Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/geom/geom_journal/@/geom/eli/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/geom/geom_journal/@/geom/eli/g_eli.h |
/*- * Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.net> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: release/9.1.0/sys/geom/eli/g_eli.h 221629 2011-05-08 09:25:16Z pjd $ */ #ifndef _G_ELI_H_ #define _G_ELI_H_ #include <sys/endian.h> #include <sys/errno.h> #include <sys/malloc.h> #include <crypto/sha2/sha2.h> #include <opencrypto/cryptodev.h> #ifdef _KERNEL #include <sys/bio.h> #include <sys/libkern.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/queue.h> #include <sys/tree.h> #include <geom/geom.h> #else #include <stdio.h> #include <string.h> #include <strings.h> #endif #ifndef _OpenSSL_ #include <sys/md5.h> #endif #define G_ELI_CLASS_NAME "ELI" #define G_ELI_MAGIC "GEOM::ELI" #define G_ELI_SUFFIX ".eli" /* * Version history: * 0 - Initial version number. * 1 - Added data authentication support (md_aalgo field and * G_ELI_FLAG_AUTH flag). * 2 - Added G_ELI_FLAG_READONLY. * 3 - Added 'configure' subcommand. * 4 - IV is generated from offset converted to little-endian * (the G_ELI_FLAG_NATIVE_BYTE_ORDER flag will be set for older versions). * 5 - Added multiple encrypton keys and AES-XTS support. * 6 - Fixed usage of multiple keys for authenticated providers (the * G_ELI_FLAG_FIRST_KEY flag will be set for older versions). */ #define G_ELI_VERSION_00 0 #define G_ELI_VERSION_01 1 #define G_ELI_VERSION_02 2 #define G_ELI_VERSION_03 3 #define G_ELI_VERSION_04 4 #define G_ELI_VERSION_05 5 #define G_ELI_VERSION_06 6 #define G_ELI_VERSION G_ELI_VERSION_06 /* ON DISK FLAGS. */ /* Use random, onetime keys. */ #define G_ELI_FLAG_ONETIME 0x00000001 /* Ask for the passphrase from the kernel, before mounting root. */ #define G_ELI_FLAG_BOOT 0x00000002 /* Detach on last close, if we were open for writing. */ #define G_ELI_FLAG_WO_DETACH 0x00000004 /* Detach on last close. */ #define G_ELI_FLAG_RW_DETACH 0x00000008 /* Provide data authentication. */ #define G_ELI_FLAG_AUTH 0x00000010 /* Provider is read-only, we should deny all write attempts. */ #define G_ELI_FLAG_RO 0x00000020 /* RUNTIME FLAGS. */ /* Provider was open for writing. */ #define G_ELI_FLAG_WOPEN 0x00010000 /* Destroy device. */ #define G_ELI_FLAG_DESTROY 0x00020000 /* Provider uses native byte-order for IV generation. */ #define G_ELI_FLAG_NATIVE_BYTE_ORDER 0x00040000 /* Provider uses single encryption key. */ #define G_ELI_FLAG_SINGLE_KEY 0x00080000 /* Device suspended. */ #define G_ELI_FLAG_SUSPEND 0x00100000 /* Provider uses first encryption key. */ #define G_ELI_FLAG_FIRST_KEY 0x00200000 #define G_ELI_NEW_BIO 255 #define SHA512_MDLEN 64 #define G_ELI_AUTH_SECKEYLEN SHA256_DIGEST_LENGTH #define G_ELI_MAXMKEYS 2 #define G_ELI_MAXKEYLEN 64 #define G_ELI_USERKEYLEN G_ELI_MAXKEYLEN #define G_ELI_DATAKEYLEN G_ELI_MAXKEYLEN #define G_ELI_AUTHKEYLEN G_ELI_MAXKEYLEN #define G_ELI_IVKEYLEN G_ELI_MAXKEYLEN #define G_ELI_SALTLEN 64 #define G_ELI_DATAIVKEYLEN (G_ELI_DATAKEYLEN + G_ELI_IVKEYLEN) /* Data-Key, IV-Key, HMAC_SHA512(Derived-Key, Data-Key+IV-Key) */ #define G_ELI_MKEYLEN (G_ELI_DATAIVKEYLEN + SHA512_MDLEN) #define G_ELI_OVERWRITES 5 /* Switch data encryption key every 2^20 blocks. */ #define G_ELI_KEY_SHIFT 20 #ifdef _KERNEL extern int g_eli_debug; extern u_int g_eli_overwrites; extern u_int g_eli_batch; #define G_ELI_CRYPTO_UNKNOWN 0 #define G_ELI_CRYPTO_HW 1 #define G_ELI_CRYPTO_SW 2 #define G_ELI_DEBUG(lvl, ...) do { \ if (g_eli_debug >= (lvl)) { \ printf("GEOM_ELI"); \ if (g_eli_debug > 0) \ printf("[%u]", lvl); \ printf(": "); \ printf(__VA_ARGS__); \ printf("\n"); \ } \ } while (0) #define G_ELI_LOGREQ(lvl, bp, ...) do { \ if (g_eli_debug >= (lvl)) { \ printf("GEOM_ELI"); \ if (g_eli_debug > 0) \ printf("[%u]", lvl); \ printf(": "); \ printf(__VA_ARGS__); \ printf(" "); \ g_print_bio(bp); \ printf("\n"); \ } \ } while (0) struct g_eli_worker { struct g_eli_softc *w_softc; struct proc *w_proc; u_int w_number; uint64_t w_sid; boolean_t w_active; LIST_ENTRY(g_eli_worker) w_next; }; struct g_eli_softc { struct g_geom *sc_geom; u_int sc_crypto; uint8_t sc_mkey[G_ELI_DATAIVKEYLEN]; uint8_t sc_ekey[G_ELI_DATAKEYLEN]; TAILQ_HEAD(, g_eli_key) sc_ekeys_queue; RB_HEAD(g_eli_key_tree, g_eli_key) sc_ekeys_tree; struct mtx sc_ekeys_lock; uint64_t sc_ekeys_total; uint64_t sc_ekeys_allocated; u_int sc_ealgo; u_int sc_ekeylen; uint8_t sc_akey[G_ELI_AUTHKEYLEN]; u_int sc_aalgo; u_int sc_akeylen; u_int sc_alen; SHA256_CTX sc_akeyctx; uint8_t sc_ivkey[G_ELI_IVKEYLEN]; SHA256_CTX sc_ivctx; int sc_nkey; uint32_t sc_flags; int sc_inflight; off_t sc_mediasize; size_t sc_sectorsize; u_int sc_bytes_per_sector; u_int sc_data_per_sector; /* Only for software cryptography. */ struct bio_queue_head sc_queue; struct mtx sc_queue_mtx; LIST_HEAD(, g_eli_worker) sc_workers; }; #define sc_name sc_geom->name #endif /* _KERNEL */ struct g_eli_metadata { char md_magic[16]; /* Magic value. */ uint32_t md_version; /* Version number. */ uint32_t md_flags; /* Additional flags. */ uint16_t md_ealgo; /* Encryption algorithm. */ uint16_t md_keylen; /* Key length. */ uint16_t md_aalgo; /* Authentication algorithm. */ uint64_t md_provsize; /* Provider's size. */ uint32_t md_sectorsize; /* Sector size. */ uint8_t md_keys; /* Available keys. */ int32_t md_iterations; /* Number of iterations for PKCS#5v2. */ uint8_t md_salt[G_ELI_SALTLEN]; /* Salt. */ /* Encrypted master key (IV-key, Data-key, HMAC). */ uint8_t md_mkeys[G_ELI_MAXMKEYS * G_ELI_MKEYLEN]; u_char md_hash[16]; /* MD5 hash. */ } __packed; #ifndef _OpenSSL_ static __inline void eli_metadata_encode(struct g_eli_metadata *md, u_char *data) { MD5_CTX ctx; u_char *p; p = data; bcopy(md->md_magic, p, sizeof(md->md_magic)); p += sizeof(md->md_magic); le32enc(p, md->md_version); p += sizeof(md->md_version); le32enc(p, md->md_flags); p += sizeof(md->md_flags); le16enc(p, md->md_ealgo); p += sizeof(md->md_ealgo); le16enc(p, md->md_keylen); p += sizeof(md->md_keylen); le16enc(p, md->md_aalgo); p += sizeof(md->md_aalgo); le64enc(p, md->md_provsize); p += sizeof(md->md_provsize); le32enc(p, md->md_sectorsize); p += sizeof(md->md_sectorsize); *p = md->md_keys; p += sizeof(md->md_keys); le32enc(p, md->md_iterations); p += sizeof(md->md_iterations); bcopy(md->md_salt, p, sizeof(md->md_salt)); p += sizeof(md->md_salt); bcopy(md->md_mkeys, p, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys); MD5Init(&ctx); MD5Update(&ctx, data, p - data); MD5Final(md->md_hash, &ctx); bcopy(md->md_hash, p, sizeof(md->md_hash)); } static __inline int eli_metadata_decode_v0(const u_char *data, struct g_eli_metadata *md) { MD5_CTX ctx; const u_char *p; p = data + sizeof(md->md_magic) + sizeof(md->md_version); md->md_flags = le32dec(p); p += sizeof(md->md_flags); md->md_ealgo = le16dec(p); p += sizeof(md->md_ealgo); md->md_keylen = le16dec(p); p += sizeof(md->md_keylen); md->md_provsize = le64dec(p); p += sizeof(md->md_provsize); md->md_sectorsize = le32dec(p); p += sizeof(md->md_sectorsize); md->md_keys = *p; p += sizeof(md->md_keys); md->md_iterations = le32dec(p); p += sizeof(md->md_iterations); bcopy(p, md->md_salt, sizeof(md->md_salt)); p += sizeof(md->md_salt); bcopy(p, md->md_mkeys, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys); MD5Init(&ctx); MD5Update(&ctx, data, p - data); MD5Final(md->md_hash, &ctx); if (bcmp(md->md_hash, p, 16) != 0) return (EINVAL); return (0); } static __inline int eli_metadata_decode_v1v2v3v4v5v6(const u_char *data, struct g_eli_metadata *md) { MD5_CTX ctx; const u_char *p; p = data + sizeof(md->md_magic) + sizeof(md->md_version); md->md_flags = le32dec(p); p += sizeof(md->md_flags); md->md_ealgo = le16dec(p); p += sizeof(md->md_ealgo); md->md_keylen = le16dec(p); p += sizeof(md->md_keylen); md->md_aalgo = le16dec(p); p += sizeof(md->md_aalgo); md->md_provsize = le64dec(p); p += sizeof(md->md_provsize); md->md_sectorsize = le32dec(p); p += sizeof(md->md_sectorsize); md->md_keys = *p; p += sizeof(md->md_keys); md->md_iterations = le32dec(p); p += sizeof(md->md_iterations); bcopy(p, md->md_salt, sizeof(md->md_salt)); p += sizeof(md->md_salt); bcopy(p, md->md_mkeys, sizeof(md->md_mkeys)); p += sizeof(md->md_mkeys); MD5Init(&ctx); MD5Update(&ctx, data, p - data); MD5Final(md->md_hash, &ctx); if (bcmp(md->md_hash, p, 16) != 0) return (EINVAL); return (0); } static __inline int eli_metadata_decode(const u_char *data, struct g_eli_metadata *md) { int error; bcopy(data, md->md_magic, sizeof(md->md_magic)); md->md_version = le32dec(data + sizeof(md->md_magic)); switch (md->md_version) { case G_ELI_VERSION_00: error = eli_metadata_decode_v0(data, md); break; case G_ELI_VERSION_01: case G_ELI_VERSION_02: case G_ELI_VERSION_03: case G_ELI_VERSION_04: case G_ELI_VERSION_05: case G_ELI_VERSION_06: error = eli_metadata_decode_v1v2v3v4v5v6(data, md); break; default: error = EINVAL; break; } return (error); } #endif /* !_OpenSSL */ static __inline u_int g_eli_str2ealgo(const char *name) { if (strcasecmp("null", name) == 0) return (CRYPTO_NULL_CBC); else if (strcasecmp("null-cbc", name) == 0) return (CRYPTO_NULL_CBC); else if (strcasecmp("aes", name) == 0) return (CRYPTO_AES_XTS); else if (strcasecmp("aes-cbc", name) == 0) return (CRYPTO_AES_CBC); else if (strcasecmp("aes-xts", name) == 0) return (CRYPTO_AES_XTS); else if (strcasecmp("blowfish", name) == 0) return (CRYPTO_BLF_CBC); else if (strcasecmp("blowfish-cbc", name) == 0) return (CRYPTO_BLF_CBC); else if (strcasecmp("camellia", name) == 0) return (CRYPTO_CAMELLIA_CBC); else if (strcasecmp("camellia-cbc", name) == 0) return (CRYPTO_CAMELLIA_CBC); else if (strcasecmp("3des", name) == 0) return (CRYPTO_3DES_CBC); else if (strcasecmp("3des-cbc", name) == 0) return (CRYPTO_3DES_CBC); return (CRYPTO_ALGORITHM_MIN - 1); } static __inline u_int g_eli_str2aalgo(const char *name) { if (strcasecmp("hmac/md5", name) == 0) return (CRYPTO_MD5_HMAC); else if (strcasecmp("hmac/sha1", name) == 0) return (CRYPTO_SHA1_HMAC); else if (strcasecmp("hmac/ripemd160", name) == 0) return (CRYPTO_RIPEMD160_HMAC); else if (strcasecmp("hmac/sha256", name) == 0) return (CRYPTO_SHA2_256_HMAC); else if (strcasecmp("hmac/sha384", name) == 0) return (CRYPTO_SHA2_384_HMAC); else if (strcasecmp("hmac/sha512", name) == 0) return (CRYPTO_SHA2_512_HMAC); return (CRYPTO_ALGORITHM_MIN - 1); } static __inline const char * g_eli_algo2str(u_int algo) { switch (algo) { case CRYPTO_NULL_CBC: return ("NULL"); case CRYPTO_AES_CBC: return ("AES-CBC"); case CRYPTO_AES_XTS: return ("AES-XTS"); case CRYPTO_BLF_CBC: return ("Blowfish-CBC"); case CRYPTO_CAMELLIA_CBC: return ("CAMELLIA-CBC"); case CRYPTO_3DES_CBC: return ("3DES-CBC"); case CRYPTO_MD5_HMAC: return ("HMAC/MD5"); case CRYPTO_SHA1_HMAC: return ("HMAC/SHA1"); case CRYPTO_RIPEMD160_HMAC: return ("HMAC/RIPEMD160"); case CRYPTO_SHA2_256_HMAC: return ("HMAC/SHA256"); case CRYPTO_SHA2_384_HMAC: return ("HMAC/SHA384"); case CRYPTO_SHA2_512_HMAC: return ("HMAC/SHA512"); } return ("unknown"); } static __inline void eli_metadata_dump(const struct g_eli_metadata *md) { static const char hex[] = "0123456789abcdef"; char str[sizeof(md->md_mkeys) * 2 + 1]; u_int i; printf(" magic: %s\n", md->md_magic); printf(" version: %u\n", (u_int)md->md_version); printf(" flags: 0x%x\n", (u_int)md->md_flags); printf(" ealgo: %s\n", g_eli_algo2str(md->md_ealgo)); printf(" keylen: %u\n", (u_int)md->md_keylen); if (md->md_flags & G_ELI_FLAG_AUTH) printf(" aalgo: %s\n", g_eli_algo2str(md->md_aalgo)); printf(" provsize: %ju\n", (uintmax_t)md->md_provsize); printf("sectorsize: %u\n", (u_int)md->md_sectorsize); printf(" keys: 0x%02x\n", (u_int)md->md_keys); printf("iterations: %u\n", (u_int)md->md_iterations); bzero(str, sizeof(str)); for (i = 0; i < sizeof(md->md_salt); i++) { str[i * 2] = hex[md->md_salt[i] >> 4]; str[i * 2 + 1] = hex[md->md_salt[i] & 0x0f]; } printf(" Salt: %s\n", str); bzero(str, sizeof(str)); for (i = 0; i < sizeof(md->md_mkeys); i++) { str[i * 2] = hex[md->md_mkeys[i] >> 4]; str[i * 2 + 1] = hex[md->md_mkeys[i] & 0x0f]; } printf("Master Key: %s\n", str); bzero(str, sizeof(str)); for (i = 0; i < 16; i++) { str[i * 2] = hex[md->md_hash[i] >> 4]; str[i * 2 + 1] = hex[md->md_hash[i] & 0x0f]; } printf(" MD5 hash: %s\n", str); } static __inline u_int g_eli_keylen(u_int algo, u_int keylen) { switch (algo) { case CRYPTO_NULL_CBC: if (keylen == 0) keylen = 64 * 8; else { if (keylen > 64 * 8) keylen = 0; } return (keylen); case CRYPTO_AES_CBC: case CRYPTO_CAMELLIA_CBC: switch (keylen) { case 0: return (128); case 128: case 192: case 256: return (keylen); default: return (0); } case CRYPTO_AES_XTS: switch (keylen) { case 0: return (128); case 128: case 256: return (keylen); default: return (0); } case CRYPTO_BLF_CBC: if (keylen == 0) return (128); if (keylen < 128 || keylen > 448) return (0); if ((keylen % 32) != 0) return (0); return (keylen); case CRYPTO_3DES_CBC: if (keylen == 0 || keylen == 192) return (192); return (0); default: return (0); } } static __inline u_int g_eli_hashlen(u_int algo) { switch (algo) { case CRYPTO_MD5_HMAC: return (16); case CRYPTO_SHA1_HMAC: return (20); case CRYPTO_RIPEMD160_HMAC: return (20); case CRYPTO_SHA2_256_HMAC: return (32); case CRYPTO_SHA2_384_HMAC: return (48); case CRYPTO_SHA2_512_HMAC: return (64); } return (0); } #ifdef _KERNEL int g_eli_read_metadata(struct g_class *mp, struct g_provider *pp, struct g_eli_metadata *md); struct g_geom *g_eli_create(struct gctl_req *req, struct g_class *mp, struct g_provider *bpp, const struct g_eli_metadata *md, const u_char *mkey, int nkey); int g_eli_destroy(struct g_eli_softc *sc, boolean_t force); int g_eli_access(struct g_provider *pp, int dr, int dw, int de); void g_eli_config(struct gctl_req *req, struct g_class *mp, const char *verb); void g_eli_read_done(struct bio *bp); void g_eli_write_done(struct bio *bp); int g_eli_crypto_rerun(struct cryptop *crp); void g_eli_crypto_ivgen(struct g_eli_softc *sc, off_t offset, u_char *iv, size_t size); void g_eli_crypto_read(struct g_eli_softc *sc, struct bio *bp, boolean_t fromworker); void g_eli_crypto_run(struct g_eli_worker *wr, struct bio *bp); void g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp); void g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp); #endif void g_eli_mkey_hmac(unsigned char *mkey, const unsigned char *key); int g_eli_mkey_decrypt(const struct g_eli_metadata *md, const unsigned char *key, unsigned char *mkey, unsigned *nkeyp); int g_eli_mkey_encrypt(unsigned algo, const unsigned char *key, unsigned keylen, unsigned char *mkey); #ifdef _KERNEL void g_eli_mkey_propagate(struct g_eli_softc *sc, const unsigned char *mkey); #endif int g_eli_crypto_encrypt(u_int algo, u_char *data, size_t datasize, const u_char *key, size_t keysize); int g_eli_crypto_decrypt(u_int algo, u_char *data, size_t datasize, const u_char *key, size_t keysize); struct hmac_ctx { SHA512_CTX shactx; u_char k_opad[128]; }; void g_eli_crypto_hmac_init(struct hmac_ctx *ctx, const uint8_t *hkey, size_t hkeylen); void g_eli_crypto_hmac_update(struct hmac_ctx *ctx, const uint8_t *data, size_t datasize); void g_eli_crypto_hmac_final(struct hmac_ctx *ctx, uint8_t *md, size_t mdsize); void g_eli_crypto_hmac(const uint8_t *hkey, size_t hkeysize, const uint8_t *data, size_t datasize, uint8_t *md, size_t mdsize); #ifdef _KERNEL void g_eli_key_init(struct g_eli_softc *sc); void g_eli_key_destroy(struct g_eli_softc *sc); uint8_t *g_eli_key_hold(struct g_eli_softc *sc, off_t offset, size_t blocksize); void g_eli_key_drop(struct g_eli_softc *sc, uint8_t *rawkey); #endif #endif /* !_G_ELI_H_ */