Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/profile/@/amd64/amd64/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/profile/@/amd64/amd64/sys_machdep.c |
/*- * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)sys_machdep.c 5.5 (Berkeley) 1/19/91 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/amd64/amd64/sys_machdep.c 231979 2012-02-21 20:56:03Z kib $"); #include "opt_capsicum.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/capability.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/sysproto.h> #include <sys/uio.h> #include <vm/vm.h> #include <vm/pmap.h> #include <vm/vm_kern.h> /* for kernel_map */ #include <vm/vm_extern.h> #include <machine/frame.h> #include <machine/md_var.h> #include <machine/pcb.h> #include <machine/specialreg.h> #include <machine/sysarch.h> #include <machine/tss.h> #include <machine/vmparam.h> #include <security/audit/audit.h> #define MAX_LD 8192 int max_ldt_segment = 1024; SYSCTL_INT(_machdep, OID_AUTO, max_ldt_segment, CTLFLAG_RDTUN, &max_ldt_segment, 0, "Maximum number of allowed LDT segments in the single address space"); static void max_ldt_segment_init(void *arg __unused) { TUNABLE_INT_FETCH("machdep.max_ldt_segment", &max_ldt_segment); if (max_ldt_segment <= 0) max_ldt_segment = 1; if (max_ldt_segment > MAX_LD) max_ldt_segment = MAX_LD; } SYSINIT(maxldt, SI_SUB_VM_CONF, SI_ORDER_ANY, max_ldt_segment_init, NULL); #ifdef notyet #ifdef SMP static void set_user_ldt_rv(struct vmspace *vmsp); #endif #endif static void user_ldt_derefl(struct proc_ldt *pldt); #ifndef _SYS_SYSPROTO_H_ struct sysarch_args { int op; char *parms; }; #endif int sysarch_ldt(struct thread *td, struct sysarch_args *uap, int uap_space) { struct i386_ldt_args *largs, la; struct user_segment_descriptor *lp; int error = 0; /* * XXXKIB check that the BSM generation code knows to encode * the op argument. */ AUDIT_ARG_CMD(uap->op); if (uap_space == UIO_USERSPACE) { error = copyin(uap->parms, &la, sizeof(struct i386_ldt_args)); if (error != 0) return (error); largs = &la; } else largs = (struct i386_ldt_args *)uap->parms; switch (uap->op) { case I386_GET_LDT: error = amd64_get_ldt(td, largs); break; case I386_SET_LDT: if (largs->descs != NULL && largs->num > max_ldt_segment) return (EINVAL); set_pcb_flags(td->td_pcb, PCB_FULL_IRET); if (largs->descs != NULL) { lp = malloc(largs->num * sizeof(struct user_segment_descriptor), M_TEMP, M_WAITOK); error = copyin(largs->descs, lp, largs->num * sizeof(struct user_segment_descriptor)); if (error == 0) error = amd64_set_ldt(td, largs, lp); free(lp, M_TEMP); } else { error = amd64_set_ldt(td, largs, NULL); } break; } return (error); } void update_gdt_gsbase(struct thread *td, uint32_t base) { struct user_segment_descriptor *sd; if (td != curthread) return; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); critical_enter(); sd = PCPU_GET(gs32p); sd->sd_lobase = base & 0xffffff; sd->sd_hibase = (base >> 24) & 0xff; critical_exit(); } void update_gdt_fsbase(struct thread *td, uint32_t base) { struct user_segment_descriptor *sd; if (td != curthread) return; set_pcb_flags(td->td_pcb, PCB_FULL_IRET); critical_enter(); sd = PCPU_GET(fs32p); sd->sd_lobase = base & 0xffffff; sd->sd_hibase = (base >> 24) & 0xff; critical_exit(); } int sysarch(td, uap) struct thread *td; register struct sysarch_args *uap; { int error = 0; struct pcb *pcb = curthread->td_pcb; uint32_t i386base; uint64_t a64base; struct i386_ioperm_args iargs; struct i386_get_xfpustate i386xfpu; struct amd64_get_xfpustate a64xfpu; #ifdef CAPABILITY_MODE /* * When adding new operations, add a new case statement here to * explicitly indicate whether or not the operation is safe to * perform in capability mode. */ if (IN_CAPABILITY_MODE(td)) { switch (uap->op) { case I386_GET_LDT: case I386_SET_LDT: case I386_GET_IOPERM: case I386_GET_FSBASE: case I386_SET_FSBASE: case I386_GET_GSBASE: case I386_SET_GSBASE: case I386_GET_XFPUSTATE: case AMD64_GET_FSBASE: case AMD64_SET_FSBASE: case AMD64_GET_GSBASE: case AMD64_SET_GSBASE: case AMD64_GET_XFPUSTATE: break; case I386_SET_IOPERM: default: return (ECAPMODE); } } #endif if (uap->op == I386_GET_LDT || uap->op == I386_SET_LDT) return (sysarch_ldt(td, uap, UIO_USERSPACE)); /* * XXXKIB check that the BSM generation code knows to encode * the op argument. */ AUDIT_ARG_CMD(uap->op); switch (uap->op) { case I386_GET_IOPERM: case I386_SET_IOPERM: if ((error = copyin(uap->parms, &iargs, sizeof(struct i386_ioperm_args))) != 0) return (error); break; case I386_GET_XFPUSTATE: if ((error = copyin(uap->parms, &i386xfpu, sizeof(struct i386_get_xfpustate))) != 0) return (error); a64xfpu.addr = (void *)(uintptr_t)i386xfpu.addr; a64xfpu.len = i386xfpu.len; break; case AMD64_GET_XFPUSTATE: if ((error = copyin(uap->parms, &a64xfpu, sizeof(struct amd64_get_xfpustate))) != 0) return (error); break; default: break; } switch (uap->op) { case I386_GET_IOPERM: error = amd64_get_ioperm(td, &iargs); if (error == 0) error = copyout(&iargs, uap->parms, sizeof(struct i386_ioperm_args)); break; case I386_SET_IOPERM: error = amd64_set_ioperm(td, &iargs); break; case I386_GET_FSBASE: i386base = pcb->pcb_fsbase; error = copyout(&i386base, uap->parms, sizeof(i386base)); break; case I386_SET_FSBASE: error = copyin(uap->parms, &i386base, sizeof(i386base)); if (!error) { pcb->pcb_fsbase = i386base; td->td_frame->tf_fs = _ufssel; update_gdt_fsbase(td, i386base); } break; case I386_GET_GSBASE: i386base = pcb->pcb_gsbase; error = copyout(&i386base, uap->parms, sizeof(i386base)); break; case I386_SET_GSBASE: error = copyin(uap->parms, &i386base, sizeof(i386base)); if (!error) { pcb->pcb_gsbase = i386base; td->td_frame->tf_gs = _ugssel; update_gdt_gsbase(td, i386base); } break; case AMD64_GET_FSBASE: error = copyout(&pcb->pcb_fsbase, uap->parms, sizeof(pcb->pcb_fsbase)); break; case AMD64_SET_FSBASE: error = copyin(uap->parms, &a64base, sizeof(a64base)); if (!error) { if (a64base < VM_MAXUSER_ADDRESS) { pcb->pcb_fsbase = a64base; set_pcb_flags(pcb, PCB_FULL_IRET); td->td_frame->tf_fs = _ufssel; } else error = EINVAL; } break; case AMD64_GET_GSBASE: error = copyout(&pcb->pcb_gsbase, uap->parms, sizeof(pcb->pcb_gsbase)); break; case AMD64_SET_GSBASE: error = copyin(uap->parms, &a64base, sizeof(a64base)); if (!error) { if (a64base < VM_MAXUSER_ADDRESS) { pcb->pcb_gsbase = a64base; set_pcb_flags(pcb, PCB_FULL_IRET); td->td_frame->tf_gs = _ugssel; } else error = EINVAL; } break; case I386_GET_XFPUSTATE: case AMD64_GET_XFPUSTATE: if (a64xfpu.len > cpu_max_ext_state_size - sizeof(struct savefpu)) return (EINVAL); fpugetregs(td); error = copyout((char *)(get_pcb_user_save_td(td) + 1), a64xfpu.addr, a64xfpu.len); return (error); default: error = EINVAL; break; } return (error); } int amd64_set_ioperm(td, uap) struct thread *td; struct i386_ioperm_args *uap; { int i, error; char *iomap; struct amd64tss *tssp; struct system_segment_descriptor *tss_sd; u_long *addr; struct pcb *pcb; if ((error = priv_check(td, PRIV_IO)) != 0) return (error); if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); if (uap->start + uap->length > IOPAGES * PAGE_SIZE * NBBY) return (EINVAL); /* * XXX * While this is restricted to root, we should probably figure out * whether any other driver is using this i/o address, as so not to * cause confusion. This probably requires a global 'usage registry'. */ pcb = td->td_pcb; if (pcb->pcb_tssp == NULL) { tssp = (struct amd64tss *)kmem_alloc(kernel_map, ctob(IOPAGES+1)); if (tssp == NULL) return (ENOMEM); iomap = (char *)&tssp[1]; addr = (u_long *)iomap; for (i = 0; i < (ctob(IOPAGES) + 1) / sizeof(u_long); i++) *addr++ = ~0; critical_enter(); /* Takes care of tss_rsp0. */ memcpy(tssp, &common_tss[PCPU_GET(cpuid)], sizeof(struct amd64tss)); tssp->tss_iobase = sizeof(*tssp); pcb->pcb_tssp = tssp; tss_sd = PCPU_GET(tss); tss_sd->sd_lobase = (u_long)tssp & 0xffffff; tss_sd->sd_hibase = ((u_long)tssp >> 24) & 0xfffffffffful; tss_sd->sd_type = SDT_SYSTSS; ltr(GSEL(GPROC0_SEL, SEL_KPL)); PCPU_SET(tssp, tssp); critical_exit(); } else iomap = (char *)&pcb->pcb_tssp[1]; for (i = uap->start; i < uap->start + uap->length; i++) { if (uap->enable) iomap[i >> 3] &= ~(1 << (i & 7)); else iomap[i >> 3] |= (1 << (i & 7)); } return (error); } int amd64_get_ioperm(td, uap) struct thread *td; struct i386_ioperm_args *uap; { int i, state; char *iomap; if (uap->start >= IOPAGES * PAGE_SIZE * NBBY) return (EINVAL); if (td->td_pcb->pcb_tssp == NULL) { uap->length = 0; goto done; } iomap = (char *)&td->td_pcb->pcb_tssp[1]; i = uap->start; state = (iomap[i >> 3] >> (i & 7)) & 1; uap->enable = !state; uap->length = 1; for (i = uap->start + 1; i < IOPAGES * PAGE_SIZE * NBBY; i++) { if (state != ((iomap[i >> 3] >> (i & 7)) & 1)) break; uap->length++; } done: return (0); } /* * Update the GDT entry pointing to the LDT to point to the LDT of the * current process. */ void set_user_ldt(struct mdproc *mdp) { critical_enter(); *PCPU_GET(ldt) = mdp->md_ldt_sd; lldt(GSEL(GUSERLDT_SEL, SEL_KPL)); critical_exit(); } #ifdef notyet #ifdef SMP static void set_user_ldt_rv(struct vmspace *vmsp) { struct thread *td; td = curthread; if (vmsp != td->td_proc->p_vmspace) return; set_user_ldt(&td->td_proc->p_md); } #endif #endif struct proc_ldt * user_ldt_alloc(struct proc *p, int force) { struct proc_ldt *pldt, *new_ldt; struct mdproc *mdp; struct soft_segment_descriptor sldt; mtx_assert(&dt_lock, MA_OWNED); mdp = &p->p_md; if (!force && mdp->md_ldt != NULL) return (mdp->md_ldt); mtx_unlock(&dt_lock); new_ldt = malloc(sizeof(struct proc_ldt), M_SUBPROC, M_WAITOK); new_ldt->ldt_base = (caddr_t)kmem_alloc(kernel_map, max_ldt_segment * sizeof(struct user_segment_descriptor)); if (new_ldt->ldt_base == NULL) { FREE(new_ldt, M_SUBPROC); mtx_lock(&dt_lock); return (NULL); } new_ldt->ldt_refcnt = 1; sldt.ssd_base = (uint64_t)new_ldt->ldt_base; sldt.ssd_limit = max_ldt_segment * sizeof(struct user_segment_descriptor) - 1; sldt.ssd_type = SDT_SYSLDT; sldt.ssd_dpl = SEL_KPL; sldt.ssd_p = 1; sldt.ssd_long = 0; sldt.ssd_def32 = 0; sldt.ssd_gran = 0; mtx_lock(&dt_lock); pldt = mdp->md_ldt; if (pldt != NULL && !force) { kmem_free(kernel_map, (vm_offset_t)new_ldt->ldt_base, max_ldt_segment * sizeof(struct user_segment_descriptor)); free(new_ldt, M_SUBPROC); return (pldt); } if (pldt != NULL) { bcopy(pldt->ldt_base, new_ldt->ldt_base, max_ldt_segment * sizeof(struct user_segment_descriptor)); user_ldt_derefl(pldt); } ssdtosyssd(&sldt, &p->p_md.md_ldt_sd); atomic_store_rel_ptr((volatile uintptr_t *)&mdp->md_ldt, (uintptr_t)new_ldt); if (p == curproc) set_user_ldt(mdp); return (mdp->md_ldt); } void user_ldt_free(struct thread *td) { struct proc *p = td->td_proc; struct mdproc *mdp = &p->p_md; struct proc_ldt *pldt; mtx_assert(&dt_lock, MA_OWNED); if ((pldt = mdp->md_ldt) == NULL) { mtx_unlock(&dt_lock); return; } mdp->md_ldt = NULL; bzero(&mdp->md_ldt_sd, sizeof(mdp->md_ldt_sd)); if (td == curthread) lldt(GSEL(GNULL_SEL, SEL_KPL)); user_ldt_deref(pldt); } static void user_ldt_derefl(struct proc_ldt *pldt) { if (--pldt->ldt_refcnt == 0) { kmem_free(kernel_map, (vm_offset_t)pldt->ldt_base, max_ldt_segment * sizeof(struct user_segment_descriptor)); free(pldt, M_SUBPROC); } } void user_ldt_deref(struct proc_ldt *pldt) { mtx_assert(&dt_lock, MA_OWNED); user_ldt_derefl(pldt); mtx_unlock(&dt_lock); } /* * Note for the authors of compat layers (linux, etc): copyout() in * the function below is not a problem since it presents data in * arch-specific format (i.e. i386-specific in this case), not in * the OS-specific one. */ int amd64_get_ldt(td, uap) struct thread *td; struct i386_ldt_args *uap; { int error = 0; struct proc_ldt *pldt; int num; struct user_segment_descriptor *lp; #ifdef DEBUG printf("amd64_get_ldt: start=%d num=%d descs=%p\n", uap->start, uap->num, (void *)uap->descs); #endif if ((pldt = td->td_proc->p_md.md_ldt) != NULL) { lp = &((struct user_segment_descriptor *)(pldt->ldt_base)) [uap->start]; num = min(uap->num, max_ldt_segment); } else return (EINVAL); if ((uap->start > (unsigned int)max_ldt_segment) || ((unsigned int)num > (unsigned int)max_ldt_segment) || ((unsigned int)(uap->start + num) > (unsigned int)max_ldt_segment)) return(EINVAL); error = copyout(lp, uap->descs, num * sizeof(struct user_segment_descriptor)); if (!error) td->td_retval[0] = num; return(error); } int amd64_set_ldt(td, uap, descs) struct thread *td; struct i386_ldt_args *uap; struct user_segment_descriptor *descs; { int error = 0, i; int largest_ld; struct mdproc *mdp = &td->td_proc->p_md; struct proc_ldt *pldt; struct user_segment_descriptor *dp; struct proc *p; #ifdef DEBUG printf("amd64_set_ldt: start=%d num=%d descs=%p\n", uap->start, uap->num, (void *)uap->descs); #endif set_pcb_flags(td->td_pcb, PCB_FULL_IRET); p = td->td_proc; if (descs == NULL) { /* Free descriptors */ if (uap->start == 0 && uap->num == 0) uap->num = max_ldt_segment; if (uap->num == 0) return (EINVAL); if ((pldt = mdp->md_ldt) == NULL || uap->start >= max_ldt_segment) return (0); largest_ld = uap->start + uap->num; if (largest_ld > max_ldt_segment) largest_ld = max_ldt_segment; i = largest_ld - uap->start; mtx_lock(&dt_lock); bzero(&((struct user_segment_descriptor *)(pldt->ldt_base)) [uap->start], sizeof(struct user_segment_descriptor) * i); mtx_unlock(&dt_lock); return (0); } if (!(uap->start == LDT_AUTO_ALLOC && uap->num == 1)) { /* verify range of descriptors to modify */ largest_ld = uap->start + uap->num; if (uap->start >= max_ldt_segment || largest_ld > max_ldt_segment) return (EINVAL); } /* Check descriptors for access violations */ for (i = 0; i < uap->num; i++) { dp = &descs[i]; switch (dp->sd_type) { case SDT_SYSNULL: /* system null */ dp->sd_p = 0; break; case SDT_SYS286TSS: case SDT_SYSLDT: case SDT_SYS286BSY: case SDT_SYS286CGT: case SDT_SYSTASKGT: case SDT_SYS286IGT: case SDT_SYS286TGT: case SDT_SYSNULL2: case SDT_SYSTSS: case SDT_SYSNULL3: case SDT_SYSBSY: case SDT_SYSCGT: case SDT_SYSNULL4: case SDT_SYSIGT: case SDT_SYSTGT: /* I can't think of any reason to allow a user proc * to create a segment of these types. They are * for OS use only. */ return (EACCES); /*NOTREACHED*/ /* memory segment types */ case SDT_MEMEC: /* memory execute only conforming */ case SDT_MEMEAC: /* memory execute only accessed conforming */ case SDT_MEMERC: /* memory execute read conforming */ case SDT_MEMERAC: /* memory execute read accessed conforming */ /* Must be "present" if executable and conforming. */ if (dp->sd_p == 0) return (EACCES); break; case SDT_MEMRO: /* memory read only */ case SDT_MEMROA: /* memory read only accessed */ case SDT_MEMRW: /* memory read write */ case SDT_MEMRWA: /* memory read write accessed */ case SDT_MEMROD: /* memory read only expand dwn limit */ case SDT_MEMRODA: /* memory read only expand dwn lim accessed */ case SDT_MEMRWD: /* memory read write expand dwn limit */ case SDT_MEMRWDA: /* memory read write expand dwn lim acessed */ case SDT_MEME: /* memory execute only */ case SDT_MEMEA: /* memory execute only accessed */ case SDT_MEMER: /* memory execute read */ case SDT_MEMERA: /* memory execute read accessed */ break; default: return(EINVAL); /*NOTREACHED*/ } /* Only user (ring-3) descriptors may be present. */ if ((dp->sd_p != 0) && (dp->sd_dpl != SEL_UPL)) return (EACCES); } if (uap->start == LDT_AUTO_ALLOC && uap->num == 1) { /* Allocate a free slot */ mtx_lock(&dt_lock); pldt = user_ldt_alloc(p, 0); if (pldt == NULL) { mtx_unlock(&dt_lock); return (ENOMEM); } /* * start scanning a bit up to leave room for NVidia and * Wine, which still user the "Blat" method of allocation. */ i = 16; dp = &((struct user_segment_descriptor *)(pldt->ldt_base))[i]; for (; i < max_ldt_segment; ++i, ++dp) { if (dp->sd_type == SDT_SYSNULL) break; } if (i >= max_ldt_segment) { mtx_unlock(&dt_lock); return (ENOSPC); } uap->start = i; error = amd64_set_ldt_data(td, i, 1, descs); mtx_unlock(&dt_lock); } else { largest_ld = uap->start + uap->num; if (largest_ld > max_ldt_segment) return (EINVAL); mtx_lock(&dt_lock); if (user_ldt_alloc(p, 0) != NULL) { error = amd64_set_ldt_data(td, uap->start, uap->num, descs); } mtx_unlock(&dt_lock); } if (error == 0) td->td_retval[0] = uap->start; return (error); } int amd64_set_ldt_data(struct thread *td, int start, int num, struct user_segment_descriptor *descs) { struct mdproc *mdp = &td->td_proc->p_md; struct proc_ldt *pldt = mdp->md_ldt; mtx_assert(&dt_lock, MA_OWNED); /* Fill in range */ bcopy(descs, &((struct user_segment_descriptor *)(pldt->ldt_base))[start], num * sizeof(struct user_segment_descriptor)); return (0); }