Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/prototype/@/geom/raid/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/prototype/@/geom/raid/md_nvidia.c |
/*- * Copyright (c) 2011 Alexander Motin <mav@FreeBSD.org> * Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/geom/raid/md_nvidia.c 240558 2012-09-16 11:02:22Z mav $"); #include <sys/param.h> #include <sys/bio.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/kobj.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/systm.h> #include <sys/taskqueue.h> #include <geom/geom.h> #include "geom/raid/g_raid.h" #include "g_raid_md_if.h" static MALLOC_DEFINE(M_MD_NVIDIA, "md_nvidia_data", "GEOM_RAID NVIDIA metadata"); struct nvidia_raid_conf { uint8_t nvidia_id[8]; #define NVIDIA_MAGIC "NVIDIA " uint32_t config_size; uint32_t checksum; uint16_t version; uint8_t disk_number; uint8_t dummy_0; uint32_t total_sectors; uint32_t sector_size; uint8_t name[16]; uint8_t revision[4]; uint32_t disk_status; uint32_t magic_0; #define NVIDIA_MAGIC0 0x00640044 uint64_t volume_id[2]; uint8_t state; #define NVIDIA_S_IDLE 0 #define NVIDIA_S_INIT 2 #define NVIDIA_S_REBUILD 3 #define NVIDIA_S_UPGRADE 4 #define NVIDIA_S_SYNC 5 uint8_t array_width; uint8_t total_disks; uint8_t orig_array_width; uint16_t type; #define NVIDIA_T_RAID0 0x0080 #define NVIDIA_T_RAID1 0x0081 #define NVIDIA_T_RAID3 0x0083 #define NVIDIA_T_RAID5 0x0085 /* RLQ = 00/02? */ #define NVIDIA_T_RAID5_SYM 0x0095 /* RLQ = 03 */ #define NVIDIA_T_RAID10 0x008a #define NVIDIA_T_RAID01 0x8180 #define NVIDIA_T_CONCAT 0x00ff uint16_t dummy_3; uint32_t strip_sectors; uint32_t strip_bytes; uint32_t strip_shift; uint32_t strip_mask; uint32_t stripe_sectors; uint32_t stripe_bytes; uint32_t rebuild_lba; uint32_t orig_type; uint32_t orig_total_sectors; uint32_t status; #define NVIDIA_S_BOOTABLE 0x00000001 #define NVIDIA_S_DEGRADED 0x00000002 uint32_t filler[98]; } __packed; struct g_raid_md_nvidia_perdisk { struct nvidia_raid_conf *pd_meta; int pd_disk_pos; off_t pd_disk_size; }; struct g_raid_md_nvidia_object { struct g_raid_md_object mdio_base; uint64_t mdio_volume_id[2]; struct nvidia_raid_conf *mdio_meta; struct callout mdio_start_co; /* STARTING state timer. */ int mdio_total_disks; int mdio_disks_present; int mdio_started; int mdio_incomplete; struct root_hold_token *mdio_rootmount; /* Root mount delay token. */ }; static g_raid_md_create_t g_raid_md_create_nvidia; static g_raid_md_taste_t g_raid_md_taste_nvidia; static g_raid_md_event_t g_raid_md_event_nvidia; static g_raid_md_ctl_t g_raid_md_ctl_nvidia; static g_raid_md_write_t g_raid_md_write_nvidia; static g_raid_md_fail_disk_t g_raid_md_fail_disk_nvidia; static g_raid_md_free_disk_t g_raid_md_free_disk_nvidia; static g_raid_md_free_t g_raid_md_free_nvidia; static kobj_method_t g_raid_md_nvidia_methods[] = { KOBJMETHOD(g_raid_md_create, g_raid_md_create_nvidia), KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_nvidia), KOBJMETHOD(g_raid_md_event, g_raid_md_event_nvidia), KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_nvidia), KOBJMETHOD(g_raid_md_write, g_raid_md_write_nvidia), KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_nvidia), KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_nvidia), KOBJMETHOD(g_raid_md_free, g_raid_md_free_nvidia), { 0, 0 } }; static struct g_raid_md_class g_raid_md_nvidia_class = { "NVIDIA", g_raid_md_nvidia_methods, sizeof(struct g_raid_md_nvidia_object), .mdc_enable = 1, .mdc_priority = 100 }; static int NVIDIANodeID = 1; static void g_raid_md_nvidia_print(struct nvidia_raid_conf *meta) { if (g_raid_debug < 1) return; printf("********* ATA NVIDIA RAID Metadata *********\n"); printf("nvidia_id <%.8s>\n", meta->nvidia_id); printf("config_size %u\n", meta->config_size); printf("checksum 0x%08x\n", meta->checksum); printf("version 0x%04x\n", meta->version); printf("disk_number %d\n", meta->disk_number); printf("dummy_0 0x%02x\n", meta->dummy_0); printf("total_sectors %u\n", meta->total_sectors); printf("sector_size %u\n", meta->sector_size); printf("name <%.16s>\n", meta->name); printf("revision 0x%02x%02x%02x%02x\n", meta->revision[0], meta->revision[1], meta->revision[2], meta->revision[3]); printf("disk_status 0x%08x\n", meta->disk_status); printf("magic_0 0x%08x\n", meta->magic_0); printf("volume_id 0x%016jx%016jx\n", meta->volume_id[1], meta->volume_id[0]); printf("state 0x%02x\n", meta->state); printf("array_width %u\n", meta->array_width); printf("total_disks %u\n", meta->total_disks); printf("orig_array_width %u\n", meta->orig_array_width); printf("type 0x%04x\n", meta->type); printf("dummy_3 0x%04x\n", meta->dummy_3); printf("strip_sectors %u\n", meta->strip_sectors); printf("strip_bytes %u\n", meta->strip_bytes); printf("strip_shift %u\n", meta->strip_shift); printf("strip_mask 0x%08x\n", meta->strip_mask); printf("stripe_sectors %u\n", meta->stripe_sectors); printf("stripe_bytes %u\n", meta->stripe_bytes); printf("rebuild_lba %u\n", meta->rebuild_lba); printf("orig_type 0x%04x\n", meta->orig_type); printf("orig_total_sectors %u\n", meta->orig_total_sectors); printf("status 0x%08x\n", meta->status); printf("=================================================\n"); } static struct nvidia_raid_conf * nvidia_meta_copy(struct nvidia_raid_conf *meta) { struct nvidia_raid_conf *nmeta; nmeta = malloc(sizeof(*meta), M_MD_NVIDIA, M_WAITOK); memcpy(nmeta, meta, sizeof(*meta)); return (nmeta); } static int nvidia_meta_translate_disk(struct nvidia_raid_conf *meta, int md_disk_pos) { int disk_pos; if (md_disk_pos >= 0 && meta->type == NVIDIA_T_RAID01) { disk_pos = (md_disk_pos / meta->array_width) + (md_disk_pos % meta->array_width) * meta->array_width; } else disk_pos = md_disk_pos; return (disk_pos); } static void nvidia_meta_get_name(struct nvidia_raid_conf *meta, char *buf) { int i; strncpy(buf, meta->name, 16); buf[16] = 0; for (i = 15; i >= 0; i--) { if (buf[i] > 0x20) break; buf[i] = 0; } } static void nvidia_meta_put_name(struct nvidia_raid_conf *meta, char *buf) { memset(meta->name, 0x20, 16); memcpy(meta->name, buf, MIN(strlen(buf), 16)); } static struct nvidia_raid_conf * nvidia_meta_read(struct g_consumer *cp) { struct g_provider *pp; struct nvidia_raid_conf *meta; char *buf; int error, i; uint32_t checksum, *ptr; pp = cp->provider; /* Read the anchor sector. */ buf = g_read_data(cp, pp->mediasize - 2 * pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) { G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).", pp->name, error); return (NULL); } meta = malloc(sizeof(*meta), M_MD_NVIDIA, M_WAITOK); memcpy(meta, buf, min(sizeof(*meta), pp->sectorsize)); g_free(buf); /* Check if this is an NVIDIA RAID struct */ if (strncmp(meta->nvidia_id, NVIDIA_MAGIC, strlen(NVIDIA_MAGIC))) { G_RAID_DEBUG(1, "NVIDIA signature check failed on %s", pp->name); free(meta, M_MD_NVIDIA); return (NULL); } if (meta->config_size > 128 || meta->config_size < 30) { G_RAID_DEBUG(1, "NVIDIA metadata size looks wrong: %d", meta->config_size); free(meta, M_MD_NVIDIA); return (NULL); } /* Check metadata checksum. */ for (checksum = 0, ptr = (uint32_t *)meta, i = 0; i < meta->config_size; i++) checksum += *ptr++; if (checksum != 0) { G_RAID_DEBUG(1, "NVIDIA checksum check failed on %s", pp->name); free(meta, M_MD_NVIDIA); return (NULL); } /* Check volume state. */ if (meta->state != NVIDIA_S_IDLE && meta->state != NVIDIA_S_INIT && meta->state != NVIDIA_S_REBUILD && meta->state != NVIDIA_S_SYNC) { G_RAID_DEBUG(1, "NVIDIA unknown state on %s (0x%02x)", pp->name, meta->state); free(meta, M_MD_NVIDIA); return (NULL); } /* Check raid type. */ if (meta->type != NVIDIA_T_RAID0 && meta->type != NVIDIA_T_RAID1 && meta->type != NVIDIA_T_RAID3 && meta->type != NVIDIA_T_RAID5 && meta->type != NVIDIA_T_RAID5_SYM && meta->type != NVIDIA_T_RAID01 && meta->type != NVIDIA_T_CONCAT) { G_RAID_DEBUG(1, "NVIDIA unknown RAID level on %s (0x%02x)", pp->name, meta->type); free(meta, M_MD_NVIDIA); return (NULL); } return (meta); } static int nvidia_meta_write(struct g_consumer *cp, struct nvidia_raid_conf *meta) { struct g_provider *pp; char *buf; int error, i; uint32_t checksum, *ptr; pp = cp->provider; /* Recalculate checksum for case if metadata were changed. */ meta->checksum = 0; for (checksum = 0, ptr = (uint32_t *)meta, i = 0; i < meta->config_size; i++) checksum += *ptr++; meta->checksum -= checksum; /* Create and fill buffer. */ buf = malloc(pp->sectorsize, M_MD_NVIDIA, M_WAITOK | M_ZERO); memcpy(buf, meta, sizeof(*meta)); /* Write metadata. */ error = g_write_data(cp, pp->mediasize - 2 * pp->sectorsize, buf, pp->sectorsize); if (error != 0) { G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).", pp->name, error); } free(buf, M_MD_NVIDIA); return (error); } static int nvidia_meta_erase(struct g_consumer *cp) { struct g_provider *pp; char *buf; int error; pp = cp->provider; buf = malloc(pp->sectorsize, M_MD_NVIDIA, M_WAITOK | M_ZERO); error = g_write_data(cp, pp->mediasize - 2 * pp->sectorsize, buf, pp->sectorsize); if (error != 0) { G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).", pp->name, error); } free(buf, M_MD_NVIDIA); return (error); } static struct g_raid_disk * g_raid_md_nvidia_get_disk(struct g_raid_softc *sc, int id) { struct g_raid_disk *disk; struct g_raid_md_nvidia_perdisk *pd; TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data; if (pd->pd_disk_pos == id) break; } return (disk); } static int g_raid_md_nvidia_supported(int level, int qual, int disks, int force) { switch (level) { case G_RAID_VOLUME_RL_RAID0: if (disks < 1) return (0); if (!force && (disks < 2 || disks > 6)) return (0); break; case G_RAID_VOLUME_RL_RAID1: if (disks < 1) return (0); if (!force && (disks != 2)) return (0); break; case G_RAID_VOLUME_RL_RAID1E: if (disks < 2) return (0); if (disks % 2 != 0) return (0); if (!force && (disks < 4)) return (0); break; case G_RAID_VOLUME_RL_SINGLE: if (disks != 1) return (0); break; case G_RAID_VOLUME_RL_CONCAT: if (disks < 2) return (0); break; case G_RAID_VOLUME_RL_RAID5: if (disks < 3) return (0); if (qual != G_RAID_VOLUME_RLQ_R5LA && qual != G_RAID_VOLUME_RLQ_R5LS) return (0); break; default: return (0); } if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE) return (0); return (1); } static int g_raid_md_nvidia_start_disk(struct g_raid_disk *disk) { struct g_raid_softc *sc; struct g_raid_subdisk *sd, *tmpsd; struct g_raid_disk *olddisk, *tmpdisk; struct g_raid_md_object *md; struct g_raid_md_nvidia_object *mdi; struct g_raid_md_nvidia_perdisk *pd, *oldpd; struct nvidia_raid_conf *meta; int disk_pos, resurrection = 0; sc = disk->d_softc; md = sc->sc_md; mdi = (struct g_raid_md_nvidia_object *)md; meta = mdi->mdio_meta; pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data; olddisk = NULL; /* Find disk position in metadata by it's serial. */ if (pd->pd_meta != NULL) { disk_pos = pd->pd_meta->disk_number; if (disk_pos >= meta->total_disks || mdi->mdio_started) disk_pos = -3; } else disk_pos = -3; /* For RAID0+1 we need to translate order. */ disk_pos = nvidia_meta_translate_disk(meta, disk_pos); if (disk_pos < 0) { G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk"); /* If we are in the start process, that's all for now. */ if (!mdi->mdio_started) goto nofit; /* * If we have already started - try to get use of the disk. * Try to replace OFFLINE disks first, then FAILED. */ TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) { if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE && tmpdisk->d_state != G_RAID_DISK_S_FAILED) continue; /* Make sure this disk is big enough. */ TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) { if (sd->sd_offset + sd->sd_size + 2 * 512 > pd->pd_disk_size) { G_RAID_DEBUG1(1, sc, "Disk too small (%ju < %ju)", pd->pd_disk_size, sd->sd_offset + sd->sd_size + 512); break; } } if (sd != NULL) continue; if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) { olddisk = tmpdisk; break; } else if (olddisk == NULL) olddisk = tmpdisk; } if (olddisk == NULL) { nofit: g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE); return (1); } oldpd = (struct g_raid_md_nvidia_perdisk *)olddisk->d_md_data; disk_pos = oldpd->pd_disk_pos; resurrection = 1; } if (olddisk == NULL) { /* Find placeholder by position. */ olddisk = g_raid_md_nvidia_get_disk(sc, disk_pos); if (olddisk == NULL) panic("No disk at position %d!", disk_pos); if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) { G_RAID_DEBUG1(1, sc, "More then one disk for pos %d", disk_pos); g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE); return (0); } oldpd = (struct g_raid_md_nvidia_perdisk *)olddisk->d_md_data; } /* Replace failed disk or placeholder with new disk. */ TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) { TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next); TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); sd->sd_disk = disk; } oldpd->pd_disk_pos = -2; pd->pd_disk_pos = disk_pos; /* If it was placeholder -- destroy it. */ if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) { g_raid_destroy_disk(olddisk); } else { /* Otherwise, make it STALE_FAILED. */ g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED); } /* Welcome the new disk. */ if (resurrection) g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); else// if (pd->pd_meta->disk_status == NVIDIA_S_CURRENT || //pd->pd_meta->disk_status == NVIDIA_S_REBUILD) g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); // else // g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED); TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { /* * Different disks may have different sizes, * in concat mode. Update from real disk size. */ if (meta->type == NVIDIA_T_CONCAT) sd->sd_size = pd->pd_disk_size - 0x800 * 512; if (resurrection) { /* New or ex-spare disk. */ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NEW); } else if (meta->state == NVIDIA_S_REBUILD && (pd->pd_meta->disk_status & 0x100)) { /* Rebuilding disk. */ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_REBUILD); sd->sd_rebuild_pos = (off_t)pd->pd_meta->rebuild_lba / meta->array_width * pd->pd_meta->sector_size; } else if (meta->state == NVIDIA_S_SYNC) { /* Resyncing/dirty disk. */ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_RESYNC); sd->sd_rebuild_pos = (off_t)pd->pd_meta->rebuild_lba / meta->array_width * pd->pd_meta->sector_size; } else { /* Up to date disk. */ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE); } g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, G_RAID_EVENT_SUBDISK); } /* Update status of our need for spare. */ if (mdi->mdio_started) { mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) < mdi->mdio_total_disks); } return (resurrection); } static void g_disk_md_nvidia_retaste(void *arg, int pending) { G_RAID_DEBUG(1, "Array is not complete, trying to retaste."); g_retaste(&g_raid_class); free(arg, M_MD_NVIDIA); } static void g_raid_md_nvidia_refill(struct g_raid_softc *sc) { struct g_raid_md_object *md; struct g_raid_md_nvidia_object *mdi; struct g_raid_disk *disk; struct task *task; int update, na; md = sc->sc_md; mdi = (struct g_raid_md_nvidia_object *)md; update = 0; do { /* Make sure we miss anything. */ na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE); if (na == mdi->mdio_total_disks) break; G_RAID_DEBUG1(1, md->mdo_softc, "Array is not complete (%d of %d), " "trying to refill.", na, mdi->mdio_total_disks); /* Try to get use some of STALE disks. */ TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_RAID_DISK_S_STALE) { update += g_raid_md_nvidia_start_disk(disk); if (disk->d_state == G_RAID_DISK_S_ACTIVE) break; } } if (disk != NULL) continue; /* Try to get use some of SPARE disks. */ TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_RAID_DISK_S_SPARE) { update += g_raid_md_nvidia_start_disk(disk); if (disk->d_state == G_RAID_DISK_S_ACTIVE) break; } } } while (disk != NULL); /* Write new metadata if we changed something. */ if (update) g_raid_md_write_nvidia(md, NULL, NULL, NULL); /* Update status of our need for spare. */ mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) < mdi->mdio_total_disks); /* Request retaste hoping to find spare. */ if (mdi->mdio_incomplete) { task = malloc(sizeof(struct task), M_MD_NVIDIA, M_WAITOK | M_ZERO); TASK_INIT(task, 0, g_disk_md_nvidia_retaste, task); taskqueue_enqueue(taskqueue_swi, task); } } static void g_raid_md_nvidia_start(struct g_raid_softc *sc) { struct g_raid_md_object *md; struct g_raid_md_nvidia_object *mdi; struct g_raid_md_nvidia_perdisk *pd; struct nvidia_raid_conf *meta; struct g_raid_volume *vol; struct g_raid_subdisk *sd; struct g_raid_disk *disk; off_t size; int j, disk_pos; char buf[17]; md = sc->sc_md; mdi = (struct g_raid_md_nvidia_object *)md; meta = mdi->mdio_meta; /* Create volumes and subdisks. */ nvidia_meta_get_name(meta, buf); vol = g_raid_create_volume(sc, buf, -1); vol->v_mediasize = (off_t)meta->total_sectors * 512; vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE; if (meta->type == NVIDIA_T_RAID0) { vol->v_raid_level = G_RAID_VOLUME_RL_RAID0; size = vol->v_mediasize / mdi->mdio_total_disks; } else if (meta->type == NVIDIA_T_RAID1) { vol->v_raid_level = G_RAID_VOLUME_RL_RAID1; size = vol->v_mediasize; } else if (meta->type == NVIDIA_T_RAID01) { vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E; size = vol->v_mediasize / (mdi->mdio_total_disks / 2); } else if (meta->type == NVIDIA_T_CONCAT) { if (mdi->mdio_total_disks == 1) vol->v_raid_level = G_RAID_VOLUME_RL_SINGLE; else vol->v_raid_level = G_RAID_VOLUME_RL_CONCAT; size = 0; } else if (meta->type == NVIDIA_T_RAID5) { vol->v_raid_level = G_RAID_VOLUME_RL_RAID5; vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA; size = vol->v_mediasize / (mdi->mdio_total_disks - 1); } else if (meta->type == NVIDIA_T_RAID5_SYM) { vol->v_raid_level = G_RAID_VOLUME_RL_RAID5; vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LS; size = vol->v_mediasize / (mdi->mdio_total_disks - 1); } else { vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; size = 0; } vol->v_strip_size = meta->strip_sectors * 512; //ZZZ vol->v_disks_count = mdi->mdio_total_disks; vol->v_sectorsize = 512; //ZZZ for (j = 0; j < vol->v_disks_count; j++) { sd = &vol->v_subdisks[j]; sd->sd_offset = 0; sd->sd_size = size; } g_raid_start_volume(vol); /* Create disk placeholders to store data for later writing. */ for (disk_pos = 0; disk_pos < mdi->mdio_total_disks; disk_pos++) { pd = malloc(sizeof(*pd), M_MD_NVIDIA, M_WAITOK | M_ZERO); pd->pd_disk_pos = disk_pos; disk = g_raid_create_disk(sc); disk->d_md_data = (void *)pd; disk->d_state = G_RAID_DISK_S_OFFLINE; sd = &vol->v_subdisks[disk_pos]; sd->sd_disk = disk; TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); } /* Make all disks found till the moment take their places. */ do { TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_RAID_DISK_S_NONE) { g_raid_md_nvidia_start_disk(disk); break; } } } while (disk != NULL); mdi->mdio_started = 1; G_RAID_DEBUG1(0, sc, "Array started."); g_raid_md_write_nvidia(md, NULL, NULL, NULL); /* Pickup any STALE/SPARE disks to refill array if needed. */ g_raid_md_nvidia_refill(sc); g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME); callout_stop(&mdi->mdio_start_co); G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount); root_mount_rel(mdi->mdio_rootmount); mdi->mdio_rootmount = NULL; } static void g_raid_md_nvidia_new_disk(struct g_raid_disk *disk) { struct g_raid_softc *sc; struct g_raid_md_object *md; struct g_raid_md_nvidia_object *mdi; struct nvidia_raid_conf *pdmeta; struct g_raid_md_nvidia_perdisk *pd; sc = disk->d_softc; md = sc->sc_md; mdi = (struct g_raid_md_nvidia_object *)md; pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data; pdmeta = pd->pd_meta; if (mdi->mdio_started) { if (g_raid_md_nvidia_start_disk(disk)) g_raid_md_write_nvidia(md, NULL, NULL, NULL); } else { if (mdi->mdio_meta == NULL || mdi->mdio_meta->disk_number >= mdi->mdio_meta->total_disks) { G_RAID_DEBUG1(1, sc, "Newer disk"); if (mdi->mdio_meta != NULL) free(mdi->mdio_meta, M_MD_NVIDIA); mdi->mdio_meta = nvidia_meta_copy(pdmeta); mdi->mdio_total_disks = pdmeta->total_disks; mdi->mdio_disks_present = 1; } else if (pdmeta->disk_number < mdi->mdio_meta->total_disks) { mdi->mdio_disks_present++; G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)", mdi->mdio_disks_present, mdi->mdio_total_disks); } else G_RAID_DEBUG1(1, sc, "Spare disk"); /* If we collected all needed disks - start array. */ if (mdi->mdio_disks_present == mdi->mdio_total_disks) g_raid_md_nvidia_start(sc); } } static void g_raid_nvidia_go(void *arg) { struct g_raid_softc *sc; struct g_raid_md_object *md; struct g_raid_md_nvidia_object *mdi; sc = arg; md = sc->sc_md; mdi = (struct g_raid_md_nvidia_object *)md; if (!mdi->mdio_started) { G_RAID_DEBUG1(0, sc, "Force array start due to timeout."); g_raid_event_send(sc, G_RAID_NODE_E_START, 0); } } static int g_raid_md_create_nvidia(struct g_raid_md_object *md, struct g_class *mp, struct g_geom **gp) { struct g_raid_softc *sc; struct g_raid_md_nvidia_object *mdi; char name[32]; mdi = (struct g_raid_md_nvidia_object *)md; arc4rand(&mdi->mdio_volume_id, 16, 0); snprintf(name, sizeof(name), "NVIDIA-%d", atomic_fetchadd_int(&NVIDIANodeID, 1)); sc = g_raid_create_node(mp, name, md); if (sc == NULL) return (G_RAID_MD_TASTE_FAIL); md->mdo_softc = sc; *gp = sc->sc_geom; return (G_RAID_MD_TASTE_NEW); } static int g_raid_md_taste_nvidia(struct g_raid_md_object *md, struct g_class *mp, struct g_consumer *cp, struct g_geom **gp) { struct g_consumer *rcp; struct g_provider *pp; struct g_raid_md_nvidia_object *mdi, *mdi1; struct g_raid_softc *sc; struct g_raid_disk *disk; struct nvidia_raid_conf *meta; struct g_raid_md_nvidia_perdisk *pd; struct g_geom *geom; int error, result, spare, len; char name[32]; uint16_t vendor; G_RAID_DEBUG(1, "Tasting NVIDIA on %s", cp->provider->name); mdi = (struct g_raid_md_nvidia_object *)md; pp = cp->provider; /* Read metadata from device. */ meta = NULL; vendor = 0xffff; if (g_access(cp, 1, 0, 0) != 0) return (G_RAID_MD_TASTE_FAIL); g_topology_unlock(); len = 2; if (pp->geom->rank == 1) g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor); meta = nvidia_meta_read(cp); g_topology_lock(); g_access(cp, -1, 0, 0); if (meta == NULL) { if (g_raid_aggressive_spare) { if (vendor == 0x10de) { G_RAID_DEBUG(1, "No NVIDIA metadata, forcing spare."); spare = 2; goto search; } else { G_RAID_DEBUG(1, "NVIDIA vendor mismatch 0x%04x != 0x10de", vendor); } } return (G_RAID_MD_TASTE_FAIL); } /* Metadata valid. Print it. */ g_raid_md_nvidia_print(meta); G_RAID_DEBUG(1, "NVIDIA disk position %d", meta->disk_number); spare = 0;//(meta->type == NVIDIA_T_SPARE) ? 1 : 0; search: /* Search for matching node. */ sc = NULL; mdi1 = NULL; LIST_FOREACH(geom, &mp->geom, geom) { sc = geom->softc; if (sc == NULL) continue; if (sc->sc_stopping != 0) continue; if (sc->sc_md->mdo_class != md->mdo_class) continue; mdi1 = (struct g_raid_md_nvidia_object *)sc->sc_md; if (spare) { if (mdi1->mdio_incomplete) break; } else { if (memcmp(&mdi1->mdio_volume_id, &meta->volume_id, 16) == 0) break; } } /* Found matching node. */ if (geom != NULL) { G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name); result = G_RAID_MD_TASTE_EXISTING; } else if (spare) { /* Not found needy node -- left for later. */ G_RAID_DEBUG(1, "Spare is not needed at this time"); goto fail1; } else { /* Not found matching node -- create one. */ result = G_RAID_MD_TASTE_NEW; memcpy(&mdi->mdio_volume_id, &meta->volume_id, 16); snprintf(name, sizeof(name), "NVIDIA-%d", atomic_fetchadd_int(&NVIDIANodeID, 1)); sc = g_raid_create_node(mp, name, md); md->mdo_softc = sc; geom = sc->sc_geom; callout_init(&mdi->mdio_start_co, 1); callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz, g_raid_nvidia_go, sc); mdi->mdio_rootmount = root_mount_hold("GRAID-NVIDIA"); G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount); } rcp = g_new_consumer(geom); g_attach(rcp, pp); if (g_access(rcp, 1, 1, 1) != 0) ; //goto fail1; g_topology_unlock(); sx_xlock(&sc->sc_lock); pd = malloc(sizeof(*pd), M_MD_NVIDIA, M_WAITOK | M_ZERO); pd->pd_meta = meta; if (spare == 2) { pd->pd_disk_pos = -3; } else { pd->pd_disk_pos = -1; } pd->pd_disk_size = pp->mediasize; disk = g_raid_create_disk(sc); disk->d_md_data = (void *)pd; disk->d_consumer = rcp; rcp->private = disk; /* Read kernel dumping information. */ disk->d_kd.offset = 0; disk->d_kd.length = OFF_MAX; len = sizeof(disk->d_kd); error = g_io_getattr("GEOM::kerneldump", rcp, &len, &disk->d_kd); if (disk->d_kd.di.dumper == NULL) G_RAID_DEBUG1(2, sc, "Dumping not supported by %s: %d.", rcp->provider->name, error); g_raid_md_nvidia_new_disk(disk); sx_xunlock(&sc->sc_lock); g_topology_lock(); *gp = geom; return (result); fail1: free(meta, M_MD_NVIDIA); return (G_RAID_MD_TASTE_FAIL); } static int g_raid_md_event_nvidia(struct g_raid_md_object *md, struct g_raid_disk *disk, u_int event) { struct g_raid_softc *sc; struct g_raid_subdisk *sd; struct g_raid_md_nvidia_object *mdi; struct g_raid_md_nvidia_perdisk *pd; sc = md->mdo_softc; mdi = (struct g_raid_md_nvidia_object *)md; if (disk == NULL) { switch (event) { case G_RAID_NODE_E_START: if (!mdi->mdio_started) { /* Bump volume ID to drop missing disks. */ arc4rand(&mdi->mdio_volume_id, 16, 0); g_raid_md_nvidia_start(sc); } return (0); } return (-1); } pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data; switch (event) { case G_RAID_DISK_E_DISCONNECTED: /* If disk was assigned, just update statuses. */ if (pd->pd_disk_pos >= 0) { g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); if (disk->d_consumer) { g_raid_kill_consumer(sc, disk->d_consumer); disk->d_consumer = NULL; } TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, G_RAID_EVENT_SUBDISK); } } else { /* Otherwise -- delete. */ g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); g_raid_destroy_disk(disk); } if (mdi->mdio_started) { /* Bump volume ID to prevent disk resurrection. */ if (pd->pd_disk_pos >= 0) arc4rand(&mdi->mdio_volume_id, 16, 0); /* Write updated metadata to all disks. */ g_raid_md_write_nvidia(md, NULL, NULL, NULL); } /* Check if anything left except placeholders. */ if (g_raid_ndisks(sc, -1) == g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) g_raid_destroy_node(sc, 0); else g_raid_md_nvidia_refill(sc); return (0); } return (-2); } static int g_raid_md_ctl_nvidia(struct g_raid_md_object *md, struct gctl_req *req) { struct g_raid_softc *sc; struct g_raid_volume *vol; struct g_raid_subdisk *sd; struct g_raid_disk *disk; struct g_raid_md_nvidia_object *mdi; struct g_raid_md_nvidia_perdisk *pd; struct g_consumer *cp; struct g_provider *pp; char arg[16]; const char *verb, *volname, *levelname, *diskname; int *nargs, *force; off_t size, sectorsize, strip, volsize; intmax_t *sizearg, *striparg; int numdisks, i, len, level, qual, update; int error; sc = md->mdo_softc; mdi = (struct g_raid_md_nvidia_object *)md; verb = gctl_get_param(req, "verb", NULL); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); error = 0; if (strcmp(verb, "label") == 0) { if (*nargs < 4) { gctl_error(req, "Invalid number of arguments."); return (-1); } volname = gctl_get_asciiparam(req, "arg1"); if (volname == NULL) { gctl_error(req, "No volume name."); return (-2); } levelname = gctl_get_asciiparam(req, "arg2"); if (levelname == NULL) { gctl_error(req, "No RAID level."); return (-3); } if (strcasecmp(levelname, "RAID5") == 0) levelname = "RAID5-LS"; if (g_raid_volume_str2level(levelname, &level, &qual)) { gctl_error(req, "Unknown RAID level '%s'.", levelname); return (-4); } numdisks = *nargs - 3; force = gctl_get_paraml(req, "force", sizeof(*force)); if (!g_raid_md_nvidia_supported(level, qual, numdisks, force ? *force : 0)) { gctl_error(req, "Unsupported RAID level " "(0x%02x/0x%02x), or number of disks (%d).", level, qual, numdisks); return (-5); } /* Search for disks, connect them and probe. */ size = 0x7fffffffffffffffllu; sectorsize = 0; for (i = 0; i < numdisks; i++) { snprintf(arg, sizeof(arg), "arg%d", i + 3); diskname = gctl_get_asciiparam(req, arg); if (diskname == NULL) { gctl_error(req, "No disk name (%s).", arg); error = -6; break; } if (strcmp(diskname, "NONE") == 0) { cp = NULL; pp = NULL; } else { g_topology_lock(); cp = g_raid_open_consumer(sc, diskname); if (cp == NULL) { gctl_error(req, "Can't open '%s'.", diskname); g_topology_unlock(); error = -7; break; } pp = cp->provider; } pd = malloc(sizeof(*pd), M_MD_NVIDIA, M_WAITOK | M_ZERO); pd->pd_disk_pos = i; disk = g_raid_create_disk(sc); disk->d_md_data = (void *)pd; disk->d_consumer = cp; if (cp == NULL) continue; cp->private = disk; g_topology_unlock(); /* Read kernel dumping information. */ disk->d_kd.offset = 0; disk->d_kd.length = OFF_MAX; len = sizeof(disk->d_kd); g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); if (disk->d_kd.di.dumper == NULL) G_RAID_DEBUG1(2, sc, "Dumping not supported by %s.", cp->provider->name); pd->pd_disk_size = pp->mediasize; if (size > pp->mediasize) size = pp->mediasize; if (sectorsize < pp->sectorsize) sectorsize = pp->sectorsize; } if (error != 0) return (error); if (sectorsize <= 0) { gctl_error(req, "Can't get sector size."); return (-8); } /* Reserve space for metadata. */ size -= 2 * sectorsize; /* Handle size argument. */ len = sizeof(*sizearg); sizearg = gctl_get_param(req, "size", &len); if (sizearg != NULL && len == sizeof(*sizearg) && *sizearg > 0) { if (*sizearg > size) { gctl_error(req, "Size too big %lld > %lld.", (long long)*sizearg, (long long)size); return (-9); } size = *sizearg; } /* Handle strip argument. */ strip = 131072; len = sizeof(*striparg); striparg = gctl_get_param(req, "strip", &len); if (striparg != NULL && len == sizeof(*striparg) && *striparg > 0) { if (*striparg < sectorsize) { gctl_error(req, "Strip size too small."); return (-10); } if (*striparg % sectorsize != 0) { gctl_error(req, "Incorrect strip size."); return (-11); } if (strip > 65535 * sectorsize) { gctl_error(req, "Strip size too big."); return (-12); } strip = *striparg; } /* Round size down to strip or sector. */ if (level == G_RAID_VOLUME_RL_RAID1) size -= (size % sectorsize); else if (level == G_RAID_VOLUME_RL_RAID1E && (numdisks & 1) != 0) size -= (size % (2 * strip)); else size -= (size % strip); if (size <= 0) { gctl_error(req, "Size too small."); return (-13); } if (level == G_RAID_VOLUME_RL_RAID0 || level == G_RAID_VOLUME_RL_CONCAT || level == G_RAID_VOLUME_RL_SINGLE) volsize = size * numdisks; else if (level == G_RAID_VOLUME_RL_RAID1) volsize = size; else if (level == G_RAID_VOLUME_RL_RAID5) volsize = size * (numdisks - 1); else { /* RAID1E */ volsize = ((size * numdisks) / strip / 2) * strip; } if (volsize > 0xffffffffllu * sectorsize) { gctl_error(req, "Size too big."); return (-14); } /* We have all we need, create things: volume, ... */ mdi->mdio_total_disks = numdisks; mdi->mdio_started = 1; vol = g_raid_create_volume(sc, volname, -1); vol->v_md_data = (void *)(intptr_t)0; vol->v_raid_level = level; vol->v_raid_level_qualifier = qual; vol->v_strip_size = strip; vol->v_disks_count = numdisks; vol->v_mediasize = volsize; vol->v_sectorsize = sectorsize; g_raid_start_volume(vol); /* , and subdisks. */ TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data; sd = &vol->v_subdisks[pd->pd_disk_pos]; sd->sd_disk = disk; sd->sd_offset = 0; sd->sd_size = size; TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); if (sd->sd_disk->d_consumer != NULL) { g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE); g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, G_RAID_EVENT_SUBDISK); } else { g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); } } /* Write metadata based on created entities. */ G_RAID_DEBUG1(0, sc, "Array started."); g_raid_md_write_nvidia(md, NULL, NULL, NULL); /* Pickup any STALE/SPARE disks to refill array if needed. */ g_raid_md_nvidia_refill(sc); g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME); return (0); } if (strcmp(verb, "delete") == 0) { /* Check if some volume is still open. */ force = gctl_get_paraml(req, "force", sizeof(*force)); if (force != NULL && *force == 0 && g_raid_nopens(sc) != 0) { gctl_error(req, "Some volume is still open."); return (-4); } TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_consumer) nvidia_meta_erase(disk->d_consumer); } g_raid_destroy_node(sc, 0); return (0); } if (strcmp(verb, "remove") == 0 || strcmp(verb, "fail") == 0) { if (*nargs < 2) { gctl_error(req, "Invalid number of arguments."); return (-1); } for (i = 1; i < *nargs; i++) { snprintf(arg, sizeof(arg), "arg%d", i); diskname = gctl_get_asciiparam(req, arg); if (diskname == NULL) { gctl_error(req, "No disk name (%s).", arg); error = -2; break; } if (strncmp(diskname, "/dev/", 5) == 0) diskname += 5; TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL && strcmp(disk->d_consumer->provider->name, diskname) == 0) break; } if (disk == NULL) { gctl_error(req, "Disk '%s' not found.", diskname); error = -3; break; } if (strcmp(verb, "fail") == 0) { g_raid_md_fail_disk_nvidia(md, NULL, disk); continue; } pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data; /* Erase metadata on deleting disk. */ nvidia_meta_erase(disk->d_consumer); /* If disk was assigned, just update statuses. */ if (pd->pd_disk_pos >= 0) { g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); g_raid_kill_consumer(sc, disk->d_consumer); disk->d_consumer = NULL; TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, G_RAID_EVENT_SUBDISK); } } else { /* Otherwise -- delete. */ g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); g_raid_destroy_disk(disk); } } /* Write updated metadata to remaining disks. */ g_raid_md_write_nvidia(md, NULL, NULL, NULL); /* Check if anything left except placeholders. */ if (g_raid_ndisks(sc, -1) == g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) g_raid_destroy_node(sc, 0); else g_raid_md_nvidia_refill(sc); return (error); } if (strcmp(verb, "insert") == 0) { if (*nargs < 2) { gctl_error(req, "Invalid number of arguments."); return (-1); } update = 0; for (i = 1; i < *nargs; i++) { /* Get disk name. */ snprintf(arg, sizeof(arg), "arg%d", i); diskname = gctl_get_asciiparam(req, arg); if (diskname == NULL) { gctl_error(req, "No disk name (%s).", arg); error = -3; break; } /* Try to find provider with specified name. */ g_topology_lock(); cp = g_raid_open_consumer(sc, diskname); if (cp == NULL) { gctl_error(req, "Can't open disk '%s'.", diskname); g_topology_unlock(); error = -4; break; } pp = cp->provider; pd = malloc(sizeof(*pd), M_MD_NVIDIA, M_WAITOK | M_ZERO); pd->pd_disk_pos = -3; pd->pd_disk_size = pp->mediasize; disk = g_raid_create_disk(sc); disk->d_consumer = cp; disk->d_md_data = (void *)pd; cp->private = disk; g_topology_unlock(); /* Read kernel dumping information. */ disk->d_kd.offset = 0; disk->d_kd.length = OFF_MAX; len = sizeof(disk->d_kd); g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); if (disk->d_kd.di.dumper == NULL) G_RAID_DEBUG1(2, sc, "Dumping not supported by %s.", cp->provider->name); /* Welcome the "new" disk. */ update += g_raid_md_nvidia_start_disk(disk); if (disk->d_state != G_RAID_DISK_S_SPARE && disk->d_state != G_RAID_DISK_S_ACTIVE) { gctl_error(req, "Disk '%s' doesn't fit.", diskname); g_raid_destroy_disk(disk); error = -8; break; } } /* Write new metadata if we changed something. */ if (update) g_raid_md_write_nvidia(md, NULL, NULL, NULL); return (error); } gctl_error(req, "Command '%s' is not supported.", verb); return (-100); } static int g_raid_md_write_nvidia(struct g_raid_md_object *md, struct g_raid_volume *tvol, struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) { struct g_raid_softc *sc; struct g_raid_volume *vol; struct g_raid_subdisk *sd; struct g_raid_disk *disk; struct g_raid_md_nvidia_object *mdi; struct g_raid_md_nvidia_perdisk *pd; struct nvidia_raid_conf *meta; int i, spares; sc = md->mdo_softc; mdi = (struct g_raid_md_nvidia_object *)md; if (sc->sc_stopping == G_RAID_DESTROY_HARD) return (0); /* There is only one volume. */ vol = TAILQ_FIRST(&sc->sc_volumes); /* Fill global fields. */ meta = malloc(sizeof(*meta), M_MD_NVIDIA, M_WAITOK | M_ZERO); if (mdi->mdio_meta) memcpy(meta, mdi->mdio_meta, sizeof(*meta)); memcpy(meta->nvidia_id, NVIDIA_MAGIC, sizeof(NVIDIA_MAGIC) - 1); meta->config_size = 30; meta->version = 0x0064; meta->total_sectors = vol->v_mediasize / vol->v_sectorsize; meta->sector_size = vol->v_sectorsize; nvidia_meta_put_name(meta, vol->v_name); meta->magic_0 = NVIDIA_MAGIC0; memcpy(&meta->volume_id, &mdi->mdio_volume_id, 16); meta->state = NVIDIA_S_IDLE; if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) meta->array_width = 1; else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) meta->array_width = vol->v_disks_count / 2; else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) meta->array_width = vol->v_disks_count - 1; else meta->array_width = vol->v_disks_count; meta->total_disks = vol->v_disks_count; meta->orig_array_width = meta->array_width; if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0) meta->type = NVIDIA_T_RAID0; else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) meta->type = NVIDIA_T_RAID1; else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) meta->type = NVIDIA_T_RAID01; else if (vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT || vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE) meta->type = NVIDIA_T_CONCAT; else if (vol->v_raid_level_qualifier == G_RAID_VOLUME_RLQ_R5LA) meta->type = NVIDIA_T_RAID5; else meta->type = NVIDIA_T_RAID5_SYM; meta->strip_sectors = vol->v_strip_size / vol->v_sectorsize; meta->strip_bytes = vol->v_strip_size; meta->strip_shift = ffs(meta->strip_sectors) - 1; meta->strip_mask = meta->strip_sectors - 1; meta->stripe_sectors = meta->strip_sectors * meta->orig_array_width; meta->stripe_bytes = meta->stripe_sectors * vol->v_sectorsize; meta->rebuild_lba = 0; meta->orig_type = meta->type; meta->orig_total_sectors = meta->total_sectors; meta->status = 0; for (i = 0; i < vol->v_disks_count; i++) { sd = &vol->v_subdisks[i]; if ((sd->sd_state == G_RAID_SUBDISK_S_STALE || sd->sd_state == G_RAID_SUBDISK_S_RESYNC || vol->v_dirty) && meta->state != NVIDIA_S_REBUILD) meta->state = NVIDIA_S_SYNC; else if (sd->sd_state == G_RAID_SUBDISK_S_NEW || sd->sd_state == G_RAID_SUBDISK_S_REBUILD) meta->state = NVIDIA_S_REBUILD; } /* We are done. Print meta data and store them to disks. */ if (mdi->mdio_meta != NULL) free(mdi->mdio_meta, M_MD_NVIDIA); mdi->mdio_meta = meta; spares = 0; TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data; if (disk->d_state != G_RAID_DISK_S_ACTIVE && disk->d_state != G_RAID_DISK_S_SPARE) continue; if (pd->pd_meta != NULL) { free(pd->pd_meta, M_MD_NVIDIA); pd->pd_meta = NULL; } pd->pd_meta = nvidia_meta_copy(meta); if ((sd = TAILQ_FIRST(&disk->d_subdisks)) != NULL) { /* For RAID0+1 we need to translate order. */ pd->pd_meta->disk_number = nvidia_meta_translate_disk(meta, sd->sd_pos); if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE) { pd->pd_meta->disk_status = 0x100; pd->pd_meta->rebuild_lba = sd->sd_rebuild_pos / vol->v_sectorsize * meta->array_width; } } else pd->pd_meta->disk_number = meta->total_disks + spares++; G_RAID_DEBUG(1, "Writing NVIDIA metadata to %s", g_raid_get_diskname(disk)); g_raid_md_nvidia_print(pd->pd_meta); nvidia_meta_write(disk->d_consumer, pd->pd_meta); } return (0); } static int g_raid_md_fail_disk_nvidia(struct g_raid_md_object *md, struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) { struct g_raid_softc *sc; struct g_raid_md_nvidia_perdisk *pd; struct g_raid_subdisk *sd; sc = md->mdo_softc; pd = (struct g_raid_md_nvidia_perdisk *)tdisk->d_md_data; /* We can't fail disk that is not a part of array now. */ if (pd->pd_disk_pos < 0) return (-1); /* Erase metadata to prevent disks's later resurrection. */ if (tdisk->d_consumer) nvidia_meta_erase(tdisk->d_consumer); /* Change states. */ g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED); TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) { g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_FAILED); g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED, G_RAID_EVENT_SUBDISK); } /* Write updated metadata to remaining disks. */ g_raid_md_write_nvidia(md, NULL, NULL, tdisk); /* Check if anything left except placeholders. */ if (g_raid_ndisks(sc, -1) == g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) g_raid_destroy_node(sc, 0); else g_raid_md_nvidia_refill(sc); return (0); } static int g_raid_md_free_disk_nvidia(struct g_raid_md_object *md, struct g_raid_disk *disk) { struct g_raid_md_nvidia_perdisk *pd; pd = (struct g_raid_md_nvidia_perdisk *)disk->d_md_data; if (pd->pd_meta != NULL) { free(pd->pd_meta, M_MD_NVIDIA); pd->pd_meta = NULL; } free(pd, M_MD_NVIDIA); disk->d_md_data = NULL; return (0); } static int g_raid_md_free_nvidia(struct g_raid_md_object *md) { struct g_raid_md_nvidia_object *mdi; mdi = (struct g_raid_md_nvidia_object *)md; if (!mdi->mdio_started) { mdi->mdio_started = 0; callout_stop(&mdi->mdio_start_co); G_RAID_DEBUG1(1, md->mdo_softc, "root_mount_rel %p", mdi->mdio_rootmount); root_mount_rel(mdi->mdio_rootmount); mdi->mdio_rootmount = NULL; } if (mdi->mdio_meta != NULL) { free(mdi->mdio_meta, M_MD_NVIDIA); mdi->mdio_meta = NULL; } return (0); } G_RAID_MD_DECLARE(nvidia, "NVIDIA");