULL; \ (ifq)->ifq_len = 0; \ } while (0) #define IF_DEQUEUE_ALL(ifq, m) do { \ IF_LOCK(ifq); \ _IF_DEQUEUE_ALL(ifq, m); \ IF_UNLOCK(ifq); \ } while (0) #define _IF_POLL(ifq, m) ((m) = (ifq)->ifq_head) #define IF_POLL(ifq, m) _IF_POLL(ifq, m) #define _IF_DRAIN(ifq) do { \ struct mbuf *m; \ for (;;) { \ _IF_DEQUEUE(ifq, m); \ if (m == NULL) \ break; \ m_freem(m); \ } \ } while (0) #define IF_DRAIN(ifq) do { \ IF_LOCK(ifq); \ _IF_DRAIN(ifq); \ IF_UNLOCK(ifq); \ } while(0) #ifdef _KERNEL /* interface link layer address change event */ typedef void (*iflladdr_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(iflladdr_event, iflladdr_event_handler_t); /* interface address change event */ typedef void (*ifaddr_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ifaddr_event, ifaddr_event_handler_t); /* new interface arrival event */ typedef void (*ifnet_arrival_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ifnet_arrival_event, ifnet_arrival_event_handler_t); /* interface departure event */ typedef void (*ifnet_departure_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ifnet_departure_event, ifnet_departure_event_handler_t); /* Interface link state change event */ typedef void (*ifnet_link_event_handler_t)(void *, struct ifnet *, int); EVENTHANDLER_DECLARE(ifnet_link_event, ifnet_link_event_handler_t); /* * interface groups */ struct ifg_group { char ifg_group[IFNAMSIZ]; u_int ifg_refcnt; void *ifg_pf_kif; TAILQ_HEAD(, ifg_member) ifg_members; TAILQ_ENTRY(ifg_group) ifg_next; }; struct ifg_member { TAILQ_ENTRY(ifg_member) ifgm_next; struct ifnet *ifgm_ifp; }; struct ifg_list { struct ifg_group *ifgl_group; TAILQ_ENTRY(ifg_list) ifgl_next; }; /* group attach event */ typedef void (*group_attach_event_handler_t)(void *, struct ifg_group *); EVENTHANDLER_DECLARE(group_attach_event, group_attach_event_handler_t); /* group detach event */ typedef void (*group_detach_event_handler_t)(void *, struct ifg_group *); EVENTHANDLER_DECLARE(group_detach_event, group_detach_event_handler_t); /* group change event */ typedef void (*group_change_event_handler_t)(void *, const char *); EVENTHANDLER_DECLARE(group_change_event, group_change_event_handler_t); #define IF_AFDATA_LOCK_INIT(ifp) \ rw_init(&(ifp)->if_afdata_lock, "if_afdata") #define IF_AFDATA_WLOCK(ifp) rw_wlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_RLOCK(ifp) rw_rlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_WUNLOCK(ifp) rw_wunlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_RUNLOCK(ifp) rw_runlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_LOCK(ifp) IF_AFDATA_WLOCK(ifp) #define IF_AFDATA_UNLOCK(ifp) IF_AFDATA_WUNLOCK(ifp) #define IF_AFDATA_TRYLOCK(ifp) rw_try_wlock(&(ifp)->if_afdata_lock) #define IF_AFDATA_DESTROY(ifp) rw_destroy(&(ifp)->if_afdata_lock) #define IF_AFDATA_LOCK_ASSERT(ifp) rw_assert(&(ifp)->if_afdata_lock, RA_LOCKED) #define IF_AFDATA_UNLOCK_ASSERT(ifp) rw_assert(&(ifp)->if_afdata_lock, RA_UNLOCKED) int if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust); #define IF_HANDOFF(ifq, m, ifp) \ if_handoff((struct ifqueue *)ifq, m, ifp, 0) #define IF_HANDOFF_ADJ(ifq, m, ifp, adj) \ if_handoff((struct ifqueue *)ifq, m, ifp, adj) void if_start(struct ifnet *); #define IFQ_ENQUEUE(ifq, m, err) \ do { \ IF_LOCK(ifq); \ if (ALTQ_IS_ENABLED(ifq)) \ ALTQ_ENQUEUE(ifq, m, NULL, err); \ else { \ if (_IF_QFULL(ifq)) { \ m_freem(m); \ (err) = ENOBUFS; \ } else { \ _IF_ENQUEUE(ifq, m); \ (err) = 0; \ } \ } \ if (err) \ (ifq)->ifq_drops++; \ IF_UNLOCK(ifq); \ } while (0) #define IFQ_DEQUEUE_NOLOCK(ifq, m) \ do { \ if (TBR_IS_ENABLED(ifq)) \ (m) = tbr_dequeue_ptr(ifq, ALTDQ_REMOVE); \ else if (ALTQ_IS_ENABLED(ifq)) \ ALTQ_DEQUEUE(ifq, m); \ else \ _IF_DEQUEUE(ifq, m); \ } while (0) #define IFQ_DEQUEUE(ifq, m) \ do { \ IF_LOCK(ifq); \ IFQ_DEQUEUE_NOLOCK(ifq, m); \ IF_UNLOCK(ifq); \ } while (0) #define IFQ_POLL_NOLOCK(ifq, m) \ do { \ if (TBR_IS_ENABLED(ifq)) \ (m) = tbr_dequeue_ptr(ifq, ALTDQ_POLL); \ else if (ALTQ_IS_ENABLED(ifq)) \ ALTQ_POLL(ifq, m); \ else \ _IF_POLL(ifq, m); \ } while (0) #define IFQ_POLL(ifq, m) \ do { \ IF_LOCK(ifq); \ IFQ_POLL_NOLOCK(ifq, m); \ IF_UNLOCK(ifq); \ } while (0) #define IFQ_PURGE_NOLOCK(ifq) \ do { \ if (ALTQ_IS_ENABLED(ifq)) { \ ALTQ_PURGE(ifq); \ } else \ _IF_DRAIN(ifq); \ } while (0) #define IFQ_PURGE(ifq) \ do { \ IF_LOCK(ifq); \ IFQ_PURGE_NOLOCK(ifq); \ IF_UNLOCK(ifq); \ } while (0) #define IFQ_SET_READY(ifq) \ do { ((ifq)->altq_flags |= ALTQF_READY); } while (0) #define IFQ_LOCK(ifq) IF_LOCK(ifq) #define IFQ_UNLOCK(ifq) IF_UNLOCK(ifq) #define IFQ_LOCK_ASSERT(ifq) IF_LOCK_ASSERT(ifq) #define IFQ_IS_EMPTY(ifq) ((ifq)->ifq_len == 0) #define IFQ_INC_LEN(ifq) ((ifq)->ifq_len++) #define IFQ_DEC_LEN(ifq) (--(ifq)->ifq_len) #define IFQ_INC_DROPS(ifq) ((ifq)->ifq_drops++) #define IFQ_SET_MAXLEN(ifq, len) ((ifq)->ifq_maxlen = (len)) /* * The IFF_DRV_OACTIVE test should really occur in the device driver, not in * the handoff logic, as that flag is locked by the device driver. */ #define IFQ_HANDOFF_ADJ(ifp, m, adj, err) \ do { \ int len; \ short mflags; \ \ len = (m)->m_pkthdr.len; \ mflags = (m)->m_flags; \ IFQ_ENQUEUE(&(ifp)->if_snd, m, err); \ if ((err) == 0) { \ (ifp)->if_obytes += len + (adj); \ if (mflags & M_MCAST) \ (ifp)->if_omcasts++; \ if (((ifp)->if_drv_flags & IFF_DRV_OACTIVE) == 0) \ if_start(ifp); \ } \ } while (0) #define IFQ_HANDOFF(ifp, m, err) \ IFQ_HANDOFF_ADJ(ifp, m, 0, err) #define IFQ_DRV_DEQUEUE(ifq, m) \ do { \ (m) = (ifq)->ifq_drv_head; \ if (m) { \ if (((ifq)->ifq_drv_head = (m)->m_nextpkt) == NULL) \ (ifq)->ifq_drv_tail = NULL; \ (m)->m_nextpkt = NULL; \ (ifq)->ifq_drv_len--; \ } else { \ IFQ_LOCK(ifq); \ IFQ_DEQUEUE_NOLOCK(ifq, m); \ while ((ifq)->ifq_drv_len < (ifq)->ifq_drv_maxlen) { \ struct mbuf *m0; \ IFQ_DEQUEUE_NOLOCK(ifq, m0); \ if (m0 == NULL) \ break; \ m0->m_nextpkt = NULL; \ if ((ifq)->ifq_drv_tail == NULL) \ (ifq)->ifq_drv_head = m0; \ else \ (ifq)->ifq_drv_tail->m_nextpkt = m0; \ (ifq)->ifq_drv_tail = m0; \ (ifq)->ifq_drv_len++; \ } \ IFQ_UNLOCK(ifq); \ } \ } while (0) #define IFQ_DRV_PREPEND(ifq, m) \ do { \ (m)->m_nextpkt = (ifq)->ifq_drv_head; \ if ((ifq)->ifq_drv_tail == NULL) \ (ifq)->ifq_drv_tail = (m); \ (ifq)->ifq_drv_head = (m); \ (ifq)->ifq_drv_len++; \ } while (0) #define IFQ_DRV_IS_EMPTY(ifq) \ (((ifq)->ifq_drv_len == 0) && ((ifq)->ifq_len == 0)) #define IFQ_DRV_PURGE(ifq) \ do { \ struct mbuf *m, *n = (ifq)->ifq_drv_head; \ while((m = n) != NULL) { \ n = m->m_nextpkt; \ m_freem(m); \ } \ (ifq)->ifq_drv_head = (ifq)->ifq_drv_tail = NULL; \ (ifq)->ifq_drv_len = 0; \ IFQ_PURGE(ifq); \ } while (0) #ifdef _KERNEL static __inline void drbr_stats_update(struct ifnet *ifp, int len, int mflags) { #ifndef NO_SLOW_STATS ifp->if_obytes += len; if (mflags & M_MCAST) ifp->if_omcasts++; #endif } static __inline int drbr_enqueue(struct ifnet *ifp, struct buf_ring *br, struct mbuf *m) { int error = 0; int len = m->m_pkthdr.len; int mflags = m->m_flags; #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) { IFQ_ENQUEUE(&ifp->if_snd, m, error); return (error); } #endif if ((error = buf_ring_enqueue_bytes(br, m, len)) == ENOBUFS) { br->br_drops++; m_freem(m); } else drbr_stats_update(ifp, len, mflags); return (error); } static __inline void drbr_flush(struct ifnet *ifp, struct buf_ring *br) { struct mbuf *m; #ifdef ALTQ if (ifp != NULL && ALTQ_IS_ENABLED(&ifp->if_snd)) IFQ_PURGE(&ifp->if_snd); #endif while ((m = buf_ring_dequeue_sc(br)) != NULL) m_freem(m); } static __inline void drbr_free(struct buf_ring *br, struct malloc_type *type) { drbr_flush(NULL, br); buf_ring_free(br, type); } static __inline struct mbuf * drbr_dequeue(struct ifnet *ifp, struct buf_ring *br) { #ifdef ALTQ struct mbuf *m; if (ALTQ_IS_ENABLED(&ifp->if_snd)) { IFQ_DEQUEUE(&ifp->if_snd, m); return (m); } #endif return (buf_ring_dequeue_sc(br)); } static __inline struct mbuf * drbr_dequeue_cond(struct ifnet *ifp, struct buf_ring *br, int (*func) (struct mbuf *, void *), void *arg) { struct mbuf *m; #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) { IFQ_LOCK(&ifp->if_snd); IFQ_POLL_NOLOCK(&ifp->if_snd, m); if (m != NULL && func(m, arg) == 0) { IFQ_UNLOCK(&ifp->if_snd); return (NULL); } IFQ_DEQUEUE_NOLOCK(&ifp->if_snd, m); IFQ_UNLOCK(&ifp->if_snd); return (m); } #endif m = buf_ring_peek(br); if (m == NULL || func(m, arg) == 0) return (NULL); return (buf_ring_dequeue_sc(br)); } static __inline int drbr_empty(struct ifnet *ifp, struct buf_ring *br) { #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) return (IFQ_IS_EMPTY(&ifp->if_snd)); #endif return (buf_ring_empty(br)); } static __inline int drbr_needs_enqueue(struct ifnet *ifp, struct buf_ring *br) { #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) return (1); #endif return (!buf_ring_empty(br)); } static __inline int drbr_inuse(struct ifnet *ifp, struct buf_ring *br) { #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) return (ifp->if_snd.ifq_len); #endif return (buf_ring_count(br)); } #endif /* * 72 was chosen below because it is the size of a TCP/IP * header (40) + the minimum mss (32). */ #define IF_MINMTU 72 #define IF_MAXMTU 65535 #endif /* _KERNEL */ /* * The ifaddr structure contains information about one address * of an interface. They are maintained by the different address families, * are allocated and attached when an address is set, and are linked * together so all addresses for an interface can be located. * * NOTE: a 'struct ifaddr' is always at the beginning of a larger * chunk of malloc'ed memory, where we store the three addresses * (ifa_addr, ifa_dstaddr and ifa_netmask) referenced here. */ struct ifaddr { struct sockaddr *ifa_addr; /* address of interface */ struct sockaddr *ifa_dstaddr; /* other end of p-to-p link */ #define ifa_broadaddr ifa_dstaddr /* broadcast address interface */ struct sockaddr *ifa_netmask; /* used to determine subnet */ struct if_data if_data; /* not all members are meaningful */ struct ifnet *ifa_ifp; /* back-pointer to interface */ TAILQ_ENTRY(ifaddr) ifa_link; /* queue macro glue */ void (*ifa_rtrequest) /* check or clean routes (+ or -)'d */ (int, struct rtentry *, struct rt_addrinfo *); u_short ifa_flags; /* mostly rt_flags for cloning */ u_int ifa_refcnt; /* references to this structure */ int ifa_metric; /* cost of going out this interface */ int (*ifa_claim_addr) /* check if an addr goes to this if */ (struct ifaddr *, struct sockaddr *); struct mtx ifa_mtx; }; #define IFA_ROUTE RTF_UP /* route installed */ #define IFA_RTSELF RTF_HOST /* loopback route to self installed */ /* for compatibility with other BSDs */ #define ifa_list ifa_link #ifdef _KERNEL #define IFA_LOCK(ifa) mtx_lock(&(ifa)->ifa_mtx) #define IFA_UNLOCK(ifa) mtx_unlock(&(ifa)->ifa_mtx) void ifa_free(struct ifaddr *ifa); void ifa_init(struct ifaddr *ifa); void ifa_ref(struct ifaddr *ifa); #endif /* * The prefix structure contains information about one prefix * of an interface. They are maintained by the different address families, * are allocated and attached when a prefix or an address is set, * and are linked together so all prefixes for an interface can be located. */ struct ifprefix { struct sockaddr *ifpr_prefix; /* prefix of interface */ struct ifnet *ifpr_ifp; /* back-pointer to interface */ TAILQ_ENTRY(ifprefix) ifpr_list; /* queue macro glue */ u_char ifpr_plen; /* prefix length in bits */ u_char ifpr_type; /* protocol dependent prefix type */ }; /* * Multicast address structure. This is analogous to the ifaddr * structure except that it keeps track of multicast addresses. */ struct ifmultiaddr { TAILQ_ENTRY(ifmultiaddr) ifma_link; /* queue macro glue */ struct sockaddr *ifma_addr; /* address this membership is for */ struct sockaddr *ifma_lladdr; /* link-layer translation, if any */ struct ifnet *ifma_ifp; /* back-pointer to interface */ u_int ifma_refcount; /* reference count */ void *ifma_protospec; /* protocol-specific state, if any */ struct ifmultiaddr *ifma_llifma; /* pointer to ifma for ifma_lladdr */ }; #ifdef _KERNEL extern struct rwlock ifnet_rwlock; extern struct sx ifnet_sxlock; #define IFNET_LOCK_INIT() do { \ rw_init_flags(&ifnet_rwlock, "ifnet_rw", RW_RECURSE); \ sx_init_flags(&ifnet_sxlock, "ifnet_sx", SX_RECURSE); \ } while(0) #define IFNET_WLOCK() do { \ sx_xlock(&ifnet_sxlock); \ rw_wlock(&ifnet_rwlock); \ } while (0) #define IFNET_WUNLOCK() do { \ rw_wunlock(&ifnet_rwlock); \ sx_xunlock(&ifnet_sxlock); \ } while (0) /* * To assert the ifnet lock, you must know not only whether it's for read or * write, but also whether it was acquired with sleep support or not. */ #define IFNET_RLOCK_ASSERT() sx_assert(&ifnet_sxlock, SA_SLOCKED) #define IFNET_RLOCK_NOSLEEP_ASSERT() rw_assert(&ifnet_rwlock, RA_RLOCKED) #define IFNET_WLOCK_ASSERT() do { \ sx_assert(&ifnet_sxlock, SA_XLOCKED); \ rw_assert(&ifnet_rwlock, RA_WLOCKED); \ } while (0) #define IFNET_RLOCK() sx_slock(&ifnet_sxlock) #define IFNET_RLOCK_NOSLEEP() rw_rlock(&ifnet_rwlock) #define IFNET_RUNLOCK() sx_sunlock(&ifnet_sxlock) #define IFNET_RUNLOCK_NOSLEEP() rw_runlock(&ifnet_rwlock) /* * Look up an ifnet given its index; the _ref variant also acquires a * reference that must be freed using if_rele(). It is almost always a bug * to call ifnet_byindex() instead if ifnet_byindex_ref(). */ struct ifnet *ifnet_byindex(u_short idx); struct ifnet *ifnet_byindex_locked(u_short idx); struct ifnet *ifnet_byindex_ref(u_short idx); /* * Given the index, ifaddr_byindex() returns the one and only * link-level ifaddr for the interface. You are not supposed to use * it to traverse the list of addresses associated to the interface. */ struct ifaddr *ifaddr_byindex(u_short idx); VNET_DECLARE(struct ifnethead, ifnet); VNET_DECLARE(struct ifgrouphead, ifg_head); VNET_DECLARE(int, if_index); VNET_DECLARE(struct ifnet *, loif); /* first loopback interface */ VNET_DECLARE(int, useloopback); #define V_ifnet VNET(ifnet) #define V_ifg_head VNET(ifg_head) #define V_if_index VNET(if_index) #define V_loif VNET(loif) #define V_useloopback VNET(useloopback) extern int ifqmaxlen; int if_addgroup(struct ifnet *, const char *); int if_delgroup(struct ifnet *, const char *); int if_addmulti(struct ifnet *, struct sockaddr *, struct ifmultiaddr **); int if_allmulti(struct ifnet *, int); struct ifnet* if_alloc(u_char); void if_attach(struct ifnet *); void if_dead(struct ifnet *); int if_delmulti(struct ifnet *, struct sockaddr *); void if_delmulti_ifma(struct ifmultiaddr *); void if_detach(struct ifnet *); void if_vmove(struct ifnet *, struct vnet *); void if_purgeaddrs(struct ifnet *); void if_delallmulti(struct ifnet *); void if_down(struct ifnet *); struct ifmultiaddr * if_findmulti(struct ifnet *, struct sockaddr *); void if_free(struct ifnet *); void if_free_type(struct ifnet *, u_char); void if_initname(struct ifnet *, const char *, int); void if_link_state_change(struct ifnet *, int); int if_printf(struct ifnet *, const char *, ...) __printflike(2, 3); void if_qflush(struct ifnet *); void if_ref(struct ifnet *); void if_rele(struct ifnet *); int if_setlladdr(struct ifnet *, const u_char *, int); void if_up(struct ifnet *); int ifioctl(struct socket *, u_long, caddr_t, struct thread *); int ifpromisc(struct ifnet *, int); struct ifnet *ifunit(const char *); struct ifnet *ifunit_ref(const char *); void ifq_init(struct ifaltq *, struct ifnet *ifp); void ifq_delete(struct ifaltq *); int ifa_add_loopback_route(struct ifaddr *, struct sockaddr *); int ifa_del_loopback_route(struct ifaddr *, struct sockaddr *); struct ifaddr *ifa_ifwithaddr(struct sockaddr *); int ifa_ifwithaddr_check(struct sockaddr *); struct ifaddr *ifa_ifwithbroadaddr(struct sockaddr *); struct ifaddr *ifa_ifwithdstaddr(struct sockaddr *); struct ifaddr *ifa_ifwithnet(struct sockaddr *, int); struct ifaddr *ifa_ifwithroute(int, struct sockaddr *, struct sockaddr *); struct ifaddr *ifa_ifwithroute_fib(int, struct sockaddr *, struct sockaddr *, u_int); struct ifaddr *ifaof_ifpforaddr(struct sockaddr *, struct ifnet *); int if_simloop(struct ifnet *ifp, struct mbuf *m, int af, int hlen); typedef void *if_com_alloc_t(u_char type, struct ifnet *ifp); typedef void if_com_free_t(void *com, u_char type); void if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f); void if_deregister_com_alloc(u_char type); #define IF_LLADDR(ifp) \ LLADDR((struct sockaddr_dl *)((ifp)->if_addr->ifa_addr)) #ifdef DEVICE_POLLING enum poll_cmd { POLL_ONLY, POLL_AND_CHECK_STATUS }; typedef int poll_handler_t(struct ifnet *ifp, enum poll_cmd cmd, int count); int ether_poll_register(poll_handler_t *h, struct ifnet *ifp); int ether_poll_deregister(struct ifnet *ifp); #endif /* DEVICE_POLLING */ #endif /* _KERNEL */ #endif /* !_NET_IF_VAR_H_ */