Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/profile/@/dev/flash/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/profile/@/dev/flash/mx25l.c |
/*- * Copyright (c) 2006 M. Warner Losh. All rights reserved. * Copyright (c) 2009 Oleksandr Tymoshenko. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/flash/mx25l.c 218747 2011-02-16 20:07:44Z adrian $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/bio.h> #include <sys/bus.h> #include <sys/conf.h> #include <sys/kernel.h> #include <sys/kthread.h> #include <sys/lock.h> #include <sys/mbuf.h> #include <sys/malloc.h> #include <sys/module.h> #include <sys/mutex.h> #include <geom/geom_disk.h> #include <dev/spibus/spi.h> #include "spibus_if.h" #include <dev/flash/mx25lreg.h> #define FL_NONE 0x00 #define FL_ERASE_4K 0x01 #define FL_ERASE_32K 0x02 /* * Define the sectorsize to be a smaller size rather than the flash * sector size. Trying to run FFS off of a 64k flash sector size * results in a completely un-usable system. */ #define MX25L_SECTORSIZE 512 struct mx25l_flash_ident { const char *name; uint8_t manufacturer_id; uint16_t device_id; unsigned int sectorsize; unsigned int sectorcount; unsigned int flags; }; struct mx25l_softc { device_t sc_dev; uint8_t sc_manufacturer_id; uint16_t sc_device_id; unsigned int sc_sectorsize; struct mtx sc_mtx; struct disk *sc_disk; struct proc *sc_p; struct bio_queue_head sc_bio_queue; unsigned int sc_flags; }; #define M25PXX_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define M25PXX_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define M25PXX_LOCK_INIT(_sc) \ mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->sc_dev), \ "mx25l", MTX_DEF) #define M25PXX_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx); #define M25PXX_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED); #define M25PXX_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED); /* disk routines */ static int mx25l_open(struct disk *dp); static int mx25l_close(struct disk *dp); static int mx25l_ioctl(struct disk *, u_long, void *, int, struct thread *); static void mx25l_strategy(struct bio *bp); static void mx25l_task(void *arg); struct mx25l_flash_ident flash_devices[] = { { "mx25ll32", 0xc2, 0x2016, 64 * 1024, 64, FL_NONE }, { "m25p64", 0x20, 0x2017, 64 * 1024, 128, FL_NONE }, { "mx25ll64", 0xc2, 0x2017, 64 * 1024, 128, FL_NONE }, { "mx25ll128", 0xc2, 0x2018, 64 * 1024, 256, FL_ERASE_4K | FL_ERASE_32K }, { "s25fl128", 0x01, 0x2018, 64 * 1024, 256, FL_NONE }, { "s25sl064a", 0x01, 0x0216, 64 * 1024, 128, FL_NONE }, }; static uint8_t mx25l_get_status(device_t dev) { uint8_t txBuf[2], rxBuf[2]; struct spi_command cmd; int err; memset(&cmd, 0, sizeof(cmd)); memset(txBuf, 0, sizeof(txBuf)); memset(rxBuf, 0, sizeof(rxBuf)); txBuf[0] = CMD_READ_STATUS; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.rx_cmd_sz = 2; cmd.tx_cmd_sz = 2; err = SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd); return (rxBuf[1]); } static void mx25l_wait_for_device_ready(device_t dev) { while ((mx25l_get_status(dev) & STATUS_WIP)) continue; } static struct mx25l_flash_ident* mx25l_get_device_ident(struct mx25l_softc *sc) { device_t dev = sc->sc_dev; uint8_t txBuf[8], rxBuf[8]; struct spi_command cmd; uint8_t manufacturer_id; uint16_t dev_id; int err, i; memset(&cmd, 0, sizeof(cmd)); memset(txBuf, 0, sizeof(txBuf)); memset(rxBuf, 0, sizeof(rxBuf)); txBuf[0] = CMD_READ_IDENT; cmd.tx_cmd = &txBuf; cmd.rx_cmd = &rxBuf; /* * Some compatible devices has extended two-bytes ID * We'll use only manufacturer/deviceid atm */ cmd.tx_cmd_sz = 4; cmd.rx_cmd_sz = 4; err = SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd); if (err) return (NULL); manufacturer_id = rxBuf[1]; dev_id = (rxBuf[2] << 8) | (rxBuf[3]); for (i = 0; i < sizeof(flash_devices)/sizeof(struct mx25l_flash_ident); i++) { if ((flash_devices[i].manufacturer_id == manufacturer_id) && (flash_devices[i].device_id == dev_id)) return &flash_devices[i]; } printf("Unknown SPI flash device. Vendor: %02x, device id: %04x\n", manufacturer_id, dev_id); return (NULL); } static void mx25l_set_writable(device_t dev, int writable) { uint8_t txBuf[1], rxBuf[1]; struct spi_command cmd; int err; memset(&cmd, 0, sizeof(cmd)); memset(txBuf, 0, sizeof(txBuf)); memset(rxBuf, 0, sizeof(rxBuf)); txBuf[0] = writable ? CMD_WRITE_ENABLE : CMD_WRITE_DISABLE; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.rx_cmd_sz = 1; cmd.tx_cmd_sz = 1; err = SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd); } static void mx25l_erase_cmd(device_t dev, off_t sector, uint8_t ecmd) { uint8_t txBuf[4], rxBuf[4]; struct spi_command cmd; int err; mx25l_wait_for_device_ready(dev); mx25l_set_writable(dev, 1); memset(&cmd, 0, sizeof(cmd)); memset(txBuf, 0, sizeof(txBuf)); memset(rxBuf, 0, sizeof(rxBuf)); txBuf[0] = ecmd; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.rx_cmd_sz = 4; cmd.tx_cmd_sz = 4; txBuf[1] = ((sector >> 16) & 0xff); txBuf[2] = ((sector >> 8) & 0xff); txBuf[3] = (sector & 0xff); err = SPIBUS_TRANSFER(device_get_parent(dev), dev, &cmd); } static int mx25l_write(device_t dev, off_t offset, caddr_t data, off_t count) { struct mx25l_softc *sc; uint8_t txBuf[8], rxBuf[8]; struct spi_command cmd; off_t write_offset; long bytes_to_write, bytes_writen; device_t pdev; int err = 0; pdev = device_get_parent(dev); sc = device_get_softc(dev); cmd.tx_cmd_sz = 4; cmd.rx_cmd_sz = 4; bytes_writen = 0; write_offset = offset; /* * Use the erase sectorsize here since blocks are fully erased * first before they're written to. */ if (count % sc->sc_sectorsize != 0 || offset % sc->sc_sectorsize != 0) return (EIO); /* * Assume here that we write per-sector only * and sector size should be 256 bytes aligned */ KASSERT(write_offset % FLASH_PAGE_SIZE == 0, ("offset for BIO_WRITE is not page size (%d bytes) aligned", FLASH_PAGE_SIZE)); /* * Maximum write size for CMD_PAGE_PROGRAM is * FLASH_PAGE_SIZE, so split data to chunks * FLASH_PAGE_SIZE bytes eash and write them * one by one */ while (bytes_writen < count) { /* * If we crossed sector boundary - erase next sector */ if (((offset + bytes_writen) % sc->sc_sectorsize) == 0) mx25l_erase_cmd(dev, offset + bytes_writen, CMD_SECTOR_ERASE); txBuf[0] = CMD_PAGE_PROGRAM; txBuf[1] = ((write_offset >> 16) & 0xff); txBuf[2] = ((write_offset >> 8) & 0xff); txBuf[3] = (write_offset & 0xff); bytes_to_write = MIN(FLASH_PAGE_SIZE, count - bytes_writen); cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.tx_data = data + bytes_writen; cmd.tx_data_sz = bytes_to_write; cmd.rx_data = data + bytes_writen; cmd.rx_data_sz = bytes_to_write; /* * Eash completed write operation resets WEL * (write enable latch) to disabled state, * so we re-enable it here */ mx25l_wait_for_device_ready(dev); mx25l_set_writable(dev, 1); err = SPIBUS_TRANSFER(pdev, dev, &cmd); if (err) break; bytes_writen += bytes_to_write; write_offset += bytes_to_write; } return (err); } static int mx25l_read(device_t dev, off_t offset, caddr_t data, off_t count) { struct mx25l_softc *sc; uint8_t txBuf[8], rxBuf[8]; struct spi_command cmd; device_t pdev; int err = 0; pdev = device_get_parent(dev); sc = device_get_softc(dev); /* * Enforce the disk read sectorsize not the erase sectorsize. * In this way, smaller read IO is possible,dramatically * speeding up filesystem/geom_compress access. */ if (count % sc->sc_disk->d_sectorsize != 0 || offset % sc->sc_disk->d_sectorsize != 0) return (EIO); txBuf[0] = CMD_FAST_READ; cmd.tx_cmd_sz = 5; cmd.rx_cmd_sz = 5; txBuf[1] = ((offset >> 16) & 0xff); txBuf[2] = ((offset >> 8) & 0xff); txBuf[3] = (offset & 0xff); /* Dummy byte */ txBuf[4] = 0; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.tx_data = data; cmd.tx_data_sz = count; cmd.rx_data = data; cmd.rx_data_sz = count; err = SPIBUS_TRANSFER(pdev, dev, &cmd); return (err); } static int mx25l_probe(device_t dev) { device_set_desc(dev, "M25Pxx Flash Family"); return (0); } static int mx25l_attach(device_t dev) { struct mx25l_softc *sc; struct mx25l_flash_ident *ident; sc = device_get_softc(dev); sc->sc_dev = dev; M25PXX_LOCK_INIT(sc); ident = mx25l_get_device_ident(sc); if (ident == NULL) return (ENXIO); mx25l_wait_for_device_ready(sc->sc_dev); sc->sc_disk = disk_alloc(); sc->sc_disk->d_open = mx25l_open; sc->sc_disk->d_close = mx25l_close; sc->sc_disk->d_strategy = mx25l_strategy; sc->sc_disk->d_ioctl = mx25l_ioctl; sc->sc_disk->d_name = "flash/spi"; sc->sc_disk->d_drv1 = sc; sc->sc_disk->d_maxsize = DFLTPHYS; sc->sc_disk->d_sectorsize = MX25L_SECTORSIZE; sc->sc_disk->d_mediasize = ident->sectorsize * ident->sectorcount; sc->sc_disk->d_unit = device_get_unit(sc->sc_dev); sc->sc_disk->d_dump = NULL; /* NB: no dumps */ /* Sectorsize for erase operations */ sc->sc_sectorsize = ident->sectorsize; sc->sc_flags = ident->flags; /* NB: use stripesize to hold the erase/region size for RedBoot */ sc->sc_disk->d_stripesize = ident->sectorsize; disk_create(sc->sc_disk, DISK_VERSION); bioq_init(&sc->sc_bio_queue); kproc_create(&mx25l_task, sc, &sc->sc_p, 0, 0, "task: mx25l flash"); device_printf(sc->sc_dev, "%s, sector %d bytes, %d sectors\n", ident->name, ident->sectorsize, ident->sectorcount); return (0); } static int mx25l_detach(device_t dev) { return (EIO); } static int mx25l_open(struct disk *dp) { return (0); } static int mx25l_close(struct disk *dp) { return (0); } static int mx25l_ioctl(struct disk *dp, u_long cmd, void *data, int fflag, struct thread *td) { return (EINVAL); } static void mx25l_strategy(struct bio *bp) { struct mx25l_softc *sc; sc = (struct mx25l_softc *)bp->bio_disk->d_drv1; M25PXX_LOCK(sc); bioq_disksort(&sc->sc_bio_queue, bp); wakeup(sc); M25PXX_UNLOCK(sc); } static void mx25l_task(void *arg) { struct mx25l_softc *sc = (struct mx25l_softc*)arg; struct bio *bp; device_t dev; for (;;) { dev = sc->sc_dev; M25PXX_LOCK(sc); do { bp = bioq_first(&sc->sc_bio_queue); if (bp == NULL) msleep(sc, &sc->sc_mtx, PRIBIO, "jobqueue", 0); } while (bp == NULL); bioq_remove(&sc->sc_bio_queue, bp); M25PXX_UNLOCK(sc); switch (bp->bio_cmd) { case BIO_READ: bp->bio_error = mx25l_read(dev, bp->bio_offset, bp->bio_data, bp->bio_bcount); break; case BIO_WRITE: bp->bio_error = mx25l_write(dev, bp->bio_offset, bp->bio_data, bp->bio_bcount); break; default: bp->bio_error = EINVAL; } biodone(bp); } } static devclass_t mx25l_devclass; static device_method_t mx25l_methods[] = { /* Device interface */ DEVMETHOD(device_probe, mx25l_probe), DEVMETHOD(device_attach, mx25l_attach), DEVMETHOD(device_detach, mx25l_detach), { 0, 0 } }; static driver_t mx25l_driver = { "mx25l", mx25l_methods, sizeof(struct mx25l_softc), }; DRIVER_MODULE(mx25l, spibus, mx25l_driver, mx25l_devclass, 0, 0);