Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/prototype/@/mips/mips/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/prototype/@/mips/mips/pm_machdep.c |
/*- * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 * from: src/sys/i386/i386/machdep.c,v 1.385.2.3 2000/05/10 02:04:46 obrien * JNPR: pm_machdep.c,v 1.9.2.1 2007/08/16 15:59:10 girish */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/mips/mips/pm_machdep.c 225617 2011-09-16 13:58:51Z kmacy $"); #include "opt_compat.h" #include "opt_cputype.h" #include <sys/types.h> #include <sys/param.h> #include <sys/systm.h> #include <sys/sysent.h> #include <sys/proc.h> #include <sys/signalvar.h> #include <sys/exec.h> #include <sys/imgact.h> #include <sys/ucontext.h> #include <sys/lock.h> #include <sys/syscallsubr.h> #include <sys/sysproto.h> #include <sys/ptrace.h> #include <sys/syslog.h> #include <vm/vm.h> #include <vm/pmap.h> #include <vm/vm_map.h> #include <vm/vm_extern.h> #include <sys/user.h> #include <sys/uio.h> #include <machine/reg.h> #include <machine/md_var.h> #include <machine/sigframe.h> #include <machine/vmparam.h> #include <sys/vnode.h> #include <fs/pseudofs/pseudofs.h> #include <fs/procfs/procfs.h> #define UCONTEXT_MAGIC 0xACEDBADE /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * at top to call routine, followed by kcall * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ void sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct proc *p; struct thread *td; struct trapframe *regs; struct sigacts *psp; struct sigframe sf, *sfp; int sig; int oonstack; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->sp); /* save user context */ bzero(&sf, sizeof(struct sigframe)); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack = td->td_sigstk; sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; sf.sf_uc.uc_mcontext.mc_pc = regs->pc; sf.sf_uc.uc_mcontext.mullo = regs->mullo; sf.sf_uc.uc_mcontext.mulhi = regs->mulhi; sf.sf_uc.uc_mcontext.mc_regs[0] = UCONTEXT_MAGIC; /* magic number */ bcopy((void *)®s->ast, (void *)&sf.sf_uc.uc_mcontext.mc_regs[1], sizeof(sf.sf_uc.uc_mcontext.mc_regs) - sizeof(register_t)); sf.sf_uc.uc_mcontext.mc_fpused = td->td_md.md_flags & MDTD_FPUSED; if (sf.sf_uc.uc_mcontext.mc_fpused) { /* if FPU has current state, save it first */ if (td == PCPU_GET(fpcurthread)) MipsSaveCurFPState(td); bcopy((void *)&td->td_frame->f0, (void *)sf.sf_uc.uc_mcontext.mc_fpregs, sizeof(sf.sf_uc.uc_mcontext.mc_fpregs)); } /* Allocate and validate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sfp = (struct sigframe *)((vm_offset_t)(td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct sigframe)) & ~(sizeof(__int64_t) - 1)); } else sfp = (struct sigframe *)((vm_offset_t)(regs->sp - sizeof(struct sigframe)) & ~(sizeof(__int64_t) - 1)); /* Translate the signal if appropriate */ if (p->p_sysent->sv_sigtbl) { if (sig <= p->p_sysent->sv_sigsize) sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)]; } /* Build the argument list for the signal handler. */ regs->a0 = sig; regs->a2 = (register_t)(intptr_t)&sfp->sf_uc; if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ regs->a1 = (register_t)(intptr_t)&sfp->sf_si; /* sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; */ /* fill siginfo structure */ sf.sf_si.si_signo = sig; sf.sf_si.si_code = ksi->ksi_code; sf.sf_si.si_addr = (void*)(intptr_t)regs->badvaddr; } else { /* Old FreeBSD-style arguments. */ regs->a1 = ksi->ksi_code; regs->a3 = regs->badvaddr; /* sf.sf_ahu.sf_handler = catcher; */ } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) { /* * Something is wrong with the stack pointer. * ...Kill the process. */ PROC_LOCK(p); sigexit(td, SIGILL); } regs->pc = (register_t)(intptr_t)catcher; regs->t9 = (register_t)(intptr_t)catcher; regs->sp = (register_t)(intptr_t)sfp; /* * Signal trampoline code is at base of user stack. */ regs->ra = (register_t)(intptr_t)PS_STRINGS - *(p->p_sysent->sv_szsigcode); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } #ifdef GONE_IN_7 /* * Build siginfo_t for SA thread */ void cpu_thread_siginfo(int sig, u_long code, siginfo_t *si) { struct proc *p; struct thread *td; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); bzero(si, sizeof(*si)); si->si_signo = sig; si->si_code = code; /* XXXKSE fill other fields */ } #endif /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc as specified by * context left by sendsig. */ int sys_sigreturn(struct thread *td, struct sigreturn_args *uap) { struct trapframe *regs; ucontext_t *ucp; ucontext_t uc; int error; ucp = &uc; error = copyin(uap->sigcntxp, &uc, sizeof(uc)); if (error != 0) return (error); regs = td->td_frame; /* #ifdef DEBUG */ if (ucp->uc_mcontext.mc_regs[ZERO] != UCONTEXT_MAGIC) { printf("sigreturn: pid %d, ucp %p\n", td->td_proc->p_pid, ucp); printf(" old sp %p ra %p pc %p\n", (void *)(intptr_t)regs->sp, (void *)(intptr_t)regs->ra, (void *)(intptr_t)regs->pc); printf(" new sp %p ra %p pc %p z %p\n", (void *)(intptr_t)ucp->uc_mcontext.mc_regs[SP], (void *)(intptr_t)ucp->uc_mcontext.mc_regs[RA], (void *)(intptr_t)ucp->uc_mcontext.mc_regs[PC], (void *)(intptr_t)ucp->uc_mcontext.mc_regs[ZERO]); return EINVAL; } /* #endif */ bcopy((const void *)&ucp->uc_mcontext.mc_regs[1], (void *)®s->ast, sizeof(ucp->uc_mcontext.mc_regs) - sizeof(register_t)); if (ucp->uc_mcontext.mc_fpused) bcopy((const void *)ucp->uc_mcontext.mc_fpregs, (void *)&td->td_frame->f0, sizeof(ucp->uc_mcontext.mc_fpregs)); regs->pc = ucp->uc_mcontext.mc_pc; regs->mullo = ucp->uc_mcontext.mullo; regs->mulhi = ucp->uc_mcontext.mulhi; kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0); return(EJUSTRETURN); } int ptrace_set_pc(struct thread *td, unsigned long addr) { td->td_frame->pc = (register_t) addr; return 0; } static int ptrace_read_int(struct thread *td, off_t addr, int *v) { struct iovec iov; struct uio uio; PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED); iov.iov_base = (caddr_t) v; iov.iov_len = sizeof(int); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)addr; uio.uio_resid = sizeof(int); uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = td; return proc_rwmem(td->td_proc, &uio); } static int ptrace_write_int(struct thread *td, off_t addr, int v) { struct iovec iov; struct uio uio; PROC_LOCK_ASSERT(td->td_proc, MA_NOTOWNED); iov.iov_base = (caddr_t) &v; iov.iov_len = sizeof(int); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)addr; uio.uio_resid = sizeof(int); uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_WRITE; uio.uio_td = td; return proc_rwmem(td->td_proc, &uio); } int ptrace_single_step(struct thread *td) { unsigned va; struct trapframe *locr0 = td->td_frame; int i; int bpinstr = MIPS_BREAK_SSTEP; int curinstr; struct proc *p; p = td->td_proc; PROC_UNLOCK(p); /* * Fetch what's at the current location. */ ptrace_read_int(td, (off_t)locr0->pc, &curinstr); /* compute next address after current location */ if(curinstr != 0) { va = MipsEmulateBranch(locr0, locr0->pc, locr0->fsr, (uintptr_t)&curinstr); } else { va = locr0->pc + 4; } if (td->td_md.md_ss_addr) { printf("SS %s (%d): breakpoint already set at %x (va %x)\n", p->p_comm, p->p_pid, td->td_md.md_ss_addr, va); /* XXX */ return (EFAULT); } td->td_md.md_ss_addr = va; /* * Fetch what's at the current location. */ ptrace_read_int(td, (off_t)va, &td->td_md.md_ss_instr); /* * Store breakpoint instruction at the "next" location now. */ i = ptrace_write_int (td, va, bpinstr); /* * The sync'ing of I & D caches is done by procfs_domem() * through procfs_rwmem(). */ PROC_LOCK(p); if (i < 0) return (EFAULT); #if 0 printf("SS %s (%d): breakpoint set at %x: %x (pc %x) br %x\n", p->p_comm, p->p_pid, p->p_md.md_ss_addr, p->p_md.md_ss_instr, locr0->pc, curinstr); /* XXX */ #endif return (0); } void makectx(struct trapframe *tf, struct pcb *pcb) { pcb->pcb_regs.ra = tf->ra; pcb->pcb_regs.pc = tf->pc; pcb->pcb_regs.sp = tf->sp; } int fill_regs(struct thread *td, struct reg *regs) { memcpy(regs, td->td_frame, sizeof(struct reg)); return (0); } int set_regs(struct thread *td, struct reg *regs) { struct trapframe *f; register_t sr; f = (struct trapframe *) td->td_frame; /* * Don't allow the user to change SR */ sr = f->sr; memcpy(td->td_frame, regs, sizeof(struct reg)); f->sr = sr; return (0); } int get_mcontext(struct thread *td, mcontext_t *mcp, int flags) { struct trapframe *tp; tp = td->td_frame; PROC_LOCK(curthread->td_proc); mcp->mc_onstack = sigonstack(tp->sp); PROC_UNLOCK(curthread->td_proc); bcopy((void *)&td->td_frame->zero, (void *)&mcp->mc_regs, sizeof(mcp->mc_regs)); mcp->mc_fpused = td->td_md.md_flags & MDTD_FPUSED; if (mcp->mc_fpused) { bcopy((void *)&td->td_frame->f0, (void *)&mcp->mc_fpregs, sizeof(mcp->mc_fpregs)); } if (flags & GET_MC_CLEAR_RET) { mcp->mc_regs[V0] = 0; mcp->mc_regs[V1] = 0; mcp->mc_regs[A3] = 0; } mcp->mc_pc = td->td_frame->pc; mcp->mullo = td->td_frame->mullo; mcp->mulhi = td->td_frame->mulhi; mcp->mc_tls = td->td_md.md_tls; return (0); } int set_mcontext(struct thread *td, const mcontext_t *mcp) { struct trapframe *tp; tp = td->td_frame; bcopy((void *)&mcp->mc_regs, (void *)&td->td_frame->zero, sizeof(mcp->mc_regs)); td->td_md.md_flags = mcp->mc_fpused & MDTD_FPUSED; if (mcp->mc_fpused) { bcopy((void *)&mcp->mc_fpregs, (void *)&td->td_frame->f0, sizeof(mcp->mc_fpregs)); } td->td_frame->pc = mcp->mc_pc; td->td_frame->mullo = mcp->mullo; td->td_frame->mulhi = mcp->mulhi; td->td_md.md_tls = mcp->mc_tls; /* Dont let user to set any bits in Status and casue registers */ return (0); } int fill_fpregs(struct thread *td, struct fpreg *fpregs) { if (td == PCPU_GET(fpcurthread)) MipsSaveCurFPState(td); memcpy(fpregs, &td->td_frame->f0, sizeof(struct fpreg)); return 0; } int set_fpregs(struct thread *td, struct fpreg *fpregs) { if (PCPU_GET(fpcurthread) == td) PCPU_SET(fpcurthread, (struct thread *)0); memcpy(&td->td_frame->f0, fpregs, sizeof(struct fpreg)); return 0; } /* * Clear registers on exec * $sp is set to the stack pointer passed in. $pc is set to the entry * point given by the exec_package passed in, as is $t9 (used for PIC * code by the MIPS elf abi). */ void exec_setregs(struct thread *td, struct image_params *imgp, u_long stack) { bzero((caddr_t)td->td_frame, sizeof(struct trapframe)); /* * The stack pointer has to be aligned to accommodate the largest * datatype at minimum. This probably means it should be 16-byte * aligned, but for now we're 8-byte aligning it. */ td->td_frame->sp = ((register_t) stack) & ~(sizeof(__int64_t) - 1); /* * If we're running o32 or n32 programs but have 64-bit registers, * GCC may use stack-relative addressing near the top of user * address space that, due to sign extension, will yield an * invalid address. For instance, if sp is 0x7fffff00 then GCC * might do something like this to load a word from 0x7ffffff0: * * addu sp, sp, 32768 * lw t0, -32528(sp) * * On systems with 64-bit registers, sp is sign-extended to * 0xffffffff80007f00 and the load is instead done from * 0xffffffff7ffffff0. * * To prevent this, we subtract 64K from the stack pointer here. * * For consistency, we should just always do this unless we're * running n64 programs. For now, since we don't support * COMPAT_FREEBSD32 on n64 kernels, we just do it unless we're * running n64 kernels. */ #if !defined(__mips_n64) td->td_frame->sp -= 65536; #endif td->td_frame->pc = imgp->entry_addr & ~3; td->td_frame->t9 = imgp->entry_addr & ~3; /* abicall req */ td->td_frame->sr = MIPS_SR_KSU_USER | MIPS_SR_EXL | MIPS_SR_INT_IE | (mips_rd_status() & MIPS_SR_INT_MASK); #if defined(__mips_n32) td->td_frame->sr |= MIPS_SR_PX; #elif defined(__mips_n64) td->td_frame->sr |= MIPS_SR_PX | MIPS_SR_UX | MIPS_SR_KX; #endif #ifdef CPU_CNMIPS td->td_frame->sr |= MIPS_SR_COP_2_BIT | MIPS_SR_PX | MIPS_SR_UX | MIPS_SR_KX | MIPS_SR_SX; #endif /* * FREEBSD_DEVELOPERS_FIXME: * Setup any other CPU-Specific registers (Not MIPS Standard) * and/or bits in other standard MIPS registers (if CPU-Specific) * that are needed. */ /* * Set up arguments for the rtld-capable crt0: * a0 stack pointer * a1 rtld cleanup (filled in by dynamic loader) * a2 rtld object (filled in by dynamic loader) * a3 ps_strings */ td->td_frame->a0 = (register_t) stack; td->td_frame->a1 = 0; td->td_frame->a2 = 0; td->td_frame->a3 = (register_t)imgp->ps_strings; td->td_md.md_flags &= ~MDTD_FPUSED; if (PCPU_GET(fpcurthread) == td) PCPU_SET(fpcurthread, (struct thread *)0); td->td_md.md_ss_addr = 0; } int ptrace_clear_single_step(struct thread *td) { int i; struct proc *p; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); if (!td->td_md.md_ss_addr) return EINVAL; /* * Restore original instruction and clear BP */ i = ptrace_write_int (td, td->td_md.md_ss_addr, td->td_md.md_ss_instr); /* The sync'ing of I & D caches is done by procfs_domem(). */ if (i < 0) { log(LOG_ERR, "SS %s %d: can't restore instruction at %x: %x\n", p->p_comm, p->p_pid, td->td_md.md_ss_addr, td->td_md.md_ss_instr); } td->td_md.md_ss_addr = 0; return 0; }