Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/geom/geom_sched/gsched_rr/@/sys/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/geom/geom_sched/gsched_rr/@/sys/smp.h |
/*- * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 42): * <phk@FreeBSD.org> wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * ---------------------------------------------------------------------------- * * $FreeBSD: release/9.1.0/sys/sys/smp.h 235796 2012-05-22 17:44:01Z iwasaki $ */ #ifndef _SYS_SMP_H_ #define _SYS_SMP_H_ #ifdef _KERNEL #ifndef LOCORE #include <sys/cpuset.h> /* * Topology of a NUMA or HTT system. * * The top level topology is an array of pointers to groups. Each group * contains a bitmask of cpus in its group or subgroups. It may also * contain a pointer to an array of child groups. * * The bitmasks at non leaf groups may be used by consumers who support * a smaller depth than the hardware provides. * * The topology may be omitted by systems where all CPUs are equal. */ struct cpu_group { struct cpu_group *cg_parent; /* Our parent group. */ struct cpu_group *cg_child; /* Optional children groups. */ cpuset_t cg_mask; /* Mask of cpus in this group. */ int32_t cg_count; /* Count of cpus in this group. */ int16_t cg_children; /* Number of children groups. */ int8_t cg_level; /* Shared cache level. */ int8_t cg_flags; /* Traversal modifiers. */ }; typedef struct cpu_group *cpu_group_t; /* * Defines common resources for CPUs in the group. The highest level * resource should be used when multiple are shared. */ #define CG_SHARE_NONE 0 #define CG_SHARE_L1 1 #define CG_SHARE_L2 2 #define CG_SHARE_L3 3 /* * Behavior modifiers for load balancing and affinity. */ #define CG_FLAG_HTT 0x01 /* Schedule the alternate core last. */ #define CG_FLAG_SMT 0x02 /* New age htt, less crippled. */ #define CG_FLAG_THREAD (CG_FLAG_HTT | CG_FLAG_SMT) /* Any threading. */ /* * Convenience routines for building topologies. */ #ifdef SMP struct cpu_group *smp_topo(void); struct cpu_group *smp_topo_none(void); struct cpu_group *smp_topo_1level(int l1share, int l1count, int l1flags); struct cpu_group *smp_topo_2level(int l2share, int l2count, int l1share, int l1count, int l1flags); struct cpu_group *smp_topo_find(struct cpu_group *top, int cpu); extern void (*cpustop_restartfunc)(void); extern int smp_active; extern int smp_cpus; extern volatile cpuset_t started_cpus; extern volatile cpuset_t stopped_cpus; extern cpuset_t hlt_cpus_mask; extern cpuset_t logical_cpus_mask; #endif /* SMP */ extern u_int mp_maxid; extern int mp_maxcpus; extern int mp_ncpus; extern volatile int smp_started; extern cpuset_t all_cpus; /* * Macro allowing us to determine whether a CPU is absent at any given * time, thus permitting us to configure sparse maps of cpuid-dependent * (per-CPU) structures. */ #define CPU_ABSENT(x_cpu) (!CPU_ISSET(x_cpu, &all_cpus)) /* * Macros to iterate over non-absent CPUs. CPU_FOREACH() takes an * integer iterator and iterates over the available set of CPUs. * CPU_FIRST() returns the id of the first non-absent CPU. CPU_NEXT() * returns the id of the next non-absent CPU. It will wrap back to * CPU_FIRST() once the end of the list is reached. The iterators are * currently implemented via inline functions. */ #define CPU_FOREACH(i) \ for ((i) = 0; (i) <= mp_maxid; (i)++) \ if (!CPU_ABSENT((i))) static __inline int cpu_first(void) { int i; for (i = 0;; i++) if (!CPU_ABSENT(i)) return (i); } static __inline int cpu_next(int i) { for (;;) { i++; if (i > mp_maxid) i = 0; if (!CPU_ABSENT(i)) return (i); } } #define CPU_FIRST() cpu_first() #define CPU_NEXT(i) cpu_next((i)) #ifdef SMP /* * Machine dependent functions used to initialize MP support. * * The cpu_mp_probe() should check to see if MP support is present and return * zero if it is not or non-zero if it is. If MP support is present, then * cpu_mp_start() will be called so that MP can be enabled. This function * should do things such as startup secondary processors. It should also * setup mp_ncpus, all_cpus, and smp_cpus. It should also ensure that * smp_active and smp_started are initialized at the appropriate time. * Once cpu_mp_start() returns, machine independent MP startup code will be * executed and a simple message will be output to the console. Finally, * cpu_mp_announce() will be called so that machine dependent messages about * the MP support may be output to the console if desired. * * The cpu_setmaxid() function is called very early during the boot process * so that the MD code may set mp_maxid to provide an upper bound on CPU IDs * that other subsystems may use. If a platform is not able to determine * the exact maximum ID that early, then it may set mp_maxid to MAXCPU - 1. */ struct thread; struct cpu_group *cpu_topo(void); void cpu_mp_announce(void); int cpu_mp_probe(void); void cpu_mp_setmaxid(void); void cpu_mp_start(void); void forward_signal(struct thread *); int restart_cpus(cpuset_t); int stop_cpus(cpuset_t); int stop_cpus_hard(cpuset_t); #if defined(__amd64__) || defined(__i386__) int suspend_cpus(cpuset_t); #endif void smp_rendezvous_action(void); extern struct mtx smp_ipi_mtx; #endif /* SMP */ void smp_no_rendevous_barrier(void *); void smp_rendezvous(void (*)(void *), void (*)(void *), void (*)(void *), void *arg); void smp_rendezvous_cpus(cpuset_t, void (*)(void *), void (*)(void *), void (*)(void *), void *arg); #endif /* !LOCORE */ #endif /* _KERNEL */ #endif /* _SYS_SMP_H_ */