Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/sdt/@/dev/drm2/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/dtrace/sdt/@/dev/drm2/drm_irq.c |
/*- * Copyright 2003 Eric Anholt * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * ERIC ANHOLT BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt <anholt@FreeBSD.org> * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/drm2/drm_irq.c 235783 2012-05-22 11:07:44Z kib $"); /** @file drm_irq.c * Support code for handling setup/teardown of interrupt handlers and * handing interrupt handlers off to the drivers. */ #include <dev/drm2/drmP.h> #include <dev/drm2/drm.h> MALLOC_DEFINE(DRM_MEM_VBLANK, "drm_vblank", "DRM VBLANK Handling Data"); /* Access macro for slots in vblank timestamp ringbuffer. */ #define vblanktimestamp(dev, crtc, count) ( \ (dev)->_vblank_time[(crtc) * DRM_VBLANKTIME_RBSIZE + \ ((count) % DRM_VBLANKTIME_RBSIZE)]) /* Retry timestamp calculation up to 3 times to satisfy * drm_timestamp_precision before giving up. */ #define DRM_TIMESTAMP_MAXRETRIES 3 /* Threshold in nanoseconds for detection of redundant * vblank irq in drm_handle_vblank(). 1 msec should be ok. */ #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 int drm_irq_by_busid(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_irq_busid *irq = data; if ((irq->busnum >> 8) != dev->pci_domain || (irq->busnum & 0xff) != dev->pci_bus || irq->devnum != dev->pci_slot || irq->funcnum != dev->pci_func) return EINVAL; irq->irq = dev->irq; DRM_DEBUG("%d:%d:%d => IRQ %d\n", irq->busnum, irq->devnum, irq->funcnum, irq->irq); return 0; } static void drm_irq_handler_wrap(void *arg) { struct drm_device *dev = arg; mtx_lock(&dev->irq_lock); dev->driver->irq_handler(arg); mtx_unlock(&dev->irq_lock); } int drm_irq_install(struct drm_device *dev) { int retcode; if (dev->irq == 0 || dev->dev_private == NULL) return (EINVAL); DRM_DEBUG("irq=%d\n", dev->irq); DRM_LOCK(dev); if (dev->irq_enabled) { DRM_UNLOCK(dev); return EBUSY; } dev->irq_enabled = 1; dev->context_flag = 0; /* Before installing handler */ if (dev->driver->irq_preinstall) dev->driver->irq_preinstall(dev); DRM_UNLOCK(dev); /* Install handler */ retcode = bus_setup_intr(dev->device, dev->irqr, INTR_TYPE_TTY | INTR_MPSAFE, NULL, (dev->driver->driver_features & DRIVER_LOCKLESS_IRQ) != 0 ? drm_irq_handler_wrap : dev->driver->irq_handler, dev, &dev->irqh); if (retcode != 0) goto err; /* After installing handler */ DRM_LOCK(dev); if (dev->driver->irq_postinstall) dev->driver->irq_postinstall(dev); DRM_UNLOCK(dev); return (0); err: device_printf(dev->device, "Error setting interrupt: %d\n", retcode); dev->irq_enabled = 0; return (retcode); } int drm_irq_uninstall(struct drm_device *dev) { int i; if (!dev->irq_enabled) return EINVAL; dev->irq_enabled = 0; /* * Wake up any waiters so they don't hang. */ if (dev->num_crtcs) { mtx_lock(&dev->vbl_lock); for (i = 0; i < dev->num_crtcs; i++) { wakeup(&dev->_vblank_count[i]); dev->vblank_enabled[i] = 0; dev->last_vblank[i] = dev->driver->get_vblank_counter(dev, i); } mtx_unlock(&dev->vbl_lock); } DRM_DEBUG("irq=%d\n", dev->irq); if (dev->driver->irq_uninstall) dev->driver->irq_uninstall(dev); DRM_UNLOCK(dev); bus_teardown_intr(dev->device, dev->irqr, dev->irqh); DRM_LOCK(dev); return 0; } int drm_control(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_control *ctl = data; int err; switch (ctl->func) { case DRM_INST_HANDLER: /* Handle drivers whose DRM used to require IRQ setup but the * no longer does. */ if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ)) return 0; if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; if (dev->if_version < DRM_IF_VERSION(1, 2) && ctl->irq != dev->irq) return EINVAL; return drm_irq_install(dev); case DRM_UNINST_HANDLER: if (!drm_core_check_feature(dev, DRIVER_HAVE_IRQ)) return 0; if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; DRM_LOCK(dev); err = drm_irq_uninstall(dev); DRM_UNLOCK(dev); return err; default: return EINVAL; } } #define NSEC_PER_USEC 1000L #define NSEC_PER_SEC 1000000000L int64_t timeval_to_ns(const struct timeval *tv) { return ((int64_t)tv->tv_sec * NSEC_PER_SEC) + tv->tv_usec * NSEC_PER_USEC; } struct timeval ns_to_timeval(const int64_t nsec) { struct timeval tv; uint32_t rem; if (nsec == 0) { tv.tv_sec = 0; tv.tv_usec = 0; return (tv); } tv.tv_sec = nsec / NSEC_PER_SEC; rem = nsec % NSEC_PER_SEC; if (rem < 0) { tv.tv_sec--; rem += NSEC_PER_SEC; } tv.tv_usec = rem / 1000; return (tv); } /* * Clear vblank timestamp buffer for a crtc. */ static void clear_vblank_timestamps(struct drm_device *dev, int crtc) { memset(&dev->_vblank_time[crtc * DRM_VBLANKTIME_RBSIZE], 0, DRM_VBLANKTIME_RBSIZE * sizeof(struct timeval)); } static int64_t abs64(int64_t x) { return (x < 0 ? -x : x); } /* * Disable vblank irq's on crtc, make sure that last vblank count * of hardware and corresponding consistent software vblank counter * are preserved, even if there are any spurious vblank irq's after * disable. */ static void vblank_disable_and_save(struct drm_device *dev, int crtc) { u32 vblcount; int64_t diff_ns; int vblrc; struct timeval tvblank; /* Prevent vblank irq processing while disabling vblank irqs, * so no updates of timestamps or count can happen after we've * disabled. Needed to prevent races in case of delayed irq's. */ mtx_lock(&dev->vblank_time_lock); dev->driver->disable_vblank(dev, crtc); dev->vblank_enabled[crtc] = 0; /* No further vblank irq's will be processed after * this point. Get current hardware vblank count and * vblank timestamp, repeat until they are consistent. * * FIXME: There is still a race condition here and in * drm_update_vblank_count() which can cause off-by-one * reinitialization of software vblank counter. If gpu * vblank counter doesn't increment exactly at the leading * edge of a vblank interval, then we can lose 1 count if * we happen to execute between start of vblank and the * delayed gpu counter increment. */ do { dev->last_vblank[crtc] = dev->driver->get_vblank_counter(dev, crtc); vblrc = drm_get_last_vbltimestamp(dev, crtc, &tvblank, 0); } while (dev->last_vblank[crtc] != dev->driver->get_vblank_counter(dev, crtc)); /* Compute time difference to stored timestamp of last vblank * as updated by last invocation of drm_handle_vblank() in vblank irq. */ vblcount = atomic_read(&dev->_vblank_count[crtc]); diff_ns = timeval_to_ns(&tvblank) - timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount)); /* If there is at least 1 msec difference between the last stored * timestamp and tvblank, then we are currently executing our * disable inside a new vblank interval, the tvblank timestamp * corresponds to this new vblank interval and the irq handler * for this vblank didn't run yet and won't run due to our disable. * Therefore we need to do the job of drm_handle_vblank() and * increment the vblank counter by one to account for this vblank. * * Skip this step if there isn't any high precision timestamp * available. In that case we can't account for this and just * hope for the best. */ if ((vblrc > 0) && (abs64(diff_ns) > 1000000)) { atomic_inc(&dev->_vblank_count[crtc]); } /* Invalidate all timestamps while vblank irq's are off. */ clear_vblank_timestamps(dev, crtc); mtx_unlock(&dev->vblank_time_lock); } static void vblank_disable_fn(void * arg) { struct drm_device *dev = (struct drm_device *)arg; int i; if (!dev->vblank_disable_allowed) return; for (i = 0; i < dev->num_crtcs; i++) { mtx_lock(&dev->vbl_lock); if (atomic_read(&dev->vblank_refcount[i]) == 0 && dev->vblank_enabled[i]) { DRM_DEBUG("disabling vblank on crtc %d\n", i); vblank_disable_and_save(dev, i); } mtx_unlock(&dev->vbl_lock); } } void drm_vblank_cleanup(struct drm_device *dev) { /* Bail if the driver didn't call drm_vblank_init() */ if (dev->num_crtcs == 0) return; callout_stop(&dev->vblank_disable_callout); vblank_disable_fn(dev); free(dev->_vblank_count, DRM_MEM_VBLANK); free(dev->vblank_refcount, DRM_MEM_VBLANK); free(dev->vblank_enabled, DRM_MEM_VBLANK); free(dev->last_vblank, DRM_MEM_VBLANK); free(dev->last_vblank_wait, DRM_MEM_VBLANK); free(dev->vblank_inmodeset, DRM_MEM_VBLANK); free(dev->_vblank_time, DRM_MEM_VBLANK); dev->num_crtcs = 0; } int drm_vblank_init(struct drm_device *dev, int num_crtcs) { int i; callout_init(&dev->vblank_disable_callout, CALLOUT_MPSAFE); #if 0 mtx_init(&dev->vbl_lock, "drmvbl", NULL, MTX_DEF); #endif mtx_init(&dev->vblank_time_lock, "drmvtl", NULL, MTX_DEF); dev->num_crtcs = num_crtcs; dev->_vblank_count = malloc(sizeof(atomic_t) * num_crtcs, DRM_MEM_VBLANK, M_WAITOK); dev->vblank_refcount = malloc(sizeof(atomic_t) * num_crtcs, DRM_MEM_VBLANK, M_WAITOK); dev->vblank_enabled = malloc(num_crtcs * sizeof(int), DRM_MEM_VBLANK, M_WAITOK | M_ZERO); dev->last_vblank = malloc(num_crtcs * sizeof(u32), DRM_MEM_VBLANK, M_WAITOK | M_ZERO); dev->last_vblank_wait = malloc(num_crtcs * sizeof(u32), DRM_MEM_VBLANK, M_WAITOK | M_ZERO); dev->vblank_inmodeset = malloc(num_crtcs * sizeof(int), DRM_MEM_VBLANK, M_WAITOK | M_ZERO); dev->_vblank_time = malloc(num_crtcs * DRM_VBLANKTIME_RBSIZE * sizeof(struct timeval), DRM_MEM_VBLANK, M_WAITOK | M_ZERO); DRM_INFO("Supports vblank timestamp caching Rev 1 (10.10.2010).\n"); /* Driver specific high-precision vblank timestamping supported? */ if (dev->driver->get_vblank_timestamp) DRM_INFO("Driver supports precise vblank timestamp query.\n"); else DRM_INFO("No driver support for vblank timestamp query.\n"); /* Zero per-crtc vblank stuff */ for (i = 0; i < num_crtcs; i++) { atomic_set(&dev->_vblank_count[i], 0); atomic_set(&dev->vblank_refcount[i], 0); } dev->vblank_disable_allowed = 0; return 0; } void drm_calc_timestamping_constants(struct drm_crtc *crtc) { int64_t linedur_ns = 0, pixeldur_ns = 0, framedur_ns = 0; uint64_t dotclock; /* Dot clock in Hz: */ dotclock = (uint64_t) crtc->hwmode.clock * 1000; /* Fields of interlaced scanout modes are only halve a frame duration. * Double the dotclock to get halve the frame-/line-/pixelduration. */ if (crtc->hwmode.flags & DRM_MODE_FLAG_INTERLACE) dotclock *= 2; /* Valid dotclock? */ if (dotclock > 0) { /* Convert scanline length in pixels and video dot clock to * line duration, frame duration and pixel duration in * nanoseconds: */ pixeldur_ns = (int64_t)1000000000 / dotclock; linedur_ns = ((uint64_t)crtc->hwmode.crtc_htotal * 1000000000) / dotclock; framedur_ns = (int64_t)crtc->hwmode.crtc_vtotal * linedur_ns; } else DRM_ERROR("crtc %d: Can't calculate constants, dotclock = 0!\n", crtc->base.id); crtc->pixeldur_ns = pixeldur_ns; crtc->linedur_ns = linedur_ns; crtc->framedur_ns = framedur_ns; DRM_DEBUG("crtc %d: hwmode: htotal %d, vtotal %d, vdisplay %d\n", crtc->base.id, crtc->hwmode.crtc_htotal, crtc->hwmode.crtc_vtotal, crtc->hwmode.crtc_vdisplay); DRM_DEBUG("crtc %d: clock %d kHz framedur %d linedur %d, pixeldur %d\n", crtc->base.id, (int) dotclock/1000, (int) framedur_ns, (int) linedur_ns, (int) pixeldur_ns); } /** * drm_calc_vbltimestamp_from_scanoutpos - helper routine for kms * drivers. Implements calculation of exact vblank timestamps from * given drm_display_mode timings and current video scanout position * of a crtc. This can be called from within get_vblank_timestamp() * implementation of a kms driver to implement the actual timestamping. * * Should return timestamps conforming to the OML_sync_control OpenML * extension specification. The timestamp corresponds to the end of * the vblank interval, aka start of scanout of topmost-leftmost display * pixel in the following video frame. * * Requires support for optional dev->driver->get_scanout_position() * in kms driver, plus a bit of setup code to provide a drm_display_mode * that corresponds to the true scanout timing. * * The current implementation only handles standard video modes. It * returns as no operation if a doublescan or interlaced video mode is * active. Higher level code is expected to handle this. * * @dev: DRM device. * @crtc: Which crtc's vblank timestamp to retrieve. * @max_error: Desired maximum allowable error in timestamps (nanosecs). * On return contains true maximum error of timestamp. * @vblank_time: Pointer to struct timeval which should receive the timestamp. * @flags: Flags to pass to driver: * 0 = Default. * DRM_CALLED_FROM_VBLIRQ = If function is called from vbl irq handler. * @refcrtc: drm_crtc* of crtc which defines scanout timing. * * Returns negative value on error, failure or if not supported in current * video mode: * * -EINVAL - Invalid crtc. * -EAGAIN - Temporary unavailable, e.g., called before initial modeset. * -ENOTSUPP - Function not supported in current display mode. * -EIO - Failed, e.g., due to failed scanout position query. * * Returns or'ed positive status flags on success: * * DRM_VBLANKTIME_SCANOUTPOS_METHOD - Signal this method used for timestamping. * DRM_VBLANKTIME_INVBL - Timestamp taken while scanout was in vblank interval. * */ int drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, int crtc, int *max_error, struct timeval *vblank_time, unsigned flags, struct drm_crtc *refcrtc) { struct timeval stime, raw_time; struct drm_display_mode *mode; int vbl_status, vtotal, vdisplay; int vpos, hpos, i; int64_t framedur_ns, linedur_ns, pixeldur_ns, delta_ns, duration_ns; bool invbl; if (crtc < 0 || crtc >= dev->num_crtcs) { DRM_ERROR("Invalid crtc %d\n", crtc); return -EINVAL; } /* Scanout position query not supported? Should not happen. */ if (!dev->driver->get_scanout_position) { DRM_ERROR("Called from driver w/o get_scanout_position()!?\n"); return -EIO; } mode = &refcrtc->hwmode; vtotal = mode->crtc_vtotal; vdisplay = mode->crtc_vdisplay; /* Durations of frames, lines, pixels in nanoseconds. */ framedur_ns = refcrtc->framedur_ns; linedur_ns = refcrtc->linedur_ns; pixeldur_ns = refcrtc->pixeldur_ns; /* If mode timing undefined, just return as no-op: * Happens during initial modesetting of a crtc. */ if (vtotal <= 0 || vdisplay <= 0 || framedur_ns == 0) { DRM_DEBUG("crtc %d: Noop due to uninitialized mode.\n", crtc); return -EAGAIN; } /* Get current scanout position with system timestamp. * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times * if single query takes longer than max_error nanoseconds. * * This guarantees a tight bound on maximum error if * code gets preempted or delayed for some reason. */ for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { /* Disable preemption to make it very likely to * succeed in the first iteration. */ critical_enter(); /* Get system timestamp before query. */ getmicrouptime(&stime); /* Get vertical and horizontal scanout pos. vpos, hpos. */ vbl_status = dev->driver->get_scanout_position(dev, crtc, &vpos, &hpos); /* Get system timestamp after query. */ getmicrouptime(&raw_time); critical_exit(); /* Return as no-op if scanout query unsupported or failed. */ if (!(vbl_status & DRM_SCANOUTPOS_VALID)) { DRM_DEBUG("crtc %d : scanoutpos query failed [%d].\n", crtc, vbl_status); return -EIO; } duration_ns = timeval_to_ns(&raw_time) - timeval_to_ns(&stime); /* Accept result with < max_error nsecs timing uncertainty. */ if (duration_ns <= (int64_t) *max_error) break; } /* Noisy system timing? */ if (i == DRM_TIMESTAMP_MAXRETRIES) { DRM_DEBUG("crtc %d: Noisy timestamp %d us > %d us [%d reps].\n", crtc, (int) duration_ns/1000, *max_error/1000, i); } /* Return upper bound of timestamp precision error. */ *max_error = (int) duration_ns; /* Check if in vblank area: * vpos is >=0 in video scanout area, but negative * within vblank area, counting down the number of lines until * start of scanout. */ invbl = vbl_status & DRM_SCANOUTPOS_INVBL; /* Convert scanout position into elapsed time at raw_time query * since start of scanout at first display scanline. delta_ns * can be negative if start of scanout hasn't happened yet. */ delta_ns = (int64_t)vpos * linedur_ns + (int64_t)hpos * pixeldur_ns; /* Is vpos outside nominal vblank area, but less than * 1/100 of a frame height away from start of vblank? * If so, assume this isn't a massively delayed vblank * interrupt, but a vblank interrupt that fired a few * microseconds before true start of vblank. Compensate * by adding a full frame duration to the final timestamp. * Happens, e.g., on ATI R500, R600. * * We only do this if DRM_CALLED_FROM_VBLIRQ. */ if ((flags & DRM_CALLED_FROM_VBLIRQ) && !invbl && ((vdisplay - vpos) < vtotal / 100)) { delta_ns = delta_ns - framedur_ns; /* Signal this correction as "applied". */ vbl_status |= 0x8; } /* Subtract time delta from raw timestamp to get final * vblank_time timestamp for end of vblank. */ *vblank_time = ns_to_timeval(timeval_to_ns(&raw_time) - delta_ns); DRM_DEBUG("crtc %d : v %d p(%d,%d)@ %jd.%jd -> %jd.%jd [e %d us, %d rep]\n", crtc, (int)vbl_status, hpos, vpos, (uintmax_t)raw_time.tv_sec, (uintmax_t)raw_time.tv_usec, (uintmax_t)vblank_time->tv_sec, (uintmax_t)vblank_time->tv_usec, (int)duration_ns/1000, i); vbl_status = DRM_VBLANKTIME_SCANOUTPOS_METHOD; if (invbl) vbl_status |= DRM_VBLANKTIME_INVBL; return vbl_status; } /** * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent * vblank interval. * * @dev: DRM device * @crtc: which crtc's vblank timestamp to retrieve * @tvblank: Pointer to target struct timeval which should receive the timestamp * @flags: Flags to pass to driver: * 0 = Default. * DRM_CALLED_FROM_VBLIRQ = If function is called from vbl irq handler. * * Fetches the system timestamp corresponding to the time of the most recent * vblank interval on specified crtc. May call into kms-driver to * compute the timestamp with a high-precision GPU specific method. * * Returns zero if timestamp originates from uncorrected do_gettimeofday() * call, i.e., it isn't very precisely locked to the true vblank. * * Returns non-zero if timestamp is considered to be very precise. */ u32 drm_get_last_vbltimestamp(struct drm_device *dev, int crtc, struct timeval *tvblank, unsigned flags) { int ret = 0; /* Define requested maximum error on timestamps (nanoseconds). */ int max_error = (int) drm_timestamp_precision * 1000; /* Query driver if possible and precision timestamping enabled. */ if (dev->driver->get_vblank_timestamp && (max_error > 0)) { ret = dev->driver->get_vblank_timestamp(dev, crtc, &max_error, tvblank, flags); if (ret > 0) return (u32) ret; } /* GPU high precision timestamp query unsupported or failed. * Return gettimeofday timestamp as best estimate. */ microtime(tvblank); return 0; } /** * drm_vblank_count - retrieve "cooked" vblank counter value * @dev: DRM device * @crtc: which counter to retrieve * * Fetches the "cooked" vblank count value that represents the number of * vblank events since the system was booted, including lost events due to * modesetting activity. */ u32 drm_vblank_count(struct drm_device *dev, int crtc) { return atomic_read(&dev->_vblank_count[crtc]); } /** * drm_vblank_count_and_time - retrieve "cooked" vblank counter value * and the system timestamp corresponding to that vblank counter value. * * @dev: DRM device * @crtc: which counter to retrieve * @vblanktime: Pointer to struct timeval to receive the vblank timestamp. * * Fetches the "cooked" vblank count value that represents the number of * vblank events since the system was booted, including lost events due to * modesetting activity. Returns corresponding system timestamp of the time * of the vblank interval that corresponds to the current value vblank counter * value. */ u32 drm_vblank_count_and_time(struct drm_device *dev, int crtc, struct timeval *vblanktime) { u32 cur_vblank; /* Read timestamp from slot of _vblank_time ringbuffer * that corresponds to current vblank count. Retry if * count has incremented during readout. This works like * a seqlock. */ do { cur_vblank = atomic_read(&dev->_vblank_count[crtc]); *vblanktime = vblanktimestamp(dev, crtc, cur_vblank); rmb(); } while (cur_vblank != atomic_read(&dev->_vblank_count[crtc])); return cur_vblank; } /** * drm_update_vblank_count - update the master vblank counter * @dev: DRM device * @crtc: counter to update * * Call back into the driver to update the appropriate vblank counter * (specified by @crtc). Deal with wraparound, if it occurred, and * update the last read value so we can deal with wraparound on the next * call if necessary. * * Only necessary when going from off->on, to account for frames we * didn't get an interrupt for. * * Note: caller must hold dev->vbl_lock since this reads & writes * device vblank fields. */ static void drm_update_vblank_count(struct drm_device *dev, int crtc) { u32 cur_vblank, diff, tslot, rc; struct timeval t_vblank; /* * Interrupts were disabled prior to this call, so deal with counter * wrap if needed. * NOTE! It's possible we lost a full dev->max_vblank_count events * here if the register is small or we had vblank interrupts off for * a long time. * * We repeat the hardware vblank counter & timestamp query until * we get consistent results. This to prevent races between gpu * updating its hardware counter while we are retrieving the * corresponding vblank timestamp. */ do { cur_vblank = dev->driver->get_vblank_counter(dev, crtc); rc = drm_get_last_vbltimestamp(dev, crtc, &t_vblank, 0); } while (cur_vblank != dev->driver->get_vblank_counter(dev, crtc)); /* Deal with counter wrap */ diff = cur_vblank - dev->last_vblank[crtc]; if (cur_vblank < dev->last_vblank[crtc]) { diff += dev->max_vblank_count; DRM_DEBUG("last_vblank[%d]=0x%x, cur_vblank=0x%x => diff=0x%x\n", crtc, dev->last_vblank[crtc], cur_vblank, diff); } DRM_DEBUG("enabling vblank interrupts on crtc %d, missed %d\n", crtc, diff); /* Reinitialize corresponding vblank timestamp if high-precision query * available. Skip this step if query unsupported or failed. Will * reinitialize delayed at next vblank interrupt in that case. */ if (rc) { tslot = atomic_read(&dev->_vblank_count[crtc]) + diff; vblanktimestamp(dev, crtc, tslot) = t_vblank; } atomic_add(diff, &dev->_vblank_count[crtc]); } /** * drm_vblank_get - get a reference count on vblank events * @dev: DRM device * @crtc: which CRTC to own * * Acquire a reference count on vblank events to avoid having them disabled * while in use. * * RETURNS * Zero on success, nonzero on failure. */ int drm_vblank_get(struct drm_device *dev, int crtc) { int ret = 0; mtx_lock(&dev->vbl_lock); /* Going from 0->1 means we have to enable interrupts again */ if (atomic_fetchadd_int(&dev->vblank_refcount[crtc], 1) == 0) { mtx_lock(&dev->vblank_time_lock); if (!dev->vblank_enabled[crtc]) { /* Enable vblank irqs under vblank_time_lock protection. * All vblank count & timestamp updates are held off * until we are done reinitializing master counter and * timestamps. Filtercode in drm_handle_vblank() will * prevent double-accounting of same vblank interval. */ ret = -dev->driver->enable_vblank(dev, crtc); DRM_DEBUG("enabling vblank on crtc %d, ret: %d\n", crtc, ret); if (ret) atomic_dec(&dev->vblank_refcount[crtc]); else { dev->vblank_enabled[crtc] = 1; drm_update_vblank_count(dev, crtc); } } mtx_unlock(&dev->vblank_time_lock); } else { if (!dev->vblank_enabled[crtc]) { atomic_dec(&dev->vblank_refcount[crtc]); ret = EINVAL; } } mtx_unlock(&dev->vbl_lock); return ret; } /** * drm_vblank_put - give up ownership of vblank events * @dev: DRM device * @crtc: which counter to give up * * Release ownership of a given vblank counter, turning off interrupts * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. */ void drm_vblank_put(struct drm_device *dev, int crtc) { KASSERT(atomic_read(&dev->vblank_refcount[crtc]) != 0, ("Too many drm_vblank_put for crtc %d", crtc)); /* Last user schedules interrupt disable */ if (atomic_fetchadd_int(&dev->vblank_refcount[crtc], -1) == 1 && (drm_vblank_offdelay > 0)) callout_reset(&dev->vblank_disable_callout, (drm_vblank_offdelay * DRM_HZ) / 1000, vblank_disable_fn, dev); } void drm_vblank_off(struct drm_device *dev, int crtc) { struct drm_pending_vblank_event *e, *t; struct timeval now; unsigned int seq; mtx_lock(&dev->vbl_lock); vblank_disable_and_save(dev, crtc); mtx_lock(&dev->event_lock); wakeup(&dev->_vblank_count[crtc]); /* Send any queued vblank events, lest the natives grow disquiet */ seq = drm_vblank_count_and_time(dev, crtc, &now); list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { if (e->pipe != crtc) continue; DRM_DEBUG("Sending premature vblank event on disable: \ wanted %d, current %d\n", e->event.sequence, seq); e->event.sequence = seq; e->event.tv_sec = now.tv_sec; e->event.tv_usec = now.tv_usec; drm_vblank_put(dev, e->pipe); list_move_tail(&e->base.link, &e->base.file_priv->event_list); drm_event_wakeup(&e->base); CTR3(KTR_DRM, "vblank_event_delivered %d %d %d", e->base.pid, e->pipe, e->event.sequence); } mtx_unlock(&dev->event_lock); mtx_unlock(&dev->vbl_lock); } /** * drm_vblank_pre_modeset - account for vblanks across mode sets * @dev: DRM device * @crtc: CRTC in question * @post: post or pre mode set? * * Account for vblank events across mode setting events, which will likely * reset the hardware frame counter. */ void drm_vblank_pre_modeset(struct drm_device *dev, int crtc) { /* vblank is not initialized (IRQ not installed ?) */ if (!dev->num_crtcs) return; /* * To avoid all the problems that might happen if interrupts * were enabled/disabled around or between these calls, we just * have the kernel take a reference on the CRTC (just once though * to avoid corrupting the count if multiple, mismatch calls occur), * so that interrupts remain enabled in the interim. */ if (!dev->vblank_inmodeset[crtc]) { dev->vblank_inmodeset[crtc] = 0x1; if (drm_vblank_get(dev, crtc) == 0) dev->vblank_inmodeset[crtc] |= 0x2; } } void drm_vblank_post_modeset(struct drm_device *dev, int crtc) { if (dev->vblank_inmodeset[crtc]) { mtx_lock(&dev->vbl_lock); dev->vblank_disable_allowed = 1; mtx_unlock(&dev->vbl_lock); if (dev->vblank_inmodeset[crtc] & 0x2) drm_vblank_put(dev, crtc); dev->vblank_inmodeset[crtc] = 0; } } /** * drm_modeset_ctl - handle vblank event counter changes across mode switch * @DRM_IOCTL_ARGS: standard ioctl arguments * * Applications should call the %_DRM_PRE_MODESET and %_DRM_POST_MODESET * ioctls around modesetting so that any lost vblank events are accounted for. * * Generally the counter will reset across mode sets. If interrupts are * enabled around this call, we don't have to do anything since the counter * will have already been incremented. */ int drm_modeset_ctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_modeset_ctl *modeset = data; int ret = 0; unsigned int crtc; /* If drm_vblank_init() hasn't been called yet, just no-op */ if (!dev->num_crtcs) goto out; crtc = modeset->crtc; if (crtc >= dev->num_crtcs) { ret = -EINVAL; goto out; } switch (modeset->cmd) { case _DRM_PRE_MODESET: drm_vblank_pre_modeset(dev, crtc); break; case _DRM_POST_MODESET: drm_vblank_post_modeset(dev, crtc); break; default: ret = -EINVAL; break; } out: return ret; } static void drm_vblank_event_destroy(struct drm_pending_event *e) { free(e, DRM_MEM_VBLANK); } static int drm_queue_vblank_event(struct drm_device *dev, int pipe, union drm_wait_vblank *vblwait, struct drm_file *file_priv) { struct drm_pending_vblank_event *e; struct timeval now; unsigned int seq; int ret; e = malloc(sizeof *e, DRM_MEM_VBLANK, M_WAITOK | M_ZERO); e->pipe = pipe; e->base.pid = curproc->p_pid; e->event.base.type = DRM_EVENT_VBLANK; e->event.base.length = sizeof e->event; e->event.user_data = vblwait->request.signal; e->base.event = &e->event.base; e->base.file_priv = file_priv; e->base.destroy = drm_vblank_event_destroy; mtx_lock(&dev->event_lock); if (file_priv->event_space < sizeof e->event) { ret = EBUSY; goto err_unlock; } file_priv->event_space -= sizeof e->event; seq = drm_vblank_count_and_time(dev, pipe, &now); if ((vblwait->request.type & _DRM_VBLANK_NEXTONMISS) && (seq - vblwait->request.sequence) <= (1 << 23)) { vblwait->request.sequence = seq + 1; vblwait->reply.sequence = vblwait->request.sequence; } DRM_DEBUG("event on vblank count %d, current %d, crtc %d\n", vblwait->request.sequence, seq, pipe); CTR4(KTR_DRM, "vblank_event_queued %d %d rt %x %d", curproc->p_pid, pipe, vblwait->request.type, vblwait->request.sequence); e->event.sequence = vblwait->request.sequence; if ((seq - vblwait->request.sequence) <= (1 << 23)) { e->event.sequence = seq; e->event.tv_sec = now.tv_sec; e->event.tv_usec = now.tv_usec; drm_vblank_put(dev, pipe); list_add_tail(&e->base.link, &e->base.file_priv->event_list); drm_event_wakeup(&e->base); vblwait->reply.sequence = seq; CTR3(KTR_DRM, "vblank_event_wakeup p1 %d %d %d", curproc->p_pid, pipe, vblwait->request.sequence); } else { /* drm_handle_vblank_events will call drm_vblank_put */ list_add_tail(&e->base.link, &dev->vblank_event_list); vblwait->reply.sequence = vblwait->request.sequence; } mtx_unlock(&dev->event_lock); return 0; err_unlock: mtx_unlock(&dev->event_lock); free(e, DRM_MEM_VBLANK); drm_vblank_put(dev, pipe); return ret; } /** * Wait for VBLANK. * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param data user argument, pointing to a drm_wait_vblank structure. * \return zero on success or a negative number on failure. * * This function enables the vblank interrupt on the pipe requested, then * sleeps waiting for the requested sequence number to occur, and drops * the vblank interrupt refcount afterwards. (vblank irq disable follows that * after a timeout with no further vblank waits scheduled). */ int drm_wait_vblank(struct drm_device *dev, void *data, struct drm_file *file_priv) { union drm_wait_vblank *vblwait = data; int ret = 0; unsigned int flags, seq, crtc, high_crtc; if (/*(!drm_dev_to_irq(dev)) || */(!dev->irq_enabled)) return (EINVAL); if (vblwait->request.type & _DRM_VBLANK_SIGNAL) return (EINVAL); if (vblwait->request.type & ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | _DRM_VBLANK_HIGH_CRTC_MASK)) { DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n", vblwait->request.type, (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | _DRM_VBLANK_HIGH_CRTC_MASK)); return (EINVAL); } flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; high_crtc = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); if (high_crtc) crtc = high_crtc >> _DRM_VBLANK_HIGH_CRTC_SHIFT; else crtc = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; if (crtc >= dev->num_crtcs) return (EINVAL); ret = drm_vblank_get(dev, crtc); if (ret) { DRM_DEBUG("failed to acquire vblank counter, %d\n", ret); return (ret); } seq = drm_vblank_count(dev, crtc); switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { case _DRM_VBLANK_RELATIVE: vblwait->request.sequence += seq; vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; case _DRM_VBLANK_ABSOLUTE: break; default: ret = (EINVAL); goto done; } if (flags & _DRM_VBLANK_EVENT) { /* must hold on to the vblank ref until the event fires * drm_vblank_put will be called asynchronously */ return drm_queue_vblank_event(dev, crtc, vblwait, file_priv); } if ((flags & _DRM_VBLANK_NEXTONMISS) && (seq - vblwait->request.sequence) <= (1<<23)) { vblwait->request.sequence = seq + 1; } dev->last_vblank_wait[crtc] = vblwait->request.sequence; mtx_lock(&dev->vblank_time_lock); while (((drm_vblank_count(dev, crtc) - vblwait->request.sequence) > (1 << 23)) && dev->irq_enabled) { /* * The wakeups from the drm_irq_uninstall() and * drm_vblank_off() may be lost there since vbl_lock * is not held. Then, the timeout will wake us; the 3 * seconds delay should not be a problem for * application when crtc is disabled or irq * uninstalled anyway. */ ret = msleep(&dev->_vblank_count[crtc], &dev->vblank_time_lock, PCATCH, "drmvbl", 3 * hz); if (ret != 0) break; } mtx_unlock(&dev->vblank_time_lock); if (ret != EINTR) { struct timeval now; long reply_seq; reply_seq = drm_vblank_count_and_time(dev, crtc, &now); CTR5(KTR_DRM, "wait_vblank %d %d rt %x success %d %d", curproc->p_pid, crtc, vblwait->request.type, vblwait->request.sequence, reply_seq); vblwait->reply.sequence = reply_seq; vblwait->reply.tval_sec = now.tv_sec; vblwait->reply.tval_usec = now.tv_usec; } else { CTR5(KTR_DRM, "wait_vblank %d %d rt %x error %d %d", curproc->p_pid, crtc, vblwait->request.type, ret, vblwait->request.sequence); } done: drm_vblank_put(dev, crtc); return ret; } void drm_handle_vblank_events(struct drm_device *dev, int crtc) { struct drm_pending_vblank_event *e, *t; struct timeval now; unsigned int seq; seq = drm_vblank_count_and_time(dev, crtc, &now); CTR2(KTR_DRM, "drm_handle_vblank_events %d %d", seq, crtc); mtx_lock(&dev->event_lock); list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) { if (e->pipe != crtc) continue; if ((seq - e->event.sequence) > (1<<23)) continue; e->event.sequence = seq; e->event.tv_sec = now.tv_sec; e->event.tv_usec = now.tv_usec; drm_vblank_put(dev, e->pipe); list_move_tail(&e->base.link, &e->base.file_priv->event_list); drm_event_wakeup(&e->base); CTR3(KTR_DRM, "vblank_event_wakeup p2 %d %d %d", e->base.pid, e->pipe, e->event.sequence); } mtx_unlock(&dev->event_lock); } /** * drm_handle_vblank - handle a vblank event * @dev: DRM device * @crtc: where this event occurred * * Drivers should call this routine in their vblank interrupt handlers to * update the vblank counter and send any signals that may be pending. */ bool drm_handle_vblank(struct drm_device *dev, int crtc) { u32 vblcount; int64_t diff_ns; struct timeval tvblank; if (!dev->num_crtcs) return false; /* Need timestamp lock to prevent concurrent execution with * vblank enable/disable, as this would cause inconsistent * or corrupted timestamps and vblank counts. */ mtx_lock(&dev->vblank_time_lock); /* Vblank irq handling disabled. Nothing to do. */ if (!dev->vblank_enabled[crtc]) { mtx_unlock(&dev->vblank_time_lock); return false; } /* Fetch corresponding timestamp for this vblank interval from * driver and store it in proper slot of timestamp ringbuffer. */ /* Get current timestamp and count. */ vblcount = atomic_read(&dev->_vblank_count[crtc]); drm_get_last_vbltimestamp(dev, crtc, &tvblank, DRM_CALLED_FROM_VBLIRQ); /* Compute time difference to timestamp of last vblank */ diff_ns = timeval_to_ns(&tvblank) - timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount)); /* Update vblank timestamp and count if at least * DRM_REDUNDANT_VBLIRQ_THRESH_NS nanoseconds * difference between last stored timestamp and current * timestamp. A smaller difference means basically * identical timestamps. Happens if this vblank has * been already processed and this is a redundant call, * e.g., due to spurious vblank interrupts. We need to * ignore those for accounting. */ if (abs64(diff_ns) > DRM_REDUNDANT_VBLIRQ_THRESH_NS) { /* Store new timestamp in ringbuffer. */ vblanktimestamp(dev, crtc, vblcount + 1) = tvblank; /* Increment cooked vblank count. This also atomically commits * the timestamp computed above. */ atomic_inc(&dev->_vblank_count[crtc]); } else { DRM_DEBUG("crtc %d: Redundant vblirq ignored. diff_ns = %d\n", crtc, (int) diff_ns); } wakeup(&dev->_vblank_count[crtc]); drm_handle_vblank_events(dev, crtc); mtx_unlock(&dev->vblank_time_lock); return true; }