Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/geom/geom_virstor/@/dev/usb/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/geom/geom_virstor/@/dev/usb/usb_busdma.c |
/* $FreeBSD: release/9.1.0/sys/dev/usb/usb_busdma.c 235000 2012-05-04 15:05:30Z hselasky $ */ /*- * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/stdint.h> #include <sys/stddef.h> #include <sys/param.h> #include <sys/queue.h> #include <sys/types.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/bus.h> #include <sys/module.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/condvar.h> #include <sys/sysctl.h> #include <sys/sx.h> #include <sys/unistd.h> #include <sys/callout.h> #include <sys/malloc.h> #include <sys/priv.h> #include <dev/usb/usb.h> #include <dev/usb/usbdi.h> #include <dev/usb/usbdi_util.h> #define USB_DEBUG_VAR usb_debug #include <dev/usb/usb_core.h> #include <dev/usb/usb_busdma.h> #include <dev/usb/usb_process.h> #include <dev/usb/usb_transfer.h> #include <dev/usb/usb_device.h> #include <dev/usb/usb_util.h> #include <dev/usb/usb_debug.h> #include <dev/usb/usb_controller.h> #include <dev/usb/usb_bus.h> #if USB_HAVE_BUSDMA static void usb_dma_tag_create(struct usb_dma_tag *, usb_size_t, usb_size_t); static void usb_dma_tag_destroy(struct usb_dma_tag *); static void usb_dma_lock_cb(void *, bus_dma_lock_op_t); static void usb_pc_alloc_mem_cb(void *, bus_dma_segment_t *, int, int); static void usb_pc_load_mem_cb(void *, bus_dma_segment_t *, int, int); static void usb_pc_common_mem_cb(void *, bus_dma_segment_t *, int, int, uint8_t); #endif /*------------------------------------------------------------------------* * usbd_get_page - lookup DMA-able memory for the given offset * * NOTE: Only call this function when the "page_cache" structure has * been properly initialized ! *------------------------------------------------------------------------*/ void usbd_get_page(struct usb_page_cache *pc, usb_frlength_t offset, struct usb_page_search *res) { #if USB_HAVE_BUSDMA struct usb_page *page; if (pc->page_start) { /* Case 1 - something has been loaded into DMA */ if (pc->buffer) { /* Case 1a - Kernel Virtual Address */ res->buffer = USB_ADD_BYTES(pc->buffer, offset); } offset += pc->page_offset_buf; /* compute destination page */ page = pc->page_start; if (pc->ismultiseg) { page += (offset / USB_PAGE_SIZE); offset %= USB_PAGE_SIZE; res->length = USB_PAGE_SIZE - offset; res->physaddr = page->physaddr + offset; } else { res->length = (usb_size_t)-1; res->physaddr = page->physaddr + offset; } if (!pc->buffer) { /* Case 1b - Non Kernel Virtual Address */ res->buffer = USB_ADD_BYTES(page->buffer, offset); } return; } #endif /* Case 2 - Plain PIO */ res->buffer = USB_ADD_BYTES(pc->buffer, offset); res->length = (usb_size_t)-1; #if USB_HAVE_BUSDMA res->physaddr = 0; #endif } /*------------------------------------------------------------------------* * usbd_copy_in - copy directly to DMA-able memory *------------------------------------------------------------------------*/ void usbd_copy_in(struct usb_page_cache *cache, usb_frlength_t offset, const void *ptr, usb_frlength_t len) { struct usb_page_search buf_res; while (len != 0) { usbd_get_page(cache, offset, &buf_res); if (buf_res.length > len) { buf_res.length = len; } memcpy(buf_res.buffer, ptr, buf_res.length); offset += buf_res.length; len -= buf_res.length; ptr = USB_ADD_BYTES(ptr, buf_res.length); } } /*------------------------------------------------------------------------* * usbd_copy_in_user - copy directly to DMA-able memory from userland * * Return values: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ #if USB_HAVE_USER_IO int usbd_copy_in_user(struct usb_page_cache *cache, usb_frlength_t offset, const void *ptr, usb_frlength_t len) { struct usb_page_search buf_res; int error; while (len != 0) { usbd_get_page(cache, offset, &buf_res); if (buf_res.length > len) { buf_res.length = len; } error = copyin(ptr, buf_res.buffer, buf_res.length); if (error) return (error); offset += buf_res.length; len -= buf_res.length; ptr = USB_ADD_BYTES(ptr, buf_res.length); } return (0); /* success */ } #endif /*------------------------------------------------------------------------* * usbd_m_copy_in - copy a mbuf chain directly into DMA-able memory *------------------------------------------------------------------------*/ #if USB_HAVE_MBUF struct usb_m_copy_in_arg { struct usb_page_cache *cache; usb_frlength_t dst_offset; }; static int usbd_m_copy_in_cb(void *arg, void *src, uint32_t count) { register struct usb_m_copy_in_arg *ua = arg; usbd_copy_in(ua->cache, ua->dst_offset, src, count); ua->dst_offset += count; return (0); } void usbd_m_copy_in(struct usb_page_cache *cache, usb_frlength_t dst_offset, struct mbuf *m, usb_size_t src_offset, usb_frlength_t src_len) { struct usb_m_copy_in_arg arg = {cache, dst_offset}; int error; error = m_apply(m, src_offset, src_len, &usbd_m_copy_in_cb, &arg); } #endif /*------------------------------------------------------------------------* * usb_uiomove - factored out code *------------------------------------------------------------------------*/ #if USB_HAVE_USER_IO int usb_uiomove(struct usb_page_cache *pc, struct uio *uio, usb_frlength_t pc_offset, usb_frlength_t len) { struct usb_page_search res; int error = 0; while (len != 0) { usbd_get_page(pc, pc_offset, &res); if (res.length > len) { res.length = len; } /* * "uiomove()" can sleep so one needs to make a wrapper, * exiting the mutex and checking things */ error = uiomove(res.buffer, res.length, uio); if (error) { break; } pc_offset += res.length; len -= res.length; } return (error); } #endif /*------------------------------------------------------------------------* * usbd_copy_out - copy directly from DMA-able memory *------------------------------------------------------------------------*/ void usbd_copy_out(struct usb_page_cache *cache, usb_frlength_t offset, void *ptr, usb_frlength_t len) { struct usb_page_search res; while (len != 0) { usbd_get_page(cache, offset, &res); if (res.length > len) { res.length = len; } memcpy(ptr, res.buffer, res.length); offset += res.length; len -= res.length; ptr = USB_ADD_BYTES(ptr, res.length); } } /*------------------------------------------------------------------------* * usbd_copy_out_user - copy directly from DMA-able memory to userland * * Return values: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ #if USB_HAVE_USER_IO int usbd_copy_out_user(struct usb_page_cache *cache, usb_frlength_t offset, void *ptr, usb_frlength_t len) { struct usb_page_search res; int error; while (len != 0) { usbd_get_page(cache, offset, &res); if (res.length > len) { res.length = len; } error = copyout(res.buffer, ptr, res.length); if (error) return (error); offset += res.length; len -= res.length; ptr = USB_ADD_BYTES(ptr, res.length); } return (0); /* success */ } #endif /*------------------------------------------------------------------------* * usbd_frame_zero - zero DMA-able memory *------------------------------------------------------------------------*/ void usbd_frame_zero(struct usb_page_cache *cache, usb_frlength_t offset, usb_frlength_t len) { struct usb_page_search res; while (len != 0) { usbd_get_page(cache, offset, &res); if (res.length > len) { res.length = len; } memset(res.buffer, 0, res.length); offset += res.length; len -= res.length; } } #if USB_HAVE_BUSDMA /*------------------------------------------------------------------------* * usb_dma_lock_cb - dummy callback *------------------------------------------------------------------------*/ static void usb_dma_lock_cb(void *arg, bus_dma_lock_op_t op) { /* we use "mtx_owned()" instead of this function */ } /*------------------------------------------------------------------------* * usb_dma_tag_create - allocate a DMA tag * * NOTE: If the "align" parameter has a value of 1 the DMA-tag will * allow multi-segment mappings. Else all mappings are single-segment. *------------------------------------------------------------------------*/ static void usb_dma_tag_create(struct usb_dma_tag *udt, usb_size_t size, usb_size_t align) { bus_dma_tag_t tag; if (bus_dma_tag_create ( /* parent */ udt->tag_parent->tag, /* alignment */ align, /* boundary */ (align == 1) ? USB_PAGE_SIZE : 0, /* lowaddr */ (2ULL << (udt->tag_parent->dma_bits - 1)) - 1, /* highaddr */ BUS_SPACE_MAXADDR, /* filter */ NULL, /* filterarg */ NULL, /* maxsize */ size, /* nsegments */ (align == 1 && size > 1) ? (2 + (size / USB_PAGE_SIZE)) : 1, /* maxsegsz */ (align == 1 && size > USB_PAGE_SIZE) ? USB_PAGE_SIZE : size, /* flags */ BUS_DMA_KEEP_PG_OFFSET, /* lockfn */ &usb_dma_lock_cb, /* lockarg */ NULL, &tag)) { tag = NULL; } udt->tag = tag; } /*------------------------------------------------------------------------* * usb_dma_tag_free - free a DMA tag *------------------------------------------------------------------------*/ static void usb_dma_tag_destroy(struct usb_dma_tag *udt) { bus_dma_tag_destroy(udt->tag); } /*------------------------------------------------------------------------* * usb_pc_alloc_mem_cb - BUS-DMA callback function *------------------------------------------------------------------------*/ static void usb_pc_alloc_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { usb_pc_common_mem_cb(arg, segs, nseg, error, 0); } /*------------------------------------------------------------------------* * usb_pc_load_mem_cb - BUS-DMA callback function *------------------------------------------------------------------------*/ static void usb_pc_load_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { usb_pc_common_mem_cb(arg, segs, nseg, error, 1); } /*------------------------------------------------------------------------* * usb_pc_common_mem_cb - BUS-DMA callback function *------------------------------------------------------------------------*/ static void usb_pc_common_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error, uint8_t isload) { struct usb_dma_parent_tag *uptag; struct usb_page_cache *pc; struct usb_page *pg; usb_size_t rem; uint8_t owned; pc = arg; uptag = pc->tag_parent; /* * XXX There is sometimes recursive locking here. * XXX We should try to find a better solution. * XXX Until further the "owned" variable does * XXX the trick. */ if (error) { goto done; } pg = pc->page_start; pg->physaddr = segs->ds_addr & ~(USB_PAGE_SIZE - 1); rem = segs->ds_addr & (USB_PAGE_SIZE - 1); pc->page_offset_buf = rem; pc->page_offset_end += rem; nseg--; #ifdef USB_DEBUG if (rem != (USB_P2U(pc->buffer) & (USB_PAGE_SIZE - 1))) { /* * This check verifies that the physical address is correct: */ DPRINTFN(0, "Page offset was not preserved\n"); error = 1; goto done; } #endif while (nseg > 0) { nseg--; segs++; pg++; pg->physaddr = segs->ds_addr & ~(USB_PAGE_SIZE - 1); } done: owned = mtx_owned(uptag->mtx); if (!owned) mtx_lock(uptag->mtx); uptag->dma_error = (error ? 1 : 0); if (isload) { (uptag->func) (uptag); } else { cv_broadcast(uptag->cv); } if (!owned) mtx_unlock(uptag->mtx); } /*------------------------------------------------------------------------* * usb_pc_alloc_mem - allocate DMA'able memory * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ uint8_t usb_pc_alloc_mem(struct usb_page_cache *pc, struct usb_page *pg, usb_size_t size, usb_size_t align) { struct usb_dma_parent_tag *uptag; struct usb_dma_tag *utag; bus_dmamap_t map; void *ptr; int err; uptag = pc->tag_parent; if (align != 1) { /* * The alignment must be greater or equal to the * "size" else the object can be split between two * memory pages and we get a problem! */ while (align < size) { align *= 2; if (align == 0) { goto error; } } #if 1 /* * XXX BUS-DMA workaround - FIXME later: * * We assume that that the aligment at this point of * the code is greater than or equal to the size and * less than two times the size, so that if we double * the size, the size will be greater than the * alignment. * * The bus-dma system has a check for "alignment" * being less than "size". If that check fails we end * up using contigmalloc which is page based even for * small allocations. Try to avoid that to save * memory, hence we sometimes to a large number of * small allocations! */ if (size <= (USB_PAGE_SIZE / 2)) { size *= 2; } #endif } /* get the correct DMA tag */ utag = usb_dma_tag_find(uptag, size, align); if (utag == NULL) { goto error; } /* allocate memory */ if (bus_dmamem_alloc( utag->tag, &ptr, (BUS_DMA_WAITOK | BUS_DMA_COHERENT), &map)) { goto error; } /* setup page cache */ pc->buffer = ptr; pc->page_start = pg; pc->page_offset_buf = 0; pc->page_offset_end = size; pc->map = map; pc->tag = utag->tag; pc->ismultiseg = (align == 1); mtx_lock(uptag->mtx); /* load memory into DMA */ err = bus_dmamap_load( utag->tag, map, ptr, size, &usb_pc_alloc_mem_cb, pc, (BUS_DMA_WAITOK | BUS_DMA_COHERENT)); if (err == EINPROGRESS) { cv_wait(uptag->cv, uptag->mtx); err = 0; } mtx_unlock(uptag->mtx); if (err || uptag->dma_error) { bus_dmamem_free(utag->tag, ptr, map); goto error; } memset(ptr, 0, size); usb_pc_cpu_flush(pc); return (0); error: /* reset most of the page cache */ pc->buffer = NULL; pc->page_start = NULL; pc->page_offset_buf = 0; pc->page_offset_end = 0; pc->map = NULL; pc->tag = NULL; return (1); } /*------------------------------------------------------------------------* * usb_pc_free_mem - free DMA memory * * This function is NULL safe. *------------------------------------------------------------------------*/ void usb_pc_free_mem(struct usb_page_cache *pc) { if (pc && pc->buffer) { bus_dmamap_unload(pc->tag, pc->map); bus_dmamem_free(pc->tag, pc->buffer, pc->map); pc->buffer = NULL; } } /*------------------------------------------------------------------------* * usb_pc_load_mem - load virtual memory into DMA * * Return values: * 0: Success * Else: Error *------------------------------------------------------------------------*/ uint8_t usb_pc_load_mem(struct usb_page_cache *pc, usb_size_t size, uint8_t sync) { /* setup page cache */ pc->page_offset_buf = 0; pc->page_offset_end = size; pc->ismultiseg = 1; mtx_assert(pc->tag_parent->mtx, MA_OWNED); if (size > 0) { if (sync) { struct usb_dma_parent_tag *uptag; int err; uptag = pc->tag_parent; /* * We have to unload the previous loaded DMA * pages before trying to load a new one! */ bus_dmamap_unload(pc->tag, pc->map); /* * Try to load memory into DMA. */ err = bus_dmamap_load( pc->tag, pc->map, pc->buffer, size, &usb_pc_alloc_mem_cb, pc, BUS_DMA_WAITOK); if (err == EINPROGRESS) { cv_wait(uptag->cv, uptag->mtx); err = 0; } if (err || uptag->dma_error) { return (1); } } else { /* * We have to unload the previous loaded DMA * pages before trying to load a new one! */ bus_dmamap_unload(pc->tag, pc->map); /* * Try to load memory into DMA. The callback * will be called in all cases: */ if (bus_dmamap_load( pc->tag, pc->map, pc->buffer, size, &usb_pc_load_mem_cb, pc, BUS_DMA_WAITOK)) { } } } else { if (!sync) { /* * Call callback so that refcount is decremented * properly: */ pc->tag_parent->dma_error = 0; (pc->tag_parent->func) (pc->tag_parent); } } return (0); } /*------------------------------------------------------------------------* * usb_pc_cpu_invalidate - invalidate CPU cache *------------------------------------------------------------------------*/ void usb_pc_cpu_invalidate(struct usb_page_cache *pc) { if (pc->page_offset_end == pc->page_offset_buf) { /* nothing has been loaded into this page cache! */ return; } /* * TODO: We currently do XXX_POSTREAD and XXX_PREREAD at the * same time, but in the future we should try to isolate the * different cases to optimise the code. --HPS */ bus_dmamap_sync(pc->tag, pc->map, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(pc->tag, pc->map, BUS_DMASYNC_PREREAD); } /*------------------------------------------------------------------------* * usb_pc_cpu_flush - flush CPU cache *------------------------------------------------------------------------*/ void usb_pc_cpu_flush(struct usb_page_cache *pc) { if (pc->page_offset_end == pc->page_offset_buf) { /* nothing has been loaded into this page cache! */ return; } bus_dmamap_sync(pc->tag, pc->map, BUS_DMASYNC_PREWRITE); } /*------------------------------------------------------------------------* * usb_pc_dmamap_create - create a DMA map * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ uint8_t usb_pc_dmamap_create(struct usb_page_cache *pc, usb_size_t size) { struct usb_xfer_root *info; struct usb_dma_tag *utag; /* get info */ info = USB_DMATAG_TO_XROOT(pc->tag_parent); /* sanity check */ if (info == NULL) { goto error; } utag = usb_dma_tag_find(pc->tag_parent, size, 1); if (utag == NULL) { goto error; } /* create DMA map */ if (bus_dmamap_create(utag->tag, 0, &pc->map)) { goto error; } pc->tag = utag->tag; return 0; /* success */ error: pc->map = NULL; pc->tag = NULL; return 1; /* failure */ } /*------------------------------------------------------------------------* * usb_pc_dmamap_destroy * * This function is NULL safe. *------------------------------------------------------------------------*/ void usb_pc_dmamap_destroy(struct usb_page_cache *pc) { if (pc && pc->tag) { bus_dmamap_destroy(pc->tag, pc->map); pc->tag = NULL; pc->map = NULL; } } /*------------------------------------------------------------------------* * usb_dma_tag_find - factored out code *------------------------------------------------------------------------*/ struct usb_dma_tag * usb_dma_tag_find(struct usb_dma_parent_tag *udpt, usb_size_t size, usb_size_t align) { struct usb_dma_tag *udt; uint8_t nudt; USB_ASSERT(align > 0, ("Invalid parameter align = 0\n")); USB_ASSERT(size > 0, ("Invalid parameter size = 0\n")); udt = udpt->utag_first; nudt = udpt->utag_max; while (nudt--) { if (udt->align == 0) { usb_dma_tag_create(udt, size, align); if (udt->tag == NULL) { return (NULL); } udt->align = align; udt->size = size; return (udt); } if ((udt->align == align) && (udt->size == size)) { return (udt); } udt++; } return (NULL); } /*------------------------------------------------------------------------* * usb_dma_tag_setup - initialise USB DMA tags *------------------------------------------------------------------------*/ void usb_dma_tag_setup(struct usb_dma_parent_tag *udpt, struct usb_dma_tag *udt, bus_dma_tag_t dmat, struct mtx *mtx, usb_dma_callback_t *func, uint8_t ndmabits, uint8_t nudt) { memset(udpt, 0, sizeof(*udpt)); /* sanity checking */ if ((nudt == 0) || (ndmabits == 0) || (mtx == NULL)) { /* something is corrupt */ return; } /* initialise condition variable */ cv_init(udpt->cv, "USB DMA CV"); /* store some information */ udpt->mtx = mtx; udpt->func = func; udpt->tag = dmat; udpt->utag_first = udt; udpt->utag_max = nudt; udpt->dma_bits = ndmabits; while (nudt--) { memset(udt, 0, sizeof(*udt)); udt->tag_parent = udpt; udt++; } } /*------------------------------------------------------------------------* * usb_bus_tag_unsetup - factored out code *------------------------------------------------------------------------*/ void usb_dma_tag_unsetup(struct usb_dma_parent_tag *udpt) { struct usb_dma_tag *udt; uint8_t nudt; udt = udpt->utag_first; nudt = udpt->utag_max; while (nudt--) { if (udt->align) { /* destroy the USB DMA tag */ usb_dma_tag_destroy(udt); udt->align = 0; } udt++; } if (udpt->utag_max) { /* destroy the condition variable */ cv_destroy(udpt->cv); } } /*------------------------------------------------------------------------* * usb_bdma_work_loop * * This function handles loading of virtual buffers into DMA and is * only called when "dma_refcount" is zero. *------------------------------------------------------------------------*/ void usb_bdma_work_loop(struct usb_xfer_queue *pq) { struct usb_xfer_root *info; struct usb_xfer *xfer; usb_frcount_t nframes; xfer = pq->curr; info = xfer->xroot; mtx_assert(info->xfer_mtx, MA_OWNED); if (xfer->error) { /* some error happened */ USB_BUS_LOCK(info->bus); usbd_transfer_done(xfer, 0); USB_BUS_UNLOCK(info->bus); return; } if (!xfer->flags_int.bdma_setup) { struct usb_page *pg; usb_frlength_t frlength_0; uint8_t isread; xfer->flags_int.bdma_setup = 1; /* reset BUS-DMA load state */ info->dma_error = 0; if (xfer->flags_int.isochronous_xfr) { /* only one frame buffer */ nframes = 1; frlength_0 = xfer->sumlen; } else { /* can be multiple frame buffers */ nframes = xfer->nframes; frlength_0 = xfer->frlengths[0]; } /* * Set DMA direction first. This is needed to * select the correct cache invalidate and cache * flush operations. */ isread = USB_GET_DATA_ISREAD(xfer); pg = xfer->dma_page_ptr; if (xfer->flags_int.control_xfr && xfer->flags_int.control_hdr) { /* special case */ if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { /* The device controller writes to memory */ xfer->frbuffers[0].isread = 1; } else { /* The host controller reads from memory */ xfer->frbuffers[0].isread = 0; } } else { /* default case */ xfer->frbuffers[0].isread = isread; } /* * Setup the "page_start" pointer which points to an array of * USB pages where information about the physical address of a * page will be stored. Also initialise the "isread" field of * the USB page caches. */ xfer->frbuffers[0].page_start = pg; info->dma_nframes = nframes; info->dma_currframe = 0; info->dma_frlength_0 = frlength_0; pg += (frlength_0 / USB_PAGE_SIZE); pg += 2; while (--nframes > 0) { xfer->frbuffers[nframes].isread = isread; xfer->frbuffers[nframes].page_start = pg; pg += (xfer->frlengths[nframes] / USB_PAGE_SIZE); pg += 2; } } if (info->dma_error) { USB_BUS_LOCK(info->bus); usbd_transfer_done(xfer, USB_ERR_DMA_LOAD_FAILED); USB_BUS_UNLOCK(info->bus); return; } if (info->dma_currframe != info->dma_nframes) { if (info->dma_currframe == 0) { /* special case */ usb_pc_load_mem(xfer->frbuffers, info->dma_frlength_0, 0); } else { /* default case */ nframes = info->dma_currframe; usb_pc_load_mem(xfer->frbuffers + nframes, xfer->frlengths[nframes], 0); } /* advance frame index */ info->dma_currframe++; return; } /* go ahead */ usb_bdma_pre_sync(xfer); /* start loading next USB transfer, if any */ usb_command_wrapper(pq, NULL); /* finally start the hardware */ usbd_pipe_enter(xfer); } /*------------------------------------------------------------------------* * usb_bdma_done_event * * This function is called when the BUS-DMA has loaded virtual memory * into DMA, if any. *------------------------------------------------------------------------*/ void usb_bdma_done_event(struct usb_dma_parent_tag *udpt) { struct usb_xfer_root *info; info = USB_DMATAG_TO_XROOT(udpt); mtx_assert(info->xfer_mtx, MA_OWNED); /* copy error */ info->dma_error = udpt->dma_error; /* enter workloop again */ usb_command_wrapper(&info->dma_q, info->dma_q.curr); } /*------------------------------------------------------------------------* * usb_bdma_pre_sync * * This function handles DMA synchronisation that must be done before * an USB transfer is started. *------------------------------------------------------------------------*/ void usb_bdma_pre_sync(struct usb_xfer *xfer) { struct usb_page_cache *pc; usb_frcount_t nframes; if (xfer->flags_int.isochronous_xfr) { /* only one frame buffer */ nframes = 1; } else { /* can be multiple frame buffers */ nframes = xfer->nframes; } pc = xfer->frbuffers; while (nframes--) { if (pc->isread) { usb_pc_cpu_invalidate(pc); } else { usb_pc_cpu_flush(pc); } pc++; } } /*------------------------------------------------------------------------* * usb_bdma_post_sync * * This function handles DMA synchronisation that must be done after * an USB transfer is complete. *------------------------------------------------------------------------*/ void usb_bdma_post_sync(struct usb_xfer *xfer) { struct usb_page_cache *pc; usb_frcount_t nframes; if (xfer->flags_int.isochronous_xfr) { /* only one frame buffer */ nframes = 1; } else { /* can be multiple frame buffers */ nframes = xfer->nframes; } pc = xfer->frbuffers; while (nframes--) { if (pc->isread) { usb_pc_cpu_invalidate(pc); } pc++; } } #endif