Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_carp/@/geom/raid/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_carp/@/geom/raid/tr_raid5.c |
/*- * Copyright (c) 2012 Alexander Motin <mav@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/geom/raid/tr_raid5.c 240558 2012-09-16 11:02:22Z mav $"); #include <sys/param.h> #include <sys/bio.h> #include <sys/endian.h> #include <sys/kernel.h> #include <sys/kobj.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/sysctl.h> #include <sys/systm.h> #include <geom/geom.h> #include "geom/raid/g_raid.h" #include "g_raid_tr_if.h" static MALLOC_DEFINE(M_TR_RAID5, "tr_raid5_data", "GEOM_RAID RAID5 data"); #define TR_RAID5_NONE 0 #define TR_RAID5_REBUILD 1 #define TR_RAID5_RESYNC 2 #define TR_RAID5_F_DOING_SOME 0x1 #define TR_RAID5_F_LOCKED 0x2 #define TR_RAID5_F_ABORT 0x4 struct g_raid_tr_raid5_object { struct g_raid_tr_object trso_base; int trso_starting; int trso_stopping; int trso_type; int trso_recover_slabs; /* slabs before rest */ int trso_fair_io; int trso_meta_update; int trso_flags; struct g_raid_subdisk *trso_failed_sd; /* like per volume */ void *trso_buffer; /* Buffer space */ struct bio trso_bio; }; static g_raid_tr_taste_t g_raid_tr_taste_raid5; static g_raid_tr_event_t g_raid_tr_event_raid5; static g_raid_tr_start_t g_raid_tr_start_raid5; static g_raid_tr_stop_t g_raid_tr_stop_raid5; static g_raid_tr_iostart_t g_raid_tr_iostart_raid5; static g_raid_tr_iodone_t g_raid_tr_iodone_raid5; static g_raid_tr_kerneldump_t g_raid_tr_kerneldump_raid5; static g_raid_tr_locked_t g_raid_tr_locked_raid5; static g_raid_tr_free_t g_raid_tr_free_raid5; static kobj_method_t g_raid_tr_raid5_methods[] = { KOBJMETHOD(g_raid_tr_taste, g_raid_tr_taste_raid5), KOBJMETHOD(g_raid_tr_event, g_raid_tr_event_raid5), KOBJMETHOD(g_raid_tr_start, g_raid_tr_start_raid5), KOBJMETHOD(g_raid_tr_stop, g_raid_tr_stop_raid5), KOBJMETHOD(g_raid_tr_iostart, g_raid_tr_iostart_raid5), KOBJMETHOD(g_raid_tr_iodone, g_raid_tr_iodone_raid5), KOBJMETHOD(g_raid_tr_kerneldump, g_raid_tr_kerneldump_raid5), KOBJMETHOD(g_raid_tr_locked, g_raid_tr_locked_raid5), KOBJMETHOD(g_raid_tr_free, g_raid_tr_free_raid5), { 0, 0 } }; static struct g_raid_tr_class g_raid_tr_raid5_class = { "RAID5", g_raid_tr_raid5_methods, sizeof(struct g_raid_tr_raid5_object), .trc_enable = 1, .trc_priority = 100 }; static int g_raid_tr_taste_raid5(struct g_raid_tr_object *tr, struct g_raid_volume *vol) { struct g_raid_tr_raid5_object *trs; u_int qual; trs = (struct g_raid_tr_raid5_object *)tr; qual = tr->tro_volume->v_raid_level_qualifier; if (tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID4 && qual >= 0 && qual <= 1) { /* RAID4 */ } else if ((tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID5 || tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID5E || tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID5EE || tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID5R || tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAID6 || tr->tro_volume->v_raid_level == G_RAID_VOLUME_RL_RAIDMDF) && qual >= 0 && qual <= 3) { /* RAID5/5E/5EE/5R/6/MDF */ } else return (G_RAID_TR_TASTE_FAIL); trs->trso_starting = 1; return (G_RAID_TR_TASTE_SUCCEED); } static int g_raid_tr_update_state_raid5(struct g_raid_volume *vol, struct g_raid_subdisk *sd) { struct g_raid_tr_raid5_object *trs; struct g_raid_softc *sc; u_int s; int na, ns, nu; sc = vol->v_softc; trs = (struct g_raid_tr_raid5_object *)vol->v_tr; if (trs->trso_stopping && (trs->trso_flags & TR_RAID5_F_DOING_SOME) == 0) s = G_RAID_VOLUME_S_STOPPED; else if (trs->trso_starting) s = G_RAID_VOLUME_S_STARTING; else { na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE); ns = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) + g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC); nu = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED); if (na == vol->v_disks_count) s = G_RAID_VOLUME_S_OPTIMAL; else if (na + ns == vol->v_disks_count || na + ns + nu == vol->v_disks_count /* XXX: Temporary. */) s = G_RAID_VOLUME_S_SUBOPTIMAL; else if (na == vol->v_disks_count - 1 || na + ns + nu == vol->v_disks_count) s = G_RAID_VOLUME_S_DEGRADED; else s = G_RAID_VOLUME_S_BROKEN; } if (s != vol->v_state) { g_raid_event_send(vol, G_RAID_VOLUME_S_ALIVE(s) ? G_RAID_VOLUME_E_UP : G_RAID_VOLUME_E_DOWN, G_RAID_EVENT_VOLUME); g_raid_change_volume_state(vol, s); if (!trs->trso_starting && !trs->trso_stopping) g_raid_write_metadata(sc, vol, NULL, NULL); } return (0); } static int g_raid_tr_event_raid5(struct g_raid_tr_object *tr, struct g_raid_subdisk *sd, u_int event) { g_raid_tr_update_state_raid5(tr->tro_volume, sd); return (0); } static int g_raid_tr_start_raid5(struct g_raid_tr_object *tr) { struct g_raid_tr_raid5_object *trs; struct g_raid_volume *vol; trs = (struct g_raid_tr_raid5_object *)tr; vol = tr->tro_volume; trs->trso_starting = 0; g_raid_tr_update_state_raid5(vol, NULL); return (0); } static int g_raid_tr_stop_raid5(struct g_raid_tr_object *tr) { struct g_raid_tr_raid5_object *trs; struct g_raid_volume *vol; trs = (struct g_raid_tr_raid5_object *)tr; vol = tr->tro_volume; trs->trso_starting = 0; trs->trso_stopping = 1; g_raid_tr_update_state_raid5(vol, NULL); return (0); } static void g_raid_tr_iostart_raid5_read(struct g_raid_tr_object *tr, struct bio *bp) { struct g_raid_volume *vol; struct g_raid_subdisk *sd; struct bio_queue_head queue; struct bio *cbp; char *addr; off_t offset, start, length, nstripe, remain; int no, pno, ddisks, pdisks, protate, pleft; u_int strip_size, lvl, qual; vol = tr->tro_volume; addr = bp->bio_data; strip_size = vol->v_strip_size; lvl = tr->tro_volume->v_raid_level; qual = tr->tro_volume->v_raid_level_qualifier; protate = tr->tro_volume->v_rotate_parity; /* Stripe number. */ nstripe = bp->bio_offset / strip_size; /* Start position in stripe. */ start = bp->bio_offset % strip_size; /* Number of data and parity disks. */ if (lvl == G_RAID_VOLUME_RL_RAIDMDF) pdisks = tr->tro_volume->v_mdf_pdisks; else if (lvl == G_RAID_VOLUME_RL_RAID5EE || lvl == G_RAID_VOLUME_RL_RAID6) pdisks = 2; else pdisks = 1; ddisks = vol->v_disks_count - pdisks; /* Parity disk number. */ if (lvl == G_RAID_VOLUME_RL_RAID4) { if (qual == 0) /* P0 */ pno = 0; else /* PN */ pno = ddisks; pleft = -1; } else { pno = (nstripe / (ddisks * protate)) % vol->v_disks_count; pleft = protate - (nstripe / ddisks) % protate; if (qual >= 2) { /* PN/Left */ pno = ddisks - pno; if (pno < 0) pno += vol->v_disks_count; } } /* Data disk number. */ no = nstripe % ddisks; if (lvl == G_RAID_VOLUME_RL_RAID4) { if (qual == 0) no += pdisks; } else if (qual & 1) { /* Continuation/Symmetric */ no = (pno + pdisks + no) % vol->v_disks_count; } else if (no >= pno) /* Restart/Asymmetric */ no += pdisks; else no += imax(0, pno + pdisks - vol->v_disks_count); /* Stripe start position in disk. */ offset = (nstripe / ddisks) * strip_size; /* Length of data to operate. */ remain = bp->bio_length; bioq_init(&queue); do { length = MIN(strip_size - start, remain); cbp = g_clone_bio(bp); if (cbp == NULL) goto failure; cbp->bio_offset = offset + start; cbp->bio_data = addr; cbp->bio_length = length; cbp->bio_caller1 = &vol->v_subdisks[no]; bioq_insert_tail(&queue, cbp); no++; if (lvl == G_RAID_VOLUME_RL_RAID4) { no %= vol->v_disks_count; if (no == pno) no = (no + pdisks) % vol->v_disks_count; } else if (qual & 1) { /* Continuation/Symmetric */ no %= vol->v_disks_count; if (no == pno) { if ((--pleft) <= 0) { pleft += protate; if (qual < 2) /* P0/Right */ pno++; else /* PN/Left */ pno += vol->v_disks_count - 1; pno %= vol->v_disks_count; } no = (pno + pdisks) % vol->v_disks_count; offset += strip_size; } } else { /* Restart/Asymmetric */ if (no == pno) no += pdisks; if (no >= vol->v_disks_count) { no -= vol->v_disks_count; if ((--pleft) <= 0) { pleft += protate; if (qual < 2) /* P0/Right */ pno++; else /* PN/Left */ pno += vol->v_disks_count - 1; pno %= vol->v_disks_count; } if (no == pno) no += pdisks; else no += imax(0, pno + pdisks - vol->v_disks_count); offset += strip_size; } } remain -= length; addr += length; start = 0; } while (remain > 0); for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); sd = cbp->bio_caller1; cbp->bio_caller1 = NULL; g_raid_subdisk_iostart(sd, cbp); } return; failure: for (cbp = bioq_first(&queue); cbp != NULL; cbp = bioq_first(&queue)) { bioq_remove(&queue, cbp); g_destroy_bio(cbp); } if (bp->bio_error == 0) bp->bio_error = ENOMEM; g_raid_iodone(bp, bp->bio_error); } static void g_raid_tr_iostart_raid5(struct g_raid_tr_object *tr, struct bio *bp) { struct g_raid_volume *vol; struct g_raid_tr_raid5_object *trs; vol = tr->tro_volume; trs = (struct g_raid_tr_raid5_object *)tr; if (vol->v_state < G_RAID_VOLUME_S_SUBOPTIMAL) { g_raid_iodone(bp, EIO); return; } switch (bp->bio_cmd) { case BIO_READ: g_raid_tr_iostart_raid5_read(tr, bp); break; case BIO_WRITE: case BIO_DELETE: case BIO_FLUSH: g_raid_iodone(bp, ENODEV); break; default: KASSERT(1 == 0, ("Invalid command here: %u (volume=%s)", bp->bio_cmd, vol->v_name)); break; } } static void g_raid_tr_iodone_raid5(struct g_raid_tr_object *tr, struct g_raid_subdisk *sd, struct bio *bp) { struct bio *pbp; int error; pbp = bp->bio_parent; pbp->bio_inbed++; error = bp->bio_error; g_destroy_bio(bp); if (pbp->bio_children == pbp->bio_inbed) { pbp->bio_completed = pbp->bio_length; g_raid_iodone(pbp, error); } } static int g_raid_tr_kerneldump_raid5(struct g_raid_tr_object *tr, void *virtual, vm_offset_t physical, off_t offset, size_t length) { return (ENODEV); } static int g_raid_tr_locked_raid5(struct g_raid_tr_object *tr, void *argp) { struct bio *bp; struct g_raid_subdisk *sd; bp = (struct bio *)argp; sd = (struct g_raid_subdisk *)bp->bio_caller1; g_raid_subdisk_iostart(sd, bp); return (0); } static int g_raid_tr_free_raid5(struct g_raid_tr_object *tr) { struct g_raid_tr_raid5_object *trs; trs = (struct g_raid_tr_raid5_object *)tr; if (trs->trso_buffer != NULL) { free(trs->trso_buffer, M_TR_RAID5); trs->trso_buffer = NULL; } return (0); } G_RAID_TR_DECLARE(raid5, "RAID5");