Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ichwd/@/amd64/compile/hs32/modules/usr/src/sys/modules/sound/driver/atiixp/@/geom/raid/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ichwd/@/amd64/compile/hs32/modules/usr/src/sys/modules/sound/driver/atiixp/@/geom/raid/md_sii.c |
/*- * Copyright (c) 2011 Alexander Motin <mav@FreeBSD.org> * Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/geom/raid/md_sii.c 240558 2012-09-16 11:02:22Z mav $"); #include <sys/param.h> #include <sys/bio.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/kobj.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/systm.h> #include <sys/taskqueue.h> #include <geom/geom.h> #include "geom/raid/g_raid.h" #include "g_raid_md_if.h" static MALLOC_DEFINE(M_MD_SII, "md_sii_data", "GEOM_RAID SiI metadata"); struct sii_raid_conf { uint16_t ata_params_00_53[54]; uint64_t total_sectors; /* 54 - 57 */ uint16_t ata_params_58_81[72]; uint16_t product_id; /* 130 */ uint16_t vendor_id; /* 131 */ uint16_t version_minor; /* 132 */ uint16_t version_major; /* 133 */ uint8_t timestamp[6]; /* 134 - 136 */ uint16_t strip_sectors; /* 137 */ uint16_t dummy_2; uint8_t disk_number; /* 139 */ uint8_t type; #define SII_T_RAID0 0x00 #define SII_T_RAID1 0x01 #define SII_T_RAID01 0x02 #define SII_T_SPARE 0x03 #define SII_T_CONCAT 0x04 #define SII_T_RAID5 0x10 #define SII_T_RESERVED 0xfd #define SII_T_JBOD 0xff uint8_t raid0_disks; /* 140 */ uint8_t raid0_ident; uint8_t raid1_disks; /* 141 */ uint8_t raid1_ident; uint64_t rebuild_lba; /* 142 - 145 */ uint32_t generation; /* 146 - 147 */ uint8_t disk_status; /* 148 */ #define SII_S_CURRENT 0x01 #define SII_S_REBUILD 0x02 #define SII_S_DROPPED 0x03 #define SII_S_REMOVED 0x04 uint8_t raid_status; #define SII_S_ONLINE 0x01 #define SII_S_AVAILABLE 0x02 uint8_t raid_location; /* 149 */ uint8_t disk_location; uint8_t auto_rebuild; /* 150 */ #define SII_R_REBUILD 0x00 #define SII_R_NOREBUILD 0xff uint8_t dummy_3; uint8_t name[16]; /* 151 - 158 */ uint16_t checksum; /* 159 */ uint16_t ata_params_160_255[96]; } __packed; struct g_raid_md_sii_perdisk { struct sii_raid_conf *pd_meta; int pd_disk_pos; off_t pd_disk_size; }; struct g_raid_md_sii_object { struct g_raid_md_object mdio_base; uint8_t mdio_timestamp[6]; uint8_t mdio_location; uint32_t mdio_generation; struct sii_raid_conf *mdio_meta; struct callout mdio_start_co; /* STARTING state timer. */ int mdio_total_disks; int mdio_disks_present; int mdio_started; int mdio_incomplete; struct root_hold_token *mdio_rootmount; /* Root mount delay token. */ }; static g_raid_md_create_t g_raid_md_create_sii; static g_raid_md_taste_t g_raid_md_taste_sii; static g_raid_md_event_t g_raid_md_event_sii; static g_raid_md_ctl_t g_raid_md_ctl_sii; static g_raid_md_write_t g_raid_md_write_sii; static g_raid_md_fail_disk_t g_raid_md_fail_disk_sii; static g_raid_md_free_disk_t g_raid_md_free_disk_sii; static g_raid_md_free_t g_raid_md_free_sii; static kobj_method_t g_raid_md_sii_methods[] = { KOBJMETHOD(g_raid_md_create, g_raid_md_create_sii), KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_sii), KOBJMETHOD(g_raid_md_event, g_raid_md_event_sii), KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_sii), KOBJMETHOD(g_raid_md_write, g_raid_md_write_sii), KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_sii), KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_sii), KOBJMETHOD(g_raid_md_free, g_raid_md_free_sii), { 0, 0 } }; static struct g_raid_md_class g_raid_md_sii_class = { "SiI", g_raid_md_sii_methods, sizeof(struct g_raid_md_sii_object), .mdc_enable = 1, .mdc_priority = 100 }; static void g_raid_md_sii_print(struct sii_raid_conf *meta) { if (g_raid_debug < 1) return; printf("********* ATA SiI RAID Metadata *********\n"); printf("total_sectors %llu\n", (long long unsigned)meta->total_sectors); printf("product_id 0x%04x\n", meta->product_id); printf("vendor_id 0x%04x\n", meta->vendor_id); printf("version_minor 0x%04x\n", meta->version_minor); printf("version_major 0x%04x\n", meta->version_major); printf("timestamp 0x%02x%02x%02x%02x%02x%02x\n", meta->timestamp[5], meta->timestamp[4], meta->timestamp[3], meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]); printf("strip_sectors %d\n", meta->strip_sectors); printf("disk_number %d\n", meta->disk_number); printf("type 0x%02x\n", meta->type); printf("raid0_disks %d\n", meta->raid0_disks); printf("raid0_ident %d\n", meta->raid0_ident); printf("raid1_disks %d\n", meta->raid1_disks); printf("raid1_ident %d\n", meta->raid1_ident); printf("rebuild_lba %llu\n", (long long unsigned)meta->rebuild_lba); printf("generation %d\n", meta->generation); printf("disk_status %d\n", meta->disk_status); printf("raid_status %d\n", meta->raid_status); printf("raid_location %d\n", meta->raid_location); printf("disk_location %d\n", meta->disk_location); printf("auto_rebuild %d\n", meta->auto_rebuild); printf("name <%.16s>\n", meta->name); printf("checksum 0x%04x\n", meta->checksum); printf("=================================================\n"); } static struct sii_raid_conf * sii_meta_copy(struct sii_raid_conf *meta) { struct sii_raid_conf *nmeta; nmeta = malloc(sizeof(*meta), M_MD_SII, M_WAITOK); memcpy(nmeta, meta, sizeof(*meta)); return (nmeta); } static int sii_meta_total_disks(struct sii_raid_conf *meta) { switch (meta->type) { case SII_T_RAID0: case SII_T_RAID5: case SII_T_CONCAT: return (meta->raid0_disks); case SII_T_RAID1: return (meta->raid1_disks); case SII_T_RAID01: return (meta->raid0_disks * meta->raid1_disks); case SII_T_SPARE: case SII_T_JBOD: return (1); } return (0); } static int sii_meta_disk_pos(struct sii_raid_conf *meta, struct sii_raid_conf *pdmeta) { if (pdmeta->type == SII_T_SPARE) return (-3); if (memcmp(&meta->timestamp, &pdmeta->timestamp, 6) != 0) return (-1); switch (pdmeta->type) { case SII_T_RAID0: case SII_T_RAID1: case SII_T_RAID5: case SII_T_CONCAT: return (pdmeta->disk_number); case SII_T_RAID01: return (pdmeta->raid1_ident * pdmeta->raid1_disks + pdmeta->raid0_ident); case SII_T_JBOD: return (0); } return (-1); } static void sii_meta_get_name(struct sii_raid_conf *meta, char *buf) { int i; strncpy(buf, meta->name, 16); buf[16] = 0; for (i = 15; i >= 0; i--) { if (buf[i] > 0x20) break; buf[i] = 0; } } static void sii_meta_put_name(struct sii_raid_conf *meta, char *buf) { memset(meta->name, 0x20, 16); memcpy(meta->name, buf, MIN(strlen(buf), 16)); } static struct sii_raid_conf * sii_meta_read(struct g_consumer *cp) { struct g_provider *pp; struct sii_raid_conf *meta; char *buf; int error, i; uint16_t checksum, *ptr; pp = cp->provider; /* Read the anchor sector. */ buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize, &error); if (buf == NULL) { G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).", pp->name, error); return (NULL); } meta = malloc(sizeof(*meta), M_MD_SII, M_WAITOK); memcpy(meta, buf, min(sizeof(*meta), pp->sectorsize)); g_free(buf); /* Check vendor ID. */ if (meta->vendor_id != 0x1095) { G_RAID_DEBUG(1, "SiI vendor ID check failed on %s (0x%04x)", pp->name, meta->vendor_id); free(meta, M_MD_SII); return (NULL); } /* Check metadata major version. */ if (meta->version_major != 2) { G_RAID_DEBUG(1, "SiI version check failed on %s (%d.%d)", pp->name, meta->version_major, meta->version_minor); free(meta, M_MD_SII); return (NULL); } /* Check metadata checksum. */ for (checksum = 0, ptr = (uint16_t *)meta, i = 0; i <= 159; i++) checksum += *ptr++; if (checksum != 0) { G_RAID_DEBUG(1, "SiI checksum check failed on %s", pp->name); free(meta, M_MD_SII); return (NULL); } /* Check raid type. */ if (meta->type != SII_T_RAID0 && meta->type != SII_T_RAID1 && meta->type != SII_T_RAID01 && meta->type != SII_T_SPARE && meta->type != SII_T_RAID5 && meta->type != SII_T_CONCAT && meta->type != SII_T_JBOD) { G_RAID_DEBUG(1, "SiI unknown RAID level on %s (0x%02x)", pp->name, meta->type); free(meta, M_MD_SII); return (NULL); } return (meta); } static int sii_meta_write(struct g_consumer *cp, struct sii_raid_conf *meta) { struct g_provider *pp; char *buf; int error, i; uint16_t checksum, *ptr; pp = cp->provider; /* Recalculate checksum for case if metadata were changed. */ meta->checksum = 0; for (checksum = 0, ptr = (uint16_t *)meta, i = 0; i < 159; i++) checksum += *ptr++; meta->checksum -= checksum; /* Create and fill buffer. */ buf = malloc(pp->sectorsize, M_MD_SII, M_WAITOK | M_ZERO); memcpy(buf, meta, sizeof(*meta)); /* Write 4 copies of metadata. */ for (i = 0; i < 4; i++) { error = g_write_data(cp, pp->mediasize - (pp->sectorsize * (1 + 0x200 * i)), buf, pp->sectorsize); if (error != 0) { G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).", pp->name, error); break; } } free(buf, M_MD_SII); return (error); } static int sii_meta_erase(struct g_consumer *cp) { struct g_provider *pp; char *buf; int error, i; pp = cp->provider; buf = malloc(pp->sectorsize, M_MD_SII, M_WAITOK | M_ZERO); /* Write 4 copies of metadata. */ for (i = 0; i < 4; i++) { error = g_write_data(cp, pp->mediasize - (pp->sectorsize * (1 + 0x200 * i)), buf, pp->sectorsize); if (error != 0) { G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).", pp->name, error); } } free(buf, M_MD_SII); return (error); } static int sii_meta_write_spare(struct g_consumer *cp) { struct sii_raid_conf *meta; int error; meta = malloc(sizeof(*meta), M_MD_SII, M_WAITOK | M_ZERO); meta->total_sectors = cp->provider->mediasize / cp->provider->sectorsize - 0x800; meta->vendor_id = 0x1095; meta->version_minor = 0; meta->version_major = 2; meta->timestamp[0] = arc4random(); meta->timestamp[1] = arc4random(); meta->timestamp[2] = arc4random(); meta->timestamp[3] = arc4random(); meta->timestamp[4] = arc4random(); meta->timestamp[5] = arc4random(); meta->type = SII_T_SPARE; meta->generation = 1; meta->raid1_ident = 0xff; meta->raid_location = arc4random(); error = sii_meta_write(cp, meta); free(meta, M_MD_SII); return (error); } static struct g_raid_disk * g_raid_md_sii_get_disk(struct g_raid_softc *sc, int id) { struct g_raid_disk *disk; struct g_raid_md_sii_perdisk *pd; TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { pd = (struct g_raid_md_sii_perdisk *)disk->d_md_data; if (pd->pd_disk_pos == id) break; } return (disk); } static int g_raid_md_sii_supported(int level, int qual, int disks, int force) { if (disks > 8) return (0); switch (level) { case G_RAID_VOLUME_RL_RAID0: if (disks < 1) return (0); if (!force && (disks < 2 || disks > 6)) return (0); break; case G_RAID_VOLUME_RL_RAID1: if (disks < 1) return (0); if (!force && (disks != 2)) return (0); break; case G_RAID_VOLUME_RL_RAID1E: if (disks < 2) return (0); if (disks % 2 != 0) return (0); if (!force && (disks < 4)) return (0); break; case G_RAID_VOLUME_RL_SINGLE: if (disks != 1) return (0); break; case G_RAID_VOLUME_RL_CONCAT: if (disks < 2) return (0); break; case G_RAID_VOLUME_RL_RAID5: if (disks < 3) return (0); if (qual != G_RAID_VOLUME_RLQ_R5LS) return (0); break; default: return (0); } if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE) return (0); return (1); } static int g_raid_md_sii_start_disk(struct g_raid_disk *disk) { struct g_raid_softc *sc; struct g_raid_subdisk *sd, *tmpsd; struct g_raid_disk *olddisk, *tmpdisk; struct g_raid_md_object *md; struct g_raid_md_sii_object *mdi; struct g_raid_md_sii_perdisk *pd, *oldpd; struct sii_raid_conf *meta; int disk_pos, resurrection = 0; sc = disk->d_softc; md = sc->sc_md; mdi = (struct g_raid_md_sii_object *)md; meta = mdi->mdio_meta; pd = (struct g_raid_md_sii_perdisk *)disk->d_md_data; olddisk = NULL; /* Find disk position in metadata by it's serial. */ if (pd->pd_meta != NULL) disk_pos = sii_meta_disk_pos(meta, pd->pd_meta); else disk_pos = -3; if (disk_pos < 0) { G_RAID_DEBUG1(1, sc, "Unknown, probably new or stale disk"); /* If we are in the start process, that's all for now. */ if (!mdi->mdio_started) goto nofit; /* * If we have already started - try to get use of the disk. * Try to replace OFFLINE disks first, then FAILED. */ TAILQ_FOREACH(tmpdisk, &sc->sc_disks, d_next) { if (tmpdisk->d_state != G_RAID_DISK_S_OFFLINE && tmpdisk->d_state != G_RAID_DISK_S_FAILED) continue; /* Make sure this disk is big enough. */ TAILQ_FOREACH(sd, &tmpdisk->d_subdisks, sd_next) { if (sd->sd_offset + sd->sd_size + 512 > pd->pd_disk_size) { G_RAID_DEBUG1(1, sc, "Disk too small (%ju < %ju)", pd->pd_disk_size, sd->sd_offset + sd->sd_size + 512); break; } } if (sd != NULL) continue; if (tmpdisk->d_state == G_RAID_DISK_S_OFFLINE) { olddisk = tmpdisk; break; } else if (olddisk == NULL) olddisk = tmpdisk; } if (olddisk == NULL) { nofit: if (disk_pos == -3 || pd->pd_disk_pos == -3) { g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE); return (1); } else { g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE); return (0); } } oldpd = (struct g_raid_md_sii_perdisk *)olddisk->d_md_data; disk_pos = oldpd->pd_disk_pos; resurrection = 1; } if (olddisk == NULL) { /* Find placeholder by position. */ olddisk = g_raid_md_sii_get_disk(sc, disk_pos); if (olddisk == NULL) panic("No disk at position %d!", disk_pos); if (olddisk->d_state != G_RAID_DISK_S_OFFLINE) { G_RAID_DEBUG1(1, sc, "More then one disk for pos %d", disk_pos); g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE); return (0); } oldpd = (struct g_raid_md_sii_perdisk *)olddisk->d_md_data; } /* Replace failed disk or placeholder with new disk. */ TAILQ_FOREACH_SAFE(sd, &olddisk->d_subdisks, sd_next, tmpsd) { TAILQ_REMOVE(&olddisk->d_subdisks, sd, sd_next); TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); sd->sd_disk = disk; } oldpd->pd_disk_pos = -2; pd->pd_disk_pos = disk_pos; /* If it was placeholder -- destroy it. */ if (olddisk->d_state == G_RAID_DISK_S_OFFLINE) { g_raid_destroy_disk(olddisk); } else { /* Otherwise, make it STALE_FAILED. */ g_raid_change_disk_state(olddisk, G_RAID_DISK_S_STALE_FAILED); } /* Welcome the new disk. */ if (resurrection) g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); else if (pd->pd_meta->disk_status == SII_S_CURRENT || pd->pd_meta->disk_status == SII_S_REBUILD) g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); else g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED); TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { /* * Different disks may have different sizes, * in concat mode. Update from real disk size. */ if (meta->type == SII_T_CONCAT || meta->type == SII_T_JBOD) sd->sd_size = pd->pd_disk_size - 0x800 * 512; if (resurrection) { /* New or ex-spare disk. */ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NEW); } else if (pd->pd_meta->disk_status == SII_S_REBUILD) { /* Rebuilding disk. */ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_REBUILD); if (pd->pd_meta->generation == meta->generation) sd->sd_rebuild_pos = pd->pd_meta->rebuild_lba * 512; else sd->sd_rebuild_pos = 0; } else if (pd->pd_meta->disk_status == SII_S_CURRENT) { if (pd->pd_meta->raid_status == SII_S_ONLINE || pd->pd_meta->generation != meta->generation) { /* Dirty or resyncing disk. */ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_STALE); } else { /* Up to date disk. */ g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE); } } else { g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_FAILED); } g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, G_RAID_EVENT_SUBDISK); } /* Update status of our need for spare. */ if (mdi->mdio_started) { mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) < mdi->mdio_total_disks); } return (resurrection); } static void g_disk_md_sii_retaste(void *arg, int pending) { G_RAID_DEBUG(1, "Array is not complete, trying to retaste."); g_retaste(&g_raid_class); free(arg, M_MD_SII); } static void g_raid_md_sii_refill(struct g_raid_softc *sc) { struct g_raid_md_object *md; struct g_raid_md_sii_object *mdi; struct g_raid_disk *disk; struct task *task; int update, na; md = sc->sc_md; mdi = (struct g_raid_md_sii_object *)md; update = 0; do { /* Make sure we miss anything. */ na = g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE); if (na == mdi->mdio_total_disks) break; G_RAID_DEBUG1(1, md->mdo_softc, "Array is not complete (%d of %d), " "trying to refill.", na, mdi->mdio_total_disks); /* Try to get use some of STALE disks. */ TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_RAID_DISK_S_STALE) { update += g_raid_md_sii_start_disk(disk); if (disk->d_state == G_RAID_DISK_S_ACTIVE) break; } } if (disk != NULL) continue; /* Try to get use some of SPARE disks. */ TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state == G_RAID_DISK_S_SPARE) { update += g_raid_md_sii_start_disk(disk); if (disk->d_state == G_RAID_DISK_S_ACTIVE) break; } } } while (disk != NULL); /* Write new metadata if we changed something. */ if (update) g_raid_md_write_sii(md, NULL, NULL, NULL); /* Update status of our need for spare. */ mdi->mdio_incomplete = (g_raid_ndisks(sc, G_RAID_DISK_S_ACTIVE) < mdi->mdio_total_disks); /* Request retaste hoping to find spare. */ if (mdi->mdio_incomplete) { task = malloc(sizeof(struct task), M_MD_SII, M_WAITOK | M_ZERO); TASK_INIT(task, 0, g_disk_md_sii_retaste, task); taskqueue_enqueue(taskqueue_swi, task); } } static void g_raid_md_sii_start(struct g_raid_softc *sc) { struct g_raid_md_object *md; struct g_raid_md_sii_object *mdi; struct g_raid_md_sii_perdisk *pd; struct sii_raid_conf *meta; struct g_raid_volume *vol; struct g_raid_subdisk *sd; struct g_raid_disk *disk, *best; off_t size; int j, disk_pos; uint32_t gendiff, bestgendiff; char buf[17]; md = sc->sc_md; mdi = (struct g_raid_md_sii_object *)md; meta = mdi->mdio_meta; /* Create volumes and subdisks. */ sii_meta_get_name(meta, buf); vol = g_raid_create_volume(sc, buf, -1); vol->v_mediasize = (off_t)meta->total_sectors * 512; vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE; if (meta->type == SII_T_RAID0) { vol->v_raid_level = G_RAID_VOLUME_RL_RAID0; size = vol->v_mediasize / mdi->mdio_total_disks; } else if (meta->type == SII_T_RAID1) { vol->v_raid_level = G_RAID_VOLUME_RL_RAID1; size = vol->v_mediasize; } else if (meta->type == SII_T_RAID01) { vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E; size = vol->v_mediasize / (mdi->mdio_total_disks / 2); } else if (meta->type == SII_T_CONCAT) { if (mdi->mdio_total_disks == 1) vol->v_raid_level = G_RAID_VOLUME_RL_SINGLE; else vol->v_raid_level = G_RAID_VOLUME_RL_CONCAT; size = 0; } else if (meta->type == SII_T_RAID5) { vol->v_raid_level = G_RAID_VOLUME_RL_RAID5; vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LS; size = vol->v_mediasize / (mdi->mdio_total_disks - 1); } else if (meta->type == SII_T_JBOD) { vol->v_raid_level = G_RAID_VOLUME_RL_SINGLE; size = 0; } else { vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN; size = 0; } vol->v_strip_size = meta->strip_sectors * 512; //ZZZ vol->v_disks_count = mdi->mdio_total_disks; vol->v_sectorsize = 512; //ZZZ for (j = 0; j < vol->v_disks_count; j++) { sd = &vol->v_subdisks[j]; sd->sd_offset = 0; sd->sd_size = size; } g_raid_start_volume(vol); /* Create disk placeholders to store data for later writing. */ for (disk_pos = 0; disk_pos < mdi->mdio_total_disks; disk_pos++) { pd = malloc(sizeof(*pd), M_MD_SII, M_WAITOK | M_ZERO); pd->pd_disk_pos = disk_pos; disk = g_raid_create_disk(sc); disk->d_md_data = (void *)pd; disk->d_state = G_RAID_DISK_S_OFFLINE; sd = &vol->v_subdisks[disk_pos]; sd->sd_disk = disk; TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); } /* * Make all disks found till the moment take their places * in order of their generation numbers. */ do { best = NULL; bestgendiff = 0xffffffff; TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_state != G_RAID_DISK_S_NONE) continue; pd = disk->d_md_data; if (pd->pd_meta == NULL) gendiff = 0xfffffffe; else gendiff = meta->generation - pd->pd_meta->generation; if (gendiff < bestgendiff) { best = disk; bestgendiff = gendiff; } } if (best != NULL) g_raid_md_sii_start_disk(best); } while (best != NULL); mdi->mdio_started = 1; G_RAID_DEBUG1(0, sc, "Array started."); g_raid_md_write_sii(md, NULL, NULL, NULL); /* Pickup any STALE/SPARE disks to refill array if needed. */ g_raid_md_sii_refill(sc); g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME); callout_stop(&mdi->mdio_start_co); G_RAID_DEBUG1(1, sc, "root_mount_rel %p", mdi->mdio_rootmount); root_mount_rel(mdi->mdio_rootmount); mdi->mdio_rootmount = NULL; } static void g_raid_md_sii_new_disk(struct g_raid_disk *disk) { struct g_raid_softc *sc; struct g_raid_md_object *md; struct g_raid_md_sii_object *mdi; struct sii_raid_conf *pdmeta; struct g_raid_md_sii_perdisk *pd; sc = disk->d_softc; md = sc->sc_md; mdi = (struct g_raid_md_sii_object *)md; pd = (struct g_raid_md_sii_perdisk *)disk->d_md_data; pdmeta = pd->pd_meta; if (mdi->mdio_started) { if (g_raid_md_sii_start_disk(disk)) g_raid_md_write_sii(md, NULL, NULL, NULL); } else { if (mdi->mdio_meta == NULL || ((int32_t)(pdmeta->generation - mdi->mdio_generation)) > 0) { G_RAID_DEBUG1(1, sc, "Newer disk"); if (mdi->mdio_meta != NULL) free(mdi->mdio_meta, M_MD_SII); mdi->mdio_meta = sii_meta_copy(pdmeta); mdi->mdio_generation = mdi->mdio_meta->generation; mdi->mdio_total_disks = sii_meta_total_disks(pdmeta); mdi->mdio_disks_present = 1; } else if (pdmeta->generation == mdi->mdio_generation) { mdi->mdio_disks_present++; G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)", mdi->mdio_disks_present, mdi->mdio_total_disks); } else { G_RAID_DEBUG1(1, sc, "Older disk"); } /* If we collected all needed disks - start array. */ if (mdi->mdio_disks_present == mdi->mdio_total_disks) g_raid_md_sii_start(sc); } } static void g_raid_sii_go(void *arg) { struct g_raid_softc *sc; struct g_raid_md_object *md; struct g_raid_md_sii_object *mdi; sc = arg; md = sc->sc_md; mdi = (struct g_raid_md_sii_object *)md; if (!mdi->mdio_started) { G_RAID_DEBUG1(0, sc, "Force array start due to timeout."); g_raid_event_send(sc, G_RAID_NODE_E_START, 0); } } static int g_raid_md_create_sii(struct g_raid_md_object *md, struct g_class *mp, struct g_geom **gp) { struct g_raid_softc *sc; struct g_raid_md_sii_object *mdi; char name[32]; mdi = (struct g_raid_md_sii_object *)md; mdi->mdio_timestamp[5] = arc4random(); mdi->mdio_timestamp[4] = arc4random(); mdi->mdio_timestamp[3] = arc4random(); mdi->mdio_timestamp[2] = arc4random(); mdi->mdio_timestamp[1] = arc4random(); mdi->mdio_timestamp[0] = arc4random(); mdi->mdio_location = arc4random(); mdi->mdio_generation = 0; snprintf(name, sizeof(name), "SiI-%02x%02x%02x%02x%02x%02x", mdi->mdio_timestamp[5], mdi->mdio_timestamp[4], mdi->mdio_timestamp[3], mdi->mdio_timestamp[2], mdi->mdio_timestamp[1], mdi->mdio_timestamp[0]); sc = g_raid_create_node(mp, name, md); if (sc == NULL) return (G_RAID_MD_TASTE_FAIL); md->mdo_softc = sc; *gp = sc->sc_geom; return (G_RAID_MD_TASTE_NEW); } static int g_raid_md_taste_sii(struct g_raid_md_object *md, struct g_class *mp, struct g_consumer *cp, struct g_geom **gp) { struct g_consumer *rcp; struct g_provider *pp; struct g_raid_md_sii_object *mdi, *mdi1; struct g_raid_softc *sc; struct g_raid_disk *disk; struct sii_raid_conf *meta; struct g_raid_md_sii_perdisk *pd; struct g_geom *geom; int error, disk_pos, result, spare, len; char name[32]; uint16_t vendor; G_RAID_DEBUG(1, "Tasting SiI on %s", cp->provider->name); mdi = (struct g_raid_md_sii_object *)md; pp = cp->provider; /* Read metadata from device. */ meta = NULL; vendor = 0xffff; if (g_access(cp, 1, 0, 0) != 0) return (G_RAID_MD_TASTE_FAIL); g_topology_unlock(); len = 2; if (pp->geom->rank == 1) g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor); meta = sii_meta_read(cp); g_topology_lock(); g_access(cp, -1, 0, 0); if (meta == NULL) { if (g_raid_aggressive_spare) { if (vendor == 0x1095) { G_RAID_DEBUG(1, "No SiI metadata, forcing spare."); spare = 2; goto search; } else { G_RAID_DEBUG(1, "SiI vendor mismatch 0x%04x != 0x1095", vendor); } } return (G_RAID_MD_TASTE_FAIL); } /* Check this disk position in obtained metadata. */ disk_pos = sii_meta_disk_pos(meta, meta); if (disk_pos == -1) { G_RAID_DEBUG(1, "SiI disk position not found"); goto fail1; } /* Metadata valid. Print it. */ g_raid_md_sii_print(meta); G_RAID_DEBUG(1, "SiI disk position %d", disk_pos); spare = (meta->type == SII_T_SPARE) ? 1 : 0; search: /* Search for matching node. */ sc = NULL; mdi1 = NULL; LIST_FOREACH(geom, &mp->geom, geom) { sc = geom->softc; if (sc == NULL) continue; if (sc->sc_stopping != 0) continue; if (sc->sc_md->mdo_class != md->mdo_class) continue; mdi1 = (struct g_raid_md_sii_object *)sc->sc_md; if (spare) { if (mdi1->mdio_incomplete) break; } else { if (mdi1->mdio_location == meta->raid_location && memcmp(&mdi1->mdio_timestamp, &meta->timestamp, 6) == 0) break; } } /* Found matching node. */ if (geom != NULL) { G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name); result = G_RAID_MD_TASTE_EXISTING; } else if (spare) { /* Not found needy node -- left for later. */ G_RAID_DEBUG(1, "Spare is not needed at this time"); goto fail1; } else { /* Not found matching node -- create one. */ result = G_RAID_MD_TASTE_NEW; memcpy(&mdi->mdio_timestamp, &meta->timestamp, 6); mdi->mdio_location = meta->raid_location; snprintf(name, sizeof(name), "SiI-%02x%02x%02x%02x%02x%02x", mdi->mdio_timestamp[5], mdi->mdio_timestamp[4], mdi->mdio_timestamp[3], mdi->mdio_timestamp[2], mdi->mdio_timestamp[1], mdi->mdio_timestamp[0]); sc = g_raid_create_node(mp, name, md); md->mdo_softc = sc; geom = sc->sc_geom; callout_init(&mdi->mdio_start_co, 1); callout_reset(&mdi->mdio_start_co, g_raid_start_timeout * hz, g_raid_sii_go, sc); mdi->mdio_rootmount = root_mount_hold("GRAID-SiI"); G_RAID_DEBUG1(1, sc, "root_mount_hold %p", mdi->mdio_rootmount); } rcp = g_new_consumer(geom); g_attach(rcp, pp); if (g_access(rcp, 1, 1, 1) != 0) ; //goto fail1; g_topology_unlock(); sx_xlock(&sc->sc_lock); pd = malloc(sizeof(*pd), M_MD_SII, M_WAITOK | M_ZERO); pd->pd_meta = meta; if (spare == 2) { pd->pd_disk_pos = -3; } else { pd->pd_disk_pos = -1; } pd->pd_disk_size = pp->mediasize; disk = g_raid_create_disk(sc); disk->d_md_data = (void *)pd; disk->d_consumer = rcp; rcp->private = disk; /* Read kernel dumping information. */ disk->d_kd.offset = 0; disk->d_kd.length = OFF_MAX; len = sizeof(disk->d_kd); error = g_io_getattr("GEOM::kerneldump", rcp, &len, &disk->d_kd); if (disk->d_kd.di.dumper == NULL) G_RAID_DEBUG1(2, sc, "Dumping not supported by %s: %d.", rcp->provider->name, error); g_raid_md_sii_new_disk(disk); sx_xunlock(&sc->sc_lock); g_topology_lock(); *gp = geom; return (result); fail1: free(meta, M_MD_SII); return (G_RAID_MD_TASTE_FAIL); } static int g_raid_md_event_sii(struct g_raid_md_object *md, struct g_raid_disk *disk, u_int event) { struct g_raid_softc *sc; struct g_raid_subdisk *sd; struct g_raid_md_sii_object *mdi; struct g_raid_md_sii_perdisk *pd; sc = md->mdo_softc; mdi = (struct g_raid_md_sii_object *)md; if (disk == NULL) { switch (event) { case G_RAID_NODE_E_START: if (!mdi->mdio_started) g_raid_md_sii_start(sc); return (0); } return (-1); } pd = (struct g_raid_md_sii_perdisk *)disk->d_md_data; switch (event) { case G_RAID_DISK_E_DISCONNECTED: /* If disk was assigned, just update statuses. */ if (pd->pd_disk_pos >= 0) { g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); if (disk->d_consumer) { g_raid_kill_consumer(sc, disk->d_consumer); disk->d_consumer = NULL; } TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, G_RAID_EVENT_SUBDISK); } } else { /* Otherwise -- delete. */ g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); g_raid_destroy_disk(disk); } /* Write updated metadata to all disks. */ g_raid_md_write_sii(md, NULL, NULL, NULL); /* Check if anything left except placeholders. */ if (g_raid_ndisks(sc, -1) == g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) g_raid_destroy_node(sc, 0); else g_raid_md_sii_refill(sc); return (0); } return (-2); } static int g_raid_md_ctl_sii(struct g_raid_md_object *md, struct gctl_req *req) { struct g_raid_softc *sc; struct g_raid_volume *vol; struct g_raid_subdisk *sd; struct g_raid_disk *disk; struct g_raid_md_sii_object *mdi; struct g_raid_md_sii_perdisk *pd; struct g_consumer *cp; struct g_provider *pp; char arg[16]; const char *verb, *volname, *levelname, *diskname; int *nargs, *force; off_t size, sectorsize, strip; intmax_t *sizearg, *striparg; int numdisks, i, len, level, qual, update; int error; sc = md->mdo_softc; mdi = (struct g_raid_md_sii_object *)md; verb = gctl_get_param(req, "verb", NULL); nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs)); error = 0; if (strcmp(verb, "label") == 0) { if (*nargs < 4) { gctl_error(req, "Invalid number of arguments."); return (-1); } volname = gctl_get_asciiparam(req, "arg1"); if (volname == NULL) { gctl_error(req, "No volume name."); return (-2); } levelname = gctl_get_asciiparam(req, "arg2"); if (levelname == NULL) { gctl_error(req, "No RAID level."); return (-3); } if (strcasecmp(levelname, "RAID5") == 0) levelname = "RAID5-LS"; if (g_raid_volume_str2level(levelname, &level, &qual)) { gctl_error(req, "Unknown RAID level '%s'.", levelname); return (-4); } numdisks = *nargs - 3; force = gctl_get_paraml(req, "force", sizeof(*force)); if (!g_raid_md_sii_supported(level, qual, numdisks, force ? *force : 0)) { gctl_error(req, "Unsupported RAID level " "(0x%02x/0x%02x), or number of disks (%d).", level, qual, numdisks); return (-5); } /* Search for disks, connect them and probe. */ size = 0x7fffffffffffffffllu; sectorsize = 0; for (i = 0; i < numdisks; i++) { snprintf(arg, sizeof(arg), "arg%d", i + 3); diskname = gctl_get_asciiparam(req, arg); if (diskname == NULL) { gctl_error(req, "No disk name (%s).", arg); error = -6; break; } if (strcmp(diskname, "NONE") == 0) { cp = NULL; pp = NULL; } else { g_topology_lock(); cp = g_raid_open_consumer(sc, diskname); if (cp == NULL) { gctl_error(req, "Can't open '%s'.", diskname); g_topology_unlock(); error = -7; break; } pp = cp->provider; } pd = malloc(sizeof(*pd), M_MD_SII, M_WAITOK | M_ZERO); pd->pd_disk_pos = i; disk = g_raid_create_disk(sc); disk->d_md_data = (void *)pd; disk->d_consumer = cp; if (cp == NULL) continue; cp->private = disk; g_topology_unlock(); /* Read kernel dumping information. */ disk->d_kd.offset = 0; disk->d_kd.length = OFF_MAX; len = sizeof(disk->d_kd); g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); if (disk->d_kd.di.dumper == NULL) G_RAID_DEBUG1(2, sc, "Dumping not supported by %s.", cp->provider->name); pd->pd_disk_size = pp->mediasize; if (size > pp->mediasize) size = pp->mediasize; if (sectorsize < pp->sectorsize) sectorsize = pp->sectorsize; } if (error != 0) return (error); if (sectorsize <= 0) { gctl_error(req, "Can't get sector size."); return (-8); } /* Reserve space for metadata. */ size -= 0x800 * sectorsize; /* Handle size argument. */ len = sizeof(*sizearg); sizearg = gctl_get_param(req, "size", &len); if (sizearg != NULL && len == sizeof(*sizearg) && *sizearg > 0) { if (*sizearg > size) { gctl_error(req, "Size too big %lld > %lld.", (long long)*sizearg, (long long)size); return (-9); } size = *sizearg; } /* Handle strip argument. */ strip = 131072; len = sizeof(*striparg); striparg = gctl_get_param(req, "strip", &len); if (striparg != NULL && len == sizeof(*striparg) && *striparg > 0) { if (*striparg < sectorsize) { gctl_error(req, "Strip size too small."); return (-10); } if (*striparg % sectorsize != 0) { gctl_error(req, "Incorrect strip size."); return (-11); } if (strip > 65535 * sectorsize) { gctl_error(req, "Strip size too big."); return (-12); } strip = *striparg; } /* Round size down to strip or sector. */ if (level == G_RAID_VOLUME_RL_RAID1) size -= (size % sectorsize); else if (level == G_RAID_VOLUME_RL_RAID1E && (numdisks & 1) != 0) size -= (size % (2 * strip)); else size -= (size % strip); if (size <= 0) { gctl_error(req, "Size too small."); return (-13); } if (size > 0xffffffffffffllu * sectorsize) { gctl_error(req, "Size too big."); return (-14); } /* We have all we need, create things: volume, ... */ mdi->mdio_total_disks = numdisks; mdi->mdio_started = 1; vol = g_raid_create_volume(sc, volname, -1); vol->v_md_data = (void *)(intptr_t)0; vol->v_raid_level = level; vol->v_raid_level_qualifier = qual; vol->v_strip_size = strip; vol->v_disks_count = numdisks; if (level == G_RAID_VOLUME_RL_RAID0 || level == G_RAID_VOLUME_RL_CONCAT || level == G_RAID_VOLUME_RL_SINGLE) vol->v_mediasize = size * numdisks; else if (level == G_RAID_VOLUME_RL_RAID1) vol->v_mediasize = size; else if (level == G_RAID_VOLUME_RL_RAID5) vol->v_mediasize = size * (numdisks - 1); else { /* RAID1E */ vol->v_mediasize = ((size * numdisks) / strip / 2) * strip; } vol->v_sectorsize = sectorsize; g_raid_start_volume(vol); /* , and subdisks. */ TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { pd = (struct g_raid_md_sii_perdisk *)disk->d_md_data; sd = &vol->v_subdisks[pd->pd_disk_pos]; sd->sd_disk = disk; sd->sd_offset = 0; sd->sd_size = size; TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next); if (sd->sd_disk->d_consumer != NULL) { g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE); g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE); g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW, G_RAID_EVENT_SUBDISK); } else { g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); } } /* Write metadata based on created entities. */ G_RAID_DEBUG1(0, sc, "Array started."); g_raid_md_write_sii(md, NULL, NULL, NULL); /* Pickup any STALE/SPARE disks to refill array if needed. */ g_raid_md_sii_refill(sc); g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME); return (0); } if (strcmp(verb, "delete") == 0) { /* Check if some volume is still open. */ force = gctl_get_paraml(req, "force", sizeof(*force)); if (force != NULL && *force == 0 && g_raid_nopens(sc) != 0) { gctl_error(req, "Some volume is still open."); return (-4); } TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_consumer) sii_meta_erase(disk->d_consumer); } g_raid_destroy_node(sc, 0); return (0); } if (strcmp(verb, "remove") == 0 || strcmp(verb, "fail") == 0) { if (*nargs < 2) { gctl_error(req, "Invalid number of arguments."); return (-1); } for (i = 1; i < *nargs; i++) { snprintf(arg, sizeof(arg), "arg%d", i); diskname = gctl_get_asciiparam(req, arg); if (diskname == NULL) { gctl_error(req, "No disk name (%s).", arg); error = -2; break; } if (strncmp(diskname, "/dev/", 5) == 0) diskname += 5; TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { if (disk->d_consumer != NULL && disk->d_consumer->provider != NULL && strcmp(disk->d_consumer->provider->name, diskname) == 0) break; } if (disk == NULL) { gctl_error(req, "Disk '%s' not found.", diskname); error = -3; break; } if (strcmp(verb, "fail") == 0) { g_raid_md_fail_disk_sii(md, NULL, disk); continue; } pd = (struct g_raid_md_sii_perdisk *)disk->d_md_data; /* Erase metadata on deleting disk. */ sii_meta_erase(disk->d_consumer); /* If disk was assigned, just update statuses. */ if (pd->pd_disk_pos >= 0) { g_raid_change_disk_state(disk, G_RAID_DISK_S_OFFLINE); g_raid_kill_consumer(sc, disk->d_consumer); disk->d_consumer = NULL; TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) { g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE); g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED, G_RAID_EVENT_SUBDISK); } } else { /* Otherwise -- delete. */ g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE); g_raid_destroy_disk(disk); } } /* Write updated metadata to remaining disks. */ g_raid_md_write_sii(md, NULL, NULL, NULL); /* Check if anything left except placeholders. */ if (g_raid_ndisks(sc, -1) == g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) g_raid_destroy_node(sc, 0); else g_raid_md_sii_refill(sc); return (error); } if (strcmp(verb, "insert") == 0) { if (*nargs < 2) { gctl_error(req, "Invalid number of arguments."); return (-1); } update = 0; for (i = 1; i < *nargs; i++) { /* Get disk name. */ snprintf(arg, sizeof(arg), "arg%d", i); diskname = gctl_get_asciiparam(req, arg); if (diskname == NULL) { gctl_error(req, "No disk name (%s).", arg); error = -3; break; } /* Try to find provider with specified name. */ g_topology_lock(); cp = g_raid_open_consumer(sc, diskname); if (cp == NULL) { gctl_error(req, "Can't open disk '%s'.", diskname); g_topology_unlock(); error = -4; break; } pp = cp->provider; pd = malloc(sizeof(*pd), M_MD_SII, M_WAITOK | M_ZERO); pd->pd_disk_pos = -3; pd->pd_disk_size = pp->mediasize; disk = g_raid_create_disk(sc); disk->d_consumer = cp; disk->d_md_data = (void *)pd; cp->private = disk; g_topology_unlock(); /* Read kernel dumping information. */ disk->d_kd.offset = 0; disk->d_kd.length = OFF_MAX; len = sizeof(disk->d_kd); g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd); if (disk->d_kd.di.dumper == NULL) G_RAID_DEBUG1(2, sc, "Dumping not supported by %s.", cp->provider->name); /* Welcome the "new" disk. */ update += g_raid_md_sii_start_disk(disk); if (disk->d_state == G_RAID_DISK_S_SPARE) { sii_meta_write_spare(cp); g_raid_destroy_disk(disk); } else if (disk->d_state != G_RAID_DISK_S_ACTIVE) { gctl_error(req, "Disk '%s' doesn't fit.", diskname); g_raid_destroy_disk(disk); error = -8; break; } } /* Write new metadata if we changed something. */ if (update) g_raid_md_write_sii(md, NULL, NULL, NULL); return (error); } gctl_error(req, "Command '%s' is not supported.", verb); return (-100); } static int g_raid_md_write_sii(struct g_raid_md_object *md, struct g_raid_volume *tvol, struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) { struct g_raid_softc *sc; struct g_raid_volume *vol; struct g_raid_subdisk *sd; struct g_raid_disk *disk; struct g_raid_md_sii_object *mdi; struct g_raid_md_sii_perdisk *pd; struct sii_raid_conf *meta; int i; sc = md->mdo_softc; mdi = (struct g_raid_md_sii_object *)md; if (sc->sc_stopping == G_RAID_DESTROY_HARD) return (0); /* Bump generation. Newly written metadata may differ from previous. */ mdi->mdio_generation++; /* There is only one volume. */ vol = TAILQ_FIRST(&sc->sc_volumes); /* Fill global fields. */ meta = malloc(sizeof(*meta), M_MD_SII, M_WAITOK | M_ZERO); if (mdi->mdio_meta) memcpy(meta, mdi->mdio_meta, sizeof(*meta)); meta->total_sectors = vol->v_mediasize / vol->v_sectorsize; meta->vendor_id = 0x1095; meta->version_minor = 0; meta->version_major = 2; memcpy(&meta->timestamp, &mdi->mdio_timestamp, 6); meta->strip_sectors = vol->v_strip_size / vol->v_sectorsize; if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0) { meta->type = SII_T_RAID0; meta->raid0_disks = vol->v_disks_count; meta->raid1_disks = 0xff; } else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) { meta->type = SII_T_RAID1; meta->raid0_disks = 0xff; meta->raid1_disks = vol->v_disks_count; } else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) { meta->type = SII_T_RAID01; meta->raid0_disks = vol->v_disks_count / 2; meta->raid1_disks = 2; } else if (vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT || vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE) { meta->type = SII_T_JBOD; meta->raid0_disks = vol->v_disks_count; meta->raid1_disks = 0xff; } else { meta->type = SII_T_RAID5; meta->raid0_disks = vol->v_disks_count; meta->raid1_disks = 0xff; } meta->generation = mdi->mdio_generation; meta->raid_status = vol->v_dirty ? SII_S_ONLINE : SII_S_AVAILABLE; for (i = 0; i < vol->v_disks_count; i++) { sd = &vol->v_subdisks[i]; if (sd->sd_state == G_RAID_SUBDISK_S_STALE || sd->sd_state == G_RAID_SUBDISK_S_RESYNC) meta->raid_status = SII_S_ONLINE; } meta->raid_location = mdi->mdio_location; sii_meta_put_name(meta, vol->v_name); /* We are done. Print meta data and store them to disks. */ if (mdi->mdio_meta != NULL) free(mdi->mdio_meta, M_MD_SII); mdi->mdio_meta = meta; TAILQ_FOREACH(disk, &sc->sc_disks, d_next) { pd = (struct g_raid_md_sii_perdisk *)disk->d_md_data; if (disk->d_state != G_RAID_DISK_S_ACTIVE) continue; if (pd->pd_meta != NULL) { free(pd->pd_meta, M_MD_SII); pd->pd_meta = NULL; } pd->pd_meta = sii_meta_copy(meta); if ((sd = TAILQ_FIRST(&disk->d_subdisks)) != NULL) { if (sd->sd_state < G_RAID_SUBDISK_S_NEW) pd->pd_meta->disk_status = SII_S_DROPPED; else if (sd->sd_state < G_RAID_SUBDISK_S_STALE) { pd->pd_meta->disk_status = SII_S_REBUILD; pd->pd_meta->rebuild_lba = sd->sd_rebuild_pos / vol->v_sectorsize; } else pd->pd_meta->disk_status = SII_S_CURRENT; if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1) { pd->pd_meta->disk_number = sd->sd_pos; pd->pd_meta->raid0_ident = 0xff; pd->pd_meta->raid1_ident = 0; } else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) { pd->pd_meta->disk_number = sd->sd_pos / meta->raid1_disks; pd->pd_meta->raid0_ident = sd->sd_pos % meta->raid1_disks; pd->pd_meta->raid1_ident = sd->sd_pos / meta->raid1_disks; } else { pd->pd_meta->disk_number = sd->sd_pos; pd->pd_meta->raid0_ident = 0; pd->pd_meta->raid1_ident = 0xff; } } G_RAID_DEBUG(1, "Writing SiI metadata to %s", g_raid_get_diskname(disk)); g_raid_md_sii_print(pd->pd_meta); sii_meta_write(disk->d_consumer, pd->pd_meta); } return (0); } static int g_raid_md_fail_disk_sii(struct g_raid_md_object *md, struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk) { struct g_raid_softc *sc; struct g_raid_md_sii_perdisk *pd; struct g_raid_subdisk *sd; sc = md->mdo_softc; pd = (struct g_raid_md_sii_perdisk *)tdisk->d_md_data; /* We can't fail disk that is not a part of array now. */ if (pd->pd_disk_pos < 0) return (-1); /* * Mark disk as failed in metadata and try to write that metadata * to the disk itself to prevent it's later resurrection as STALE. */ if (tdisk->d_consumer) { if (pd->pd_meta) { pd->pd_meta->disk_status = SII_S_REMOVED; sii_meta_write(tdisk->d_consumer, pd->pd_meta); } else sii_meta_erase(tdisk->d_consumer); } /* Change states. */ g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED); TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) { g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_FAILED); g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED, G_RAID_EVENT_SUBDISK); } /* Write updated metadata to remaining disks. */ g_raid_md_write_sii(md, NULL, NULL, tdisk); /* Check if anything left except placeholders. */ if (g_raid_ndisks(sc, -1) == g_raid_ndisks(sc, G_RAID_DISK_S_OFFLINE)) g_raid_destroy_node(sc, 0); else g_raid_md_sii_refill(sc); return (0); } static int g_raid_md_free_disk_sii(struct g_raid_md_object *md, struct g_raid_disk *disk) { struct g_raid_md_sii_perdisk *pd; pd = (struct g_raid_md_sii_perdisk *)disk->d_md_data; if (pd->pd_meta != NULL) { free(pd->pd_meta, M_MD_SII); pd->pd_meta = NULL; } free(pd, M_MD_SII); disk->d_md_data = NULL; return (0); } static int g_raid_md_free_sii(struct g_raid_md_object *md) { struct g_raid_md_sii_object *mdi; mdi = (struct g_raid_md_sii_object *)md; if (!mdi->mdio_started) { mdi->mdio_started = 0; callout_stop(&mdi->mdio_start_co); G_RAID_DEBUG1(1, md->mdo_softc, "root_mount_rel %p", mdi->mdio_rootmount); root_mount_rel(mdi->mdio_rootmount); mdi->mdio_rootmount = NULL; } if (mdi->mdio_meta != NULL) { free(mdi->mdio_meta, M_MD_SII); mdi->mdio_meta = NULL; } return (0); } G_RAID_MD_DECLARE(sii, "SiI");