Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ichwd/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ums/@/dev/netmap/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ichwd/@/amd64/compile/hs32/modules/usr/src/sys/modules/usb/ums/@/dev/netmap/netmap.c |
/* * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This module supports memory mapped access to network devices, * see netmap(4). * * The module uses a large, memory pool allocated by the kernel * and accessible as mmapped memory by multiple userspace threads/processes. * The memory pool contains packet buffers and "netmap rings", * i.e. user-accessible copies of the interface's queues. * * Access to the network card works like this: * 1. a process/thread issues one or more open() on /dev/netmap, to create * select()able file descriptor on which events are reported. * 2. on each descriptor, the process issues an ioctl() to identify * the interface that should report events to the file descriptor. * 3. on each descriptor, the process issues an mmap() request to * map the shared memory region within the process' address space. * The list of interesting queues is indicated by a location in * the shared memory region. * 4. using the functions in the netmap(4) userspace API, a process * can look up the occupation state of a queue, access memory buffers, * and retrieve received packets or enqueue packets to transmit. * 5. using some ioctl()s the process can synchronize the userspace view * of the queue with the actual status in the kernel. This includes both * receiving the notification of new packets, and transmitting new * packets on the output interface. * 6. select() or poll() can be used to wait for events on individual * transmit or receive queues (or all queues for a given interface). */ #include <sys/cdefs.h> /* prerequisite */ __FBSDID("$FreeBSD: release/9.1.0/sys/dev/netmap/netmap.c 235549 2012-05-17 15:02:51Z luigi $"); #include <sys/types.h> #include <sys/module.h> #include <sys/errno.h> #include <sys/param.h> /* defines used in kernel.h */ #include <sys/jail.h> #include <sys/kernel.h> /* types used in module initialization */ #include <sys/conf.h> /* cdevsw struct */ #include <sys/uio.h> /* uio struct */ #include <sys/sockio.h> #include <sys/socketvar.h> /* struct socket */ #include <sys/malloc.h> #include <sys/mman.h> /* PROT_EXEC */ #include <sys/poll.h> #include <sys/proc.h> #include <vm/vm.h> /* vtophys */ #include <vm/pmap.h> /* vtophys */ #include <sys/socket.h> /* sockaddrs */ #include <machine/bus.h> #include <sys/selinfo.h> #include <sys/sysctl.h> #include <net/if.h> #include <net/bpf.h> /* BIOCIMMEDIATE */ #include <net/vnet.h> #include <net/netmap.h> #include <dev/netmap/netmap_kern.h> #include <machine/bus.h> /* bus_dmamap_* */ MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); /* * lock and unlock for the netmap memory allocator */ #define NMA_LOCK() mtx_lock(&nm_mem->nm_mtx); #define NMA_UNLOCK() mtx_unlock(&nm_mem->nm_mtx); struct netmap_mem_d; static struct netmap_mem_d *nm_mem; /* Our memory allocator. */ u_int netmap_total_buffers; char *netmap_buffer_base; /* address of an invalid buffer */ /* user-controlled variables */ int netmap_verbose; static int netmap_no_timestamp; /* don't timestamp on rxsync */ SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); int netmap_buf_size = 2048; TUNABLE_INT("hw.netmap.buf_size", &netmap_buf_size); SYSCTL_INT(_dev_netmap, OID_AUTO, buf_size, CTLFLAG_RD, &netmap_buf_size, 0, "Size of packet buffers"); int netmap_mitigate = 1; SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, ""); int netmap_no_pendintr = 1; SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets."); /*------------- memory allocator -----------------*/ #ifdef NETMAP_MEM2 #include "netmap_mem2.c" #else /* !NETMAP_MEM2 */ #include "netmap_mem1.c" #endif /* !NETMAP_MEM2 */ /*------------ end of memory allocator ----------*/ /* Structure associated to each thread which registered an interface. */ struct netmap_priv_d { struct netmap_if *np_nifp; /* netmap interface descriptor. */ struct ifnet *np_ifp; /* device for which we hold a reference */ int np_ringid; /* from the ioctl */ u_int np_qfirst, np_qlast; /* range of rings to scan */ uint16_t np_txpoll; }; /* * File descriptor's private data destructor. * * Call nm_register(ifp,0) to stop netmap mode on the interface and * revert to normal operation. We expect that np_ifp has not gone. */ static void netmap_dtor_locked(void *data) { struct netmap_priv_d *priv = data; struct ifnet *ifp = priv->np_ifp; struct netmap_adapter *na = NA(ifp); struct netmap_if *nifp = priv->np_nifp; na->refcount--; if (na->refcount <= 0) { /* last instance */ u_int i, j, lim; D("deleting last netmap instance for %s", ifp->if_xname); /* * there is a race here with *_netmap_task() and * netmap_poll(), which don't run under NETMAP_REG_LOCK. * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP * (aka NETMAP_DELETING(na)) are a unique marker that the * device is dying. * Before destroying stuff we sleep a bit, and then complete * the job. NIOCREG should realize the condition and * loop until they can continue; the other routines * should check the condition at entry and quit if * they cannot run. */ na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); tsleep(na, 0, "NIOCUNREG", 4); na->nm_lock(ifp, NETMAP_REG_LOCK, 0); na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ /* Wake up any sleeping threads. netmap_poll will * then return POLLERR */ for (i = 0; i < na->num_tx_rings + 1; i++) selwakeuppri(&na->tx_rings[i].si, PI_NET); for (i = 0; i < na->num_rx_rings + 1; i++) selwakeuppri(&na->rx_rings[i].si, PI_NET); selwakeuppri(&na->tx_si, PI_NET); selwakeuppri(&na->rx_si, PI_NET); /* release all buffers */ NMA_LOCK(); for (i = 0; i < na->num_tx_rings + 1; i++) { struct netmap_ring *ring = na->tx_rings[i].ring; lim = na->tx_rings[i].nkr_num_slots; for (j = 0; j < lim; j++) netmap_free_buf(nifp, ring->slot[j].buf_idx); } for (i = 0; i < na->num_rx_rings + 1; i++) { struct netmap_ring *ring = na->rx_rings[i].ring; lim = na->rx_rings[i].nkr_num_slots; for (j = 0; j < lim; j++) netmap_free_buf(nifp, ring->slot[j].buf_idx); } NMA_UNLOCK(); netmap_free_rings(na); wakeup(na); } netmap_if_free(nifp); } static void netmap_dtor(void *data) { struct netmap_priv_d *priv = data; struct ifnet *ifp = priv->np_ifp; struct netmap_adapter *na = NA(ifp); na->nm_lock(ifp, NETMAP_REG_LOCK, 0); netmap_dtor_locked(data); na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); if_rele(ifp); bzero(priv, sizeof(*priv)); /* XXX for safety */ free(priv, M_DEVBUF); } /* * mmap(2) support for the "netmap" device. * * Expose all the memory previously allocated by our custom memory * allocator: this way the user has only to issue a single mmap(2), and * can work on all the data structures flawlessly. * * Return 0 on success, -1 otherwise. */ static int netmap_mmap(__unused struct cdev *dev, #if __FreeBSD_version < 900000 vm_offset_t offset, vm_paddr_t *paddr, int nprot #else vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, __unused vm_memattr_t *memattr #endif ) { if (nprot & PROT_EXEC) return (-1); // XXX -1 or EINVAL ? ND("request for offset 0x%x", (uint32_t)offset); *paddr = netmap_ofstophys(offset); return (0); } /* * Handlers for synchronization of the queues from/to the host. * * netmap_sync_to_host() passes packets up. We are called from a * system call in user process context, and the only contention * can be among multiple user threads erroneously calling * this routine concurrently. In principle we should not even * need to lock. */ static void netmap_sync_to_host(struct netmap_adapter *na) { struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings]; struct netmap_ring *ring = kring->ring; struct mbuf *head = NULL, *tail = NULL, *m; u_int k, n, lim = kring->nkr_num_slots - 1; k = ring->cur; if (k > lim) { netmap_ring_reinit(kring); return; } // na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); /* Take packets from hwcur to cur and pass them up. * In case of no buffers we give up. At the end of the loop, * the queue is drained in all cases. */ for (n = kring->nr_hwcur; n != k;) { struct netmap_slot *slot = &ring->slot[n]; n = (n == lim) ? 0 : n + 1; if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { D("bad pkt at %d len %d", n, slot->len); continue; } m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); if (m == NULL) break; if (tail) tail->m_nextpkt = m; else head = m; tail = m; m->m_nextpkt = NULL; } kring->nr_hwcur = k; kring->nr_hwavail = ring->avail = lim; // na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); /* send packets up, outside the lock */ while ((m = head) != NULL) { head = head->m_nextpkt; m->m_nextpkt = NULL; if (netmap_verbose & NM_VERB_HOST) D("sending up pkt %p size %d", m, MBUF_LEN(m)); NM_SEND_UP(na->ifp, m); } } /* * rxsync backend for packets coming from the host stack. * They have been put in the queue by netmap_start() so we * need to protect access to the kring using a lock. * * This routine also does the selrecord if called from the poll handler * (we know because td != NULL). */ static void netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) { struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; struct netmap_ring *ring = kring->ring; u_int j, n, lim = kring->nkr_num_slots; u_int k = ring->cur, resvd = ring->reserved; na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0); if (k >= lim) { netmap_ring_reinit(kring); return; } /* new packets are already set in nr_hwavail */ /* skip past packets that userspace has released */ j = kring->nr_hwcur; if (resvd > 0) { if (resvd + ring->avail >= lim + 1) { D("XXX invalid reserve/avail %d %d", resvd, ring->avail); ring->reserved = resvd = 0; // XXX panic... } k = (k >= resvd) ? k - resvd : k + lim - resvd; } if (j != k) { n = k >= j ? k - j : k + lim - j; kring->nr_hwavail -= n; kring->nr_hwcur = k; } k = ring->avail = kring->nr_hwavail - resvd; if (k == 0 && td) selrecord(td, &kring->si); if (k && (netmap_verbose & NM_VERB_HOST)) D("%d pkts from stack", k); na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0); } /* * get a refcounted reference to an interface. * Return ENXIO if the interface does not exist, EINVAL if netmap * is not supported by the interface. * If successful, hold a reference. */ static int get_ifp(const char *name, struct ifnet **ifp) { *ifp = ifunit_ref(name); if (*ifp == NULL) return (ENXIO); /* can do this if the capability exists and if_pspare[0] * points to the netmap descriptor. */ if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) return 0; /* valid pointer, we hold the refcount */ if_rele(*ifp); return EINVAL; // not NETMAP capable } /* * Error routine called when txsync/rxsync detects an error. * Can't do much more than resetting cur = hwcur, avail = hwavail. * Return 1 on reinit. * * This routine is only called by the upper half of the kernel. * It only reads hwcur (which is changed only by the upper half, too) * and hwavail (which may be changed by the lower half, but only on * a tx ring and only to increase it, so any error will be recovered * on the next call). For the above, we don't strictly need to call * it under lock. */ int netmap_ring_reinit(struct netmap_kring *kring) { struct netmap_ring *ring = kring->ring; u_int i, lim = kring->nkr_num_slots - 1; int errors = 0; D("called for %s", kring->na->ifp->if_xname); if (ring->cur > lim) errors++; for (i = 0; i <= lim; i++) { u_int idx = ring->slot[i].buf_idx; u_int len = ring->slot[i].len; if (idx < 2 || idx >= netmap_total_buffers) { if (!errors++) D("bad buffer at slot %d idx %d len %d ", i, idx, len); ring->slot[i].buf_idx = 0; ring->slot[i].len = 0; } else if (len > NETMAP_BUF_SIZE) { ring->slot[i].len = 0; if (!errors++) D("bad len %d at slot %d idx %d", len, i, idx); } } if (errors) { int pos = kring - kring->na->tx_rings; int n = kring->na->num_tx_rings + 1; D("total %d errors", errors); errors++; D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", kring->na->ifp->if_xname, pos < n ? "TX" : "RX", pos < n ? pos : pos - n, ring->cur, kring->nr_hwcur, ring->avail, kring->nr_hwavail); ring->cur = kring->nr_hwcur; ring->avail = kring->nr_hwavail; } return (errors ? 1 : 0); } /* * Set the ring ID. For devices with a single queue, a request * for all rings is the same as a single ring. */ static int netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) { struct ifnet *ifp = priv->np_ifp; struct netmap_adapter *na = NA(ifp); u_int i = ringid & NETMAP_RING_MASK; /* initially (np_qfirst == np_qlast) we don't want to lock */ int need_lock = (priv->np_qfirst != priv->np_qlast); int lim = na->num_rx_rings; if (na->num_tx_rings > lim) lim = na->num_tx_rings; if ( (ringid & NETMAP_HW_RING) && i >= lim) { D("invalid ring id %d", i); return (EINVAL); } if (need_lock) na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); priv->np_ringid = ringid; if (ringid & NETMAP_SW_RING) { priv->np_qfirst = NETMAP_SW_RING; priv->np_qlast = 0; } else if (ringid & NETMAP_HW_RING) { priv->np_qfirst = i; priv->np_qlast = i + 1; } else { priv->np_qfirst = 0; priv->np_qlast = NETMAP_HW_RING ; } priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; if (need_lock) na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); if (ringid & NETMAP_SW_RING) D("ringid %s set to SW RING", ifp->if_xname); else if (ringid & NETMAP_HW_RING) D("ringid %s set to HW RING %d", ifp->if_xname, priv->np_qfirst); else D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim); return 0; } /* * ioctl(2) support for the "netmap" device. * * Following a list of accepted commands: * - NIOCGINFO * - SIOCGIFADDR just for convenience * - NIOCREGIF * - NIOCUNREGIF * - NIOCTXSYNC * - NIOCRXSYNC * * Return 0 on success, errno otherwise. */ static int netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, __unused int fflag, struct thread *td) { struct netmap_priv_d *priv = NULL; struct ifnet *ifp; struct nmreq *nmr = (struct nmreq *) data; struct netmap_adapter *na; int error; u_int i, lim; struct netmap_if *nifp; CURVNET_SET(TD_TO_VNET(td)); error = devfs_get_cdevpriv((void **)&priv); if (error != ENOENT && error != 0) { CURVNET_RESTORE(); return (error); } error = 0; /* Could be ENOENT */ switch (cmd) { case NIOCGINFO: /* return capabilities etc */ /* memsize is always valid */ nmr->nr_memsize = nm_mem->nm_totalsize; nmr->nr_offset = 0; nmr->nr_rx_rings = nmr->nr_tx_rings = 0; nmr->nr_rx_slots = nmr->nr_tx_slots = 0; if (nmr->nr_version != NETMAP_API) { D("API mismatch got %d have %d", nmr->nr_version, NETMAP_API); nmr->nr_version = NETMAP_API; error = EINVAL; break; } if (nmr->nr_name[0] == '\0') /* just get memory info */ break; error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ if (error) break; na = NA(ifp); /* retrieve netmap_adapter */ nmr->nr_rx_rings = na->num_rx_rings; nmr->nr_tx_rings = na->num_tx_rings; nmr->nr_rx_slots = na->num_rx_desc; nmr->nr_tx_slots = na->num_tx_desc; if_rele(ifp); /* return the refcount */ break; case NIOCREGIF: if (nmr->nr_version != NETMAP_API) { nmr->nr_version = NETMAP_API; error = EINVAL; break; } if (priv != NULL) { /* thread already registered */ error = netmap_set_ringid(priv, nmr->nr_ringid); break; } /* find the interface and a reference */ error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ if (error) break; na = NA(ifp); /* retrieve netmap adapter */ /* * Allocate the private per-thread structure. * XXX perhaps we can use a blocking malloc ? */ priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, M_NOWAIT | M_ZERO); if (priv == NULL) { error = ENOMEM; if_rele(ifp); /* return the refcount */ break; } for (i = 10; i > 0; i--) { na->nm_lock(ifp, NETMAP_REG_LOCK, 0); if (!NETMAP_DELETING(na)) break; na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); tsleep(na, 0, "NIOCREGIF", hz/10); } if (i == 0) { D("too many NIOCREGIF attempts, give up"); error = EINVAL; free(priv, M_DEVBUF); if_rele(ifp); /* return the refcount */ break; } priv->np_ifp = ifp; /* store the reference */ error = netmap_set_ringid(priv, nmr->nr_ringid); if (error) goto error; priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); if (nifp == NULL) { /* allocation failed */ error = ENOMEM; } else if (ifp->if_capenable & IFCAP_NETMAP) { /* was already set */ } else { /* Otherwise set the card in netmap mode * and make it use the shared buffers. */ error = na->nm_register(ifp, 1); /* mode on */ if (error) netmap_dtor_locked(priv); } if (error) { /* reg. failed, release priv and ref */ error: na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); if_rele(ifp); /* return the refcount */ bzero(priv, sizeof(*priv)); free(priv, M_DEVBUF); break; } na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0); error = devfs_set_cdevpriv(priv, netmap_dtor); if (error != 0) { /* could not assign the private storage for the * thread, call the destructor explicitly. */ netmap_dtor(priv); break; } /* return the offset of the netmap_if object */ nmr->nr_rx_rings = na->num_rx_rings; nmr->nr_tx_rings = na->num_tx_rings; nmr->nr_rx_slots = na->num_rx_desc; nmr->nr_tx_slots = na->num_tx_desc; nmr->nr_memsize = nm_mem->nm_totalsize; nmr->nr_offset = netmap_if_offset(nifp); break; case NIOCUNREGIF: if (priv == NULL) { error = ENXIO; break; } /* the interface is unregistered inside the destructor of the private data. */ devfs_clear_cdevpriv(); break; case NIOCTXSYNC: case NIOCRXSYNC: if (priv == NULL) { error = ENXIO; break; } ifp = priv->np_ifp; /* we have a reference */ na = NA(ifp); /* retrieve netmap adapter */ if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */ if (cmd == NIOCTXSYNC) netmap_sync_to_host(na); else netmap_sync_from_host(na, NULL); break; } /* find the last ring to scan */ lim = priv->np_qlast; if (lim == NETMAP_HW_RING) lim = (cmd == NIOCTXSYNC) ? na->num_tx_rings : na->num_rx_rings; for (i = priv->np_qfirst; i < lim; i++) { if (cmd == NIOCTXSYNC) { struct netmap_kring *kring = &na->tx_rings[i]; if (netmap_verbose & NM_VERB_TXSYNC) D("pre txsync ring %d cur %d hwcur %d", i, kring->ring->cur, kring->nr_hwcur); na->nm_txsync(ifp, i, 1 /* do lock */); if (netmap_verbose & NM_VERB_TXSYNC) D("post txsync ring %d cur %d hwcur %d", i, kring->ring->cur, kring->nr_hwcur); } else { na->nm_rxsync(ifp, i, 1 /* do lock */); microtime(&na->rx_rings[i].ring->ts); } } break; case BIOCIMMEDIATE: case BIOCGHDRCMPLT: case BIOCSHDRCMPLT: case BIOCSSEESENT: D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); break; default: /* allow device-specific ioctls */ { struct socket so; bzero(&so, sizeof(so)); error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ if (error) break; so.so_vnet = ifp->if_vnet; // so->so_proto not null. error = ifioctl(&so, cmd, data, td); if_rele(ifp); break; } } CURVNET_RESTORE(); return (error); } /* * select(2) and poll(2) handlers for the "netmap" device. * * Can be called for one or more queues. * Return true the event mask corresponding to ready events. * If there are no ready events, do a selrecord on either individual * selfd or on the global one. * Device-dependent parts (locking and sync of tx/rx rings) * are done through callbacks. */ static int netmap_poll(__unused struct cdev *dev, int events, struct thread *td) { struct netmap_priv_d *priv = NULL; struct netmap_adapter *na; struct ifnet *ifp; struct netmap_kring *kring; u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; u_int lim_tx, lim_rx; enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */ if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) return POLLERR; ifp = priv->np_ifp; // XXX check for deleting() ? if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) return POLLERR; if (netmap_verbose & 0x8000) D("device %s events 0x%x", ifp->if_xname, events); want_tx = events & (POLLOUT | POLLWRNORM); want_rx = events & (POLLIN | POLLRDNORM); na = NA(ifp); /* retrieve netmap adapter */ lim_tx = na->num_tx_rings; lim_rx = na->num_rx_rings; /* how many queues we are scanning */ if (priv->np_qfirst == NETMAP_SW_RING) { if (priv->np_txpoll || want_tx) { /* push any packets up, then we are always ready */ kring = &na->tx_rings[lim_tx]; netmap_sync_to_host(na); revents |= want_tx; } if (want_rx) { kring = &na->rx_rings[lim_rx]; if (kring->ring->avail == 0) netmap_sync_from_host(na, td); if (kring->ring->avail > 0) { revents |= want_rx; } } return (revents); } /* * check_all is set if the card has more than one queue and * the client is polling all of them. If true, we sleep on * the "global" selfd, otherwise we sleep on individual selfd * (we can only sleep on one of them per direction). * The interrupt routine in the driver should always wake on * the individual selfd, and also on the global one if the card * has more than one ring. * * If the card has only one lock, we just use that. * If the card has separate ring locks, we just use those * unless we are doing check_all, in which case the whole * loop is wrapped by the global lock. * We acquire locks only when necessary: if poll is called * when buffers are available, we can just return without locks. * * rxsync() is only called if we run out of buffers on a POLLIN. * txsync() is called if we run out of buffers on POLLOUT, or * there are pending packets to send. The latter can be disabled * passing NETMAP_NO_TX_POLL in the NIOCREG call. */ check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1); /* * core_lock indicates what to do with the core lock. * The core lock is used when either the card has no individual * locks, or it has individual locks but we are cheking all * rings so we need the core lock to avoid missing wakeup events. * * It has three possible states: * NO_CL we don't need to use the core lock, e.g. * because we are protected by individual locks. * NEED_CL we need the core lock. In this case, when we * call the lock routine, move to LOCKED_CL * to remember to release the lock once done. * LOCKED_CL core lock is set, so we need to release it. */ core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL; if (priv->np_qlast != NETMAP_HW_RING) { lim_tx = lim_rx = priv->np_qlast; } /* * We start with a lock free round which is good if we have * data available. If this fails, then lock and call the sync * routines. */ for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) { kring = &na->rx_rings[i]; if (kring->ring->avail > 0) { revents |= want_rx; want_rx = 0; /* also breaks the loop */ } } for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) { kring = &na->tx_rings[i]; if (kring->ring->avail > 0) { revents |= want_tx; want_tx = 0; /* also breaks the loop */ } } /* * If we to push packets out (priv->np_txpoll) or want_tx is * still set, we do need to run the txsync calls (on all rings, * to avoid that the tx rings stall). */ if (priv->np_txpoll || want_tx) { for (i = priv->np_qfirst; i < lim_tx; i++) { kring = &na->tx_rings[i]; /* * Skip the current ring if want_tx == 0 * (we have already done a successful sync on * a previous ring) AND kring->cur == kring->hwcur * (there are no pending transmissions for this ring). */ if (!want_tx && kring->ring->cur == kring->nr_hwcur) continue; if (core_lock == NEED_CL) { na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); core_lock = LOCKED_CL; } if (na->separate_locks) na->nm_lock(ifp, NETMAP_TX_LOCK, i); if (netmap_verbose & NM_VERB_TXSYNC) D("send %d on %s %d", kring->ring->cur, ifp->if_xname, i); if (na->nm_txsync(ifp, i, 0 /* no lock */)) revents |= POLLERR; /* Check avail/call selrecord only if called with POLLOUT */ if (want_tx) { if (kring->ring->avail > 0) { /* stop at the first ring. We don't risk * starvation. */ revents |= want_tx; want_tx = 0; } else if (!check_all) selrecord(td, &kring->si); } if (na->separate_locks) na->nm_lock(ifp, NETMAP_TX_UNLOCK, i); } } /* * now if want_rx is still set we need to lock and rxsync. * Do it on all rings because otherwise we starve. */ if (want_rx) { for (i = priv->np_qfirst; i < lim_rx; i++) { kring = &na->rx_rings[i]; if (core_lock == NEED_CL) { na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); core_lock = LOCKED_CL; } if (na->separate_locks) na->nm_lock(ifp, NETMAP_RX_LOCK, i); if (na->nm_rxsync(ifp, i, 0 /* no lock */)) revents |= POLLERR; if (netmap_no_timestamp == 0 || kring->ring->flags & NR_TIMESTAMP) { microtime(&kring->ring->ts); } if (kring->ring->avail > 0) revents |= want_rx; else if (!check_all) selrecord(td, &kring->si); if (na->separate_locks) na->nm_lock(ifp, NETMAP_RX_UNLOCK, i); } } if (check_all && revents == 0) { /* signal on the global queue */ if (want_tx) selrecord(td, &na->tx_si); if (want_rx) selrecord(td, &na->rx_si); } if (core_lock == LOCKED_CL) na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); return (revents); } /*------- driver support routines ------*/ /* * default lock wrapper. */ static void netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid) { struct netmap_adapter *na = NA(dev); switch (what) { #ifdef linux /* some system do not need lock on register */ case NETMAP_REG_LOCK: case NETMAP_REG_UNLOCK: break; #endif /* linux */ case NETMAP_CORE_LOCK: mtx_lock(&na->core_lock); break; case NETMAP_CORE_UNLOCK: mtx_unlock(&na->core_lock); break; case NETMAP_TX_LOCK: mtx_lock(&na->tx_rings[queueid].q_lock); break; case NETMAP_TX_UNLOCK: mtx_unlock(&na->tx_rings[queueid].q_lock); break; case NETMAP_RX_LOCK: mtx_lock(&na->rx_rings[queueid].q_lock); break; case NETMAP_RX_UNLOCK: mtx_unlock(&na->rx_rings[queueid].q_lock); break; } } /* * Initialize a ``netmap_adapter`` object created by driver on attach. * We allocate a block of memory with room for a struct netmap_adapter * plus two sets of N+2 struct netmap_kring (where N is the number * of hardware rings): * krings 0..N-1 are for the hardware queues. * kring N is for the host stack queue * kring N+1 is only used for the selinfo for all queues. * Return 0 on success, ENOMEM otherwise. * * na->num_tx_rings can be set for cards with different tx/rx setups */ int netmap_attach(struct netmap_adapter *na, int num_queues) { int i, n, size; void *buf; struct ifnet *ifp = na->ifp; if (ifp == NULL) { D("ifp not set, giving up"); return EINVAL; } /* clear other fields ? */ na->refcount = 0; if (na->num_tx_rings == 0) na->num_tx_rings = num_queues; na->num_rx_rings = num_queues; /* on each direction we have N+1 resources * 0..n-1 are the hardware rings * n is the ring attached to the stack. */ n = na->num_rx_rings + na->num_tx_rings + 2; size = sizeof(*na) + n * sizeof(struct netmap_kring); buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (buf) { WNA(ifp) = buf; na->tx_rings = (void *)((char *)buf + sizeof(*na)); na->rx_rings = na->tx_rings + na->num_tx_rings + 1; bcopy(na, buf, sizeof(*na)); ifp->if_capabilities |= IFCAP_NETMAP; na = buf; if (na->nm_lock == NULL) na->nm_lock = netmap_lock_wrapper; mtx_init(&na->core_lock, "netmap core lock", NULL, MTX_DEF); for (i = 0 ; i < na->num_tx_rings + 1; i++) mtx_init(&na->tx_rings[i].q_lock, "netmap txq lock", NULL, MTX_DEF); for (i = 0 ; i < na->num_rx_rings + 1; i++) mtx_init(&na->rx_rings[i].q_lock, "netmap rxq lock", NULL, MTX_DEF); } #ifdef linux D("netdev_ops %p", ifp->netdev_ops); /* prepare a clone of the netdev ops */ na->nm_ndo = *ifp->netdev_ops; na->nm_ndo.ndo_start_xmit = netmap_start_linux; #endif D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); return (buf ? 0 : ENOMEM); } /* * Free the allocated memory linked to the given ``netmap_adapter`` * object. */ void netmap_detach(struct ifnet *ifp) { u_int i; struct netmap_adapter *na = NA(ifp); if (!na) return; for (i = 0; i < na->num_tx_rings + 1; i++) { knlist_destroy(&na->tx_rings[i].si.si_note); mtx_destroy(&na->tx_rings[i].q_lock); } for (i = 0; i < na->num_rx_rings + 1; i++) { knlist_destroy(&na->rx_rings[i].si.si_note); mtx_destroy(&na->rx_rings[i].q_lock); } knlist_destroy(&na->tx_si.si_note); knlist_destroy(&na->rx_si.si_note); bzero(na, sizeof(*na)); WNA(ifp) = NULL; free(na, M_DEVBUF); } /* * Intercept packets from the network stack and pass them * to netmap as incoming packets on the 'software' ring. * We are not locked when called. */ int netmap_start(struct ifnet *ifp, struct mbuf *m) { struct netmap_adapter *na = NA(ifp); struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings]; u_int i, len = MBUF_LEN(m); int error = EBUSY, lim = kring->nkr_num_slots - 1; struct netmap_slot *slot; if (netmap_verbose & NM_VERB_HOST) D("%s packet %d len %d from the stack", ifp->if_xname, kring->nr_hwcur + kring->nr_hwavail, len); na->nm_lock(ifp, NETMAP_CORE_LOCK, 0); if (kring->nr_hwavail >= lim) { if (netmap_verbose) D("stack ring %s full\n", ifp->if_xname); goto done; /* no space */ } if (len > NETMAP_BUF_SIZE) { D("drop packet size %d > %d", len, NETMAP_BUF_SIZE); goto done; /* too long for us */ } /* compute the insert position */ i = kring->nr_hwcur + kring->nr_hwavail; if (i > lim) i -= lim + 1; slot = &kring->ring->slot[i]; m_copydata(m, 0, len, NMB(slot)); slot->len = len; kring->nr_hwavail++; if (netmap_verbose & NM_VERB_HOST) D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings); selwakeuppri(&kring->si, PI_NET); error = 0; done: na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0); /* release the mbuf in either cases of success or failure. As an * alternative, put the mbuf in a free list and free the list * only when really necessary. */ m_freem(m); return (error); } /* * netmap_reset() is called by the driver routines when reinitializing * a ring. The driver is in charge of locking to protect the kring. * If netmap mode is not set just return NULL. */ struct netmap_slot * netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, u_int new_cur) { struct netmap_kring *kring; int new_hwofs, lim; if (na == NULL) return NULL; /* no netmap support here */ if (!(na->ifp->if_capenable & IFCAP_NETMAP)) return NULL; /* nothing to reinitialize */ if (tx == NR_TX) { kring = na->tx_rings + n; new_hwofs = kring->nr_hwcur - new_cur; } else { kring = na->rx_rings + n; new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; } lim = kring->nkr_num_slots - 1; if (new_hwofs > lim) new_hwofs -= lim + 1; /* Alwayws set the new offset value and realign the ring. */ kring->nkr_hwofs = new_hwofs; if (tx == NR_TX) kring->nr_hwavail = kring->nkr_num_slots - 1; D("new hwofs %d on %s %s[%d]", kring->nkr_hwofs, na->ifp->if_xname, tx == NR_TX ? "TX" : "RX", n); /* * Wakeup on the individual and global lock * We do the wakeup here, but the ring is not yet reconfigured. * However, we are under lock so there are no races. */ selwakeuppri(&kring->si, PI_NET); selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET); return kring->ring->slot; } /* * Default functions to handle rx/tx interrupts * we have 4 cases: * 1 ring, single lock: * lock(core); wake(i=0); unlock(core) * N rings, single lock: * lock(core); wake(i); wake(N+1) unlock(core) * 1 ring, separate locks: (i=0) * lock(i); wake(i); unlock(i) * N rings, separate locks: * lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core) * work_done is non-null on the RX path. */ int netmap_rx_irq(struct ifnet *ifp, int q, int *work_done) { struct netmap_adapter *na; struct netmap_kring *r; NM_SELINFO_T *main_wq; if (!(ifp->if_capenable & IFCAP_NETMAP)) return 0; na = NA(ifp); if (work_done) { /* RX path */ r = na->rx_rings + q; r->nr_kflags |= NKR_PENDINTR; main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL; } else { /* tx path */ r = na->tx_rings + q; main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL; work_done = &q; /* dummy */ } if (na->separate_locks) { mtx_lock(&r->q_lock); selwakeuppri(&r->si, PI_NET); mtx_unlock(&r->q_lock); if (main_wq) { mtx_lock(&na->core_lock); selwakeuppri(main_wq, PI_NET); mtx_unlock(&na->core_lock); } } else { mtx_lock(&na->core_lock); selwakeuppri(&r->si, PI_NET); if (main_wq) selwakeuppri(main_wq, PI_NET); mtx_unlock(&na->core_lock); } *work_done = 1; /* do not fire napi again */ return 1; } static struct cdevsw netmap_cdevsw = { .d_version = D_VERSION, .d_name = "netmap", .d_mmap = netmap_mmap, .d_ioctl = netmap_ioctl, .d_poll = netmap_poll, }; static struct cdev *netmap_dev; /* /dev/netmap character device. */ /* * Module loader. * * Create the /dev/netmap device and initialize all global * variables. * * Return 0 on success, errno on failure. */ static int netmap_init(void) { int error; error = netmap_memory_init(); if (error != 0) { printf("netmap: unable to initialize the memory allocator."); return (error); } printf("netmap: loaded module with %d Mbytes\n", (int)(nm_mem->nm_totalsize >> 20)); netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, "netmap"); return (error); } /* * Module unloader. * * Free all the memory, and destroy the ``/dev/netmap`` device. */ static void netmap_fini(void) { destroy_dev(netmap_dev); netmap_memory_fini(); printf("netmap: unloaded module.\n"); } /* * Kernel entry point. * * Initialize/finalize the module and return. * * Return 0 on success, errno on failure. */ static int netmap_loader(__unused struct module *module, int event, __unused void *arg) { int error = 0; switch (event) { case MOD_LOAD: error = netmap_init(); break; case MOD_UNLOAD: netmap_fini(); break; default: error = EOPNOTSUPP; break; } return (error); } DEV_MODULE(netmap, netmap_loader, NULL);