Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_gre/@/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_gre/@/kern/kern_ktrace.c.orig |
/*- * Copyright (c) 1989, 1993 * The Regents of the University of California. * Copyright (c) 2005 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93 */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/kern_ktrace.c 237719 2012-06-28 18:38:24Z jhb $"); #include "opt_ktrace.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/fcntl.h> #include <sys/kernel.h> #include <sys/kthread.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/malloc.h> #include <sys/mount.h> #include <sys/namei.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/unistd.h> #include <sys/vnode.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/ktrace.h> #include <sys/sx.h> #include <sys/sysctl.h> #include <sys/sysent.h> #include <sys/syslog.h> #include <sys/sysproto.h> #include <security/mac/mac_framework.h> /* * The ktrace facility allows the tracing of certain key events in user space * processes, such as system calls, signal delivery, context switches, and * user generated events using utrace(2). It works by streaming event * records and data to a vnode associated with the process using the * ktrace(2) system call. In general, records can be written directly from * the context that generates the event. One important exception to this is * during a context switch, where sleeping is not permitted. To handle this * case, trace events are generated using in-kernel ktr_request records, and * then delivered to disk at a convenient moment -- either immediately, the * next traceable event, at system call return, or at process exit. * * When dealing with multiple threads or processes writing to the same event * log, ordering guarantees are weak: specifically, if an event has multiple * records (i.e., system call enter and return), they may be interlaced with * records from another event. Process and thread ID information is provided * in the record, and user applications can de-interlace events if required. */ static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE"); #ifdef KTRACE FEATURE(ktrace, "Kernel support for system-call tracing"); #ifndef KTRACE_REQUEST_POOL #define KTRACE_REQUEST_POOL 100 #endif struct ktr_request { struct ktr_header ktr_header; void *ktr_buffer; union { struct ktr_proc_ctor ktr_proc_ctor; struct ktr_syscall ktr_syscall; struct ktr_sysret ktr_sysret; struct ktr_genio ktr_genio; struct ktr_psig ktr_psig; struct ktr_csw ktr_csw; struct ktr_fault ktr_fault; struct ktr_faultend ktr_faultend; } ktr_data; STAILQ_ENTRY(ktr_request) ktr_list; }; static int data_lengths[] = { 0, /* none */ offsetof(struct ktr_syscall, ktr_args), /* KTR_SYSCALL */ sizeof(struct ktr_sysret), /* KTR_SYSRET */ 0, /* KTR_NAMEI */ sizeof(struct ktr_genio), /* KTR_GENIO */ sizeof(struct ktr_psig), /* KTR_PSIG */ sizeof(struct ktr_csw), /* KTR_CSW */ 0, /* KTR_USER */ 0, /* KTR_STRUCT */ 0, /* KTR_SYSCTL */ sizeof(struct ktr_proc_ctor), /* KTR_PROCCTOR */ 0, /* KTR_PROCDTOR */ sizeof(struct ktr_fault), /* KTR_FAULT */ sizeof(struct ktr_faultend), /* KTR_FAULTEND */ }; static STAILQ_HEAD(, ktr_request) ktr_free; static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options"); static u_int ktr_requestpool = KTRACE_REQUEST_POOL; TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool); static u_int ktr_geniosize = PAGE_SIZE; TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize); SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize, 0, "Maximum size of genio event payload"); static int print_message = 1; static struct mtx ktrace_mtx; static struct sx ktrace_sx; static void ktrace_init(void *dummy); static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS); static u_int ktrace_resize_pool(u_int oldsize, u_int newsize); static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type); static struct ktr_request *ktr_getrequest(int type); static void ktr_submitrequest(struct thread *td, struct ktr_request *req); static void ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp); static void ktr_freerequest(struct ktr_request *req); static void ktr_freerequest_locked(struct ktr_request *req); static void ktr_writerequest(struct thread *td, struct ktr_request *req); static int ktrcanset(struct thread *,struct proc *); static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *); static int ktrops(struct thread *,struct proc *,int,int,struct vnode *); static void ktrprocctor_entered(struct thread *, struct proc *); /* * ktrace itself generates events, such as context switches, which we do not * wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine * whether or not it is in a region where tracing of events should be * suppressed. */ static void ktrace_enter(struct thread *td) { KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set")); td->td_pflags |= TDP_INKTRACE; } static void ktrace_exit(struct thread *td) { KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set")); td->td_pflags &= ~TDP_INKTRACE; } static void ktrace_assert(struct thread *td) { KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set")); } static void ktrace_init(void *dummy) { struct ktr_request *req; int i; mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET); sx_init(&ktrace_sx, "ktrace_sx"); STAILQ_INIT(&ktr_free); for (i = 0; i < ktr_requestpool; i++) { req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK); STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); } } SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL); static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS) { struct thread *td; u_int newsize, oldsize, wantsize; int error; /* Handle easy read-only case first to avoid warnings from GCC. */ if (!req->newptr) { oldsize = ktr_requestpool; return (SYSCTL_OUT(req, &oldsize, sizeof(u_int))); } error = SYSCTL_IN(req, &wantsize, sizeof(u_int)); if (error) return (error); td = curthread; ktrace_enter(td); oldsize = ktr_requestpool; newsize = ktrace_resize_pool(oldsize, wantsize); ktrace_exit(td); error = SYSCTL_OUT(req, &oldsize, sizeof(u_int)); if (error) return (error); if (wantsize > oldsize && newsize < wantsize) return (ENOSPC); return (0); } SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW, &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "Pool buffer size for ktrace(1)"); static u_int ktrace_resize_pool(u_int oldsize, u_int newsize) { STAILQ_HEAD(, ktr_request) ktr_new; struct ktr_request *req; int bound; print_message = 1; bound = newsize - oldsize; if (bound == 0) return (ktr_requestpool); if (bound < 0) { mtx_lock(&ktrace_mtx); /* Shrink pool down to newsize if possible. */ while (bound++ < 0) { req = STAILQ_FIRST(&ktr_free); if (req == NULL) break; STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); ktr_requestpool--; free(req, M_KTRACE); } } else { /* Grow pool up to newsize. */ STAILQ_INIT(&ktr_new); while (bound-- > 0) { req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK); STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list); } mtx_lock(&ktrace_mtx); STAILQ_CONCAT(&ktr_free, &ktr_new); ktr_requestpool += (newsize - oldsize); } mtx_unlock(&ktrace_mtx); return (ktr_requestpool); } /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */ CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) == (sizeof((struct thread *)NULL)->td_name)); static struct ktr_request * ktr_getrequest_entered(struct thread *td, int type) { struct ktr_request *req; struct proc *p = td->td_proc; int pm; mtx_lock(&ktrace_mtx); if (!KTRCHECK(td, type)) { mtx_unlock(&ktrace_mtx); return (NULL); } req = STAILQ_FIRST(&ktr_free); if (req != NULL) { STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); req->ktr_header.ktr_type = type; if (p->p_traceflag & KTRFAC_DROP) { req->ktr_header.ktr_type |= KTR_DROP; p->p_traceflag &= ~KTRFAC_DROP; } mtx_unlock(&ktrace_mtx); microtime(&req->ktr_header.ktr_time); req->ktr_header.ktr_pid = p->p_pid; req->ktr_header.ktr_tid = td->td_tid; bcopy(td->td_name, req->ktr_header.ktr_comm, sizeof(req->ktr_header.ktr_comm)); req->ktr_buffer = NULL; req->ktr_header.ktr_len = 0; } else { p->p_traceflag |= KTRFAC_DROP; pm = print_message; print_message = 0; mtx_unlock(&ktrace_mtx); if (pm) printf("Out of ktrace request objects.\n"); } return (req); } static struct ktr_request * ktr_getrequest(int type) { struct thread *td = curthread; struct ktr_request *req; ktrace_enter(td); req = ktr_getrequest_entered(td, type); if (req == NULL) ktrace_exit(td); return (req); } /* * Some trace generation environments don't permit direct access to VFS, * such as during a context switch where sleeping is not allowed. Under these * circumstances, queue a request to the thread to be written asynchronously * later. */ static void ktr_enqueuerequest(struct thread *td, struct ktr_request *req) { mtx_lock(&ktrace_mtx); STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list); mtx_unlock(&ktrace_mtx); } /* * Drain any pending ktrace records from the per-thread queue to disk. This * is used both internally before committing other records, and also on * system call return. We drain all the ones we can find at the time when * drain is requested, but don't keep draining after that as those events * may be approximately "after" the current event. */ static void ktr_drain(struct thread *td) { struct ktr_request *queued_req; STAILQ_HEAD(, ktr_request) local_queue; ktrace_assert(td); sx_assert(&ktrace_sx, SX_XLOCKED); STAILQ_INIT(&local_queue); if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) { mtx_lock(&ktrace_mtx); STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr); mtx_unlock(&ktrace_mtx); while ((queued_req = STAILQ_FIRST(&local_queue))) { STAILQ_REMOVE_HEAD(&local_queue, ktr_list); ktr_writerequest(td, queued_req); ktr_freerequest(queued_req); } } } /* * Submit a trace record for immediate commit to disk -- to be used only * where entering VFS is OK. First drain any pending records that may have * been cached in the thread. */ static void ktr_submitrequest(struct thread *td, struct ktr_request *req) { ktrace_assert(td); sx_xlock(&ktrace_sx); ktr_drain(td); ktr_writerequest(td, req); ktr_freerequest(req); sx_xunlock(&ktrace_sx); ktrace_exit(td); } static void ktr_freerequest(struct ktr_request *req) { mtx_lock(&ktrace_mtx); ktr_freerequest_locked(req); mtx_unlock(&ktrace_mtx); } static void ktr_freerequest_locked(struct ktr_request *req) { mtx_assert(&ktrace_mtx, MA_OWNED); if (req->ktr_buffer != NULL) free(req->ktr_buffer, M_KTRACE); STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); } /* * Disable tracing for a process and release all associated resources. * The caller is responsible for releasing a reference on the returned * vnode and credentials. */ static void ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp) { struct ktr_request *req; PROC_LOCK_ASSERT(p, MA_OWNED); mtx_assert(&ktrace_mtx, MA_OWNED); *uc = p->p_tracecred; p->p_tracecred = NULL; if (vp != NULL) *vp = p->p_tracevp; p->p_tracevp = NULL; p->p_traceflag = 0; while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) { STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list); ktr_freerequest_locked(req); } } void ktrsyscall(code, narg, args) int code, narg; register_t args[]; { struct ktr_request *req; struct ktr_syscall *ktp; size_t buflen; char *buf = NULL; buflen = sizeof(register_t) * narg; if (buflen > 0) { buf = malloc(buflen, M_KTRACE, M_WAITOK); bcopy(args, buf, buflen); } req = ktr_getrequest(KTR_SYSCALL); if (req == NULL) { if (buf != NULL) free(buf, M_KTRACE); return; } ktp = &req->ktr_data.ktr_syscall; ktp->ktr_code = code; ktp->ktr_narg = narg; if (buflen > 0) { req->ktr_header.ktr_len = buflen; req->ktr_buffer = buf; } ktr_submitrequest(curthread, req); } void ktrsysret(code, error, retval) int code, error; register_t retval; { struct ktr_request *req; struct ktr_sysret *ktp; req = ktr_getrequest(KTR_SYSRET); if (req == NULL) return; ktp = &req->ktr_data.ktr_sysret; ktp->ktr_code = code; ktp->ktr_error = error; ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */ ktr_submitrequest(curthread, req); } /* * When a setuid process execs, disable tracing. * * XXX: We toss any pending asynchronous records. */ void ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp) { PROC_LOCK_ASSERT(p, MA_OWNED); mtx_lock(&ktrace_mtx); ktr_freeproc(p, uc, vp); mtx_unlock(&ktrace_mtx); } /* * When a process exits, drain per-process asynchronous trace records * and disable tracing. */ void ktrprocexit(struct thread *td) { struct ktr_request *req; struct proc *p; struct ucred *cred; struct vnode *vp; int vfslocked; p = td->td_proc; if (p->p_traceflag == 0) return; ktrace_enter(td); req = ktr_getrequest_entered(td, KTR_PROCDTOR); if (req != NULL) ktr_enqueuerequest(td, req); sx_xlock(&ktrace_sx); ktr_drain(td); sx_xunlock(&ktrace_sx); PROC_LOCK(p); mtx_lock(&ktrace_mtx); ktr_freeproc(p, &cred, &vp); mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p); if (vp != NULL) { vfslocked = VFS_LOCK_GIANT(vp->v_mount); vrele(vp); VFS_UNLOCK_GIANT(vfslocked); } if (cred != NULL) crfree(cred); ktrace_exit(td); } static void ktrprocctor_entered(struct thread *td, struct proc *p) { struct ktr_proc_ctor *ktp; struct ktr_request *req; struct thread *td2; ktrace_assert(td); td2 = FIRST_THREAD_IN_PROC(p); req = ktr_getrequest_entered(td2, KTR_PROCCTOR); if (req == NULL) return; ktp = &req->ktr_data.ktr_proc_ctor; ktp->sv_flags = p->p_sysent->sv_flags; ktr_enqueuerequest(td2, req); } void ktrprocctor(struct proc *p) { struct thread *td = curthread; if ((p->p_traceflag & KTRFAC_MASK) == 0) return; ktrace_enter(td); ktrprocctor_entered(td, p); ktrace_exit(td); } /* * When a process forks, enable tracing in the new process if needed. */ void ktrprocfork(struct proc *p1, struct proc *p2) { PROC_LOCK(p1); mtx_lock(&ktrace_mtx); KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode")); if (p1->p_traceflag & KTRFAC_INHERIT) { p2->p_traceflag = p1->p_traceflag; if ((p2->p_tracevp = p1->p_tracevp) != NULL) { VREF(p2->p_tracevp); KASSERT(p1->p_tracecred != NULL, ("ktrace vnode with no cred")); p2->p_tracecred = crhold(p1->p_tracecred); } } mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p1); ktrprocctor(p2); } /* * When a thread returns, drain any asynchronous records generated by the * system call. */ void ktruserret(struct thread *td) { ktrace_enter(td); sx_xlock(&ktrace_sx); ktr_drain(td); sx_xunlock(&ktrace_sx); ktrace_exit(td); } void ktrnamei(path) char *path; { struct ktr_request *req; int namelen; char *buf = NULL; namelen = strlen(path); if (namelen > 0) { buf = malloc(namelen, M_KTRACE, M_WAITOK); bcopy(path, buf, namelen); } req = ktr_getrequest(KTR_NAMEI); if (req == NULL) { if (buf != NULL) free(buf, M_KTRACE); return; } if (namelen > 0) { req->ktr_header.ktr_len = namelen; req->ktr_buffer = buf; } ktr_submitrequest(curthread, req); } void ktrsysctl(name, namelen) int *name; u_int namelen; { struct ktr_request *req; u_int mib[CTL_MAXNAME + 2]; char *mibname; size_t mibnamelen; int error; /* Lookup name of mib. */ KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long")); mib[0] = 0; mib[1] = 1; bcopy(name, mib + 2, namelen * sizeof(*name)); mibnamelen = 128; mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK); error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen, NULL, 0, &mibnamelen, 0); if (error) { free(mibname, M_KTRACE); return; } req = ktr_getrequest(KTR_SYSCTL); if (req == NULL) { free(mibname, M_KTRACE); return; } req->ktr_header.ktr_len = mibnamelen; req->ktr_buffer = mibname; ktr_submitrequest(curthread, req); } void ktrgenio(fd, rw, uio, error) int fd; enum uio_rw rw; struct uio *uio; int error; { struct ktr_request *req; struct ktr_genio *ktg; int datalen; char *buf; if (error) { free(uio, M_IOV); return; } uio->uio_offset = 0; uio->uio_rw = UIO_WRITE; datalen = MIN(uio->uio_resid, ktr_geniosize); buf = malloc(datalen, M_KTRACE, M_WAITOK); error = uiomove(buf, datalen, uio); free(uio, M_IOV); if (error) { free(buf, M_KTRACE); return; } req = ktr_getrequest(KTR_GENIO); if (req == NULL) { free(buf, M_KTRACE); return; } ktg = &req->ktr_data.ktr_genio; ktg->ktr_fd = fd; ktg->ktr_rw = rw; req->ktr_header.ktr_len = datalen; req->ktr_buffer = buf; ktr_submitrequest(curthread, req); } void ktrpsig(sig, action, mask, code) int sig; sig_t action; sigset_t *mask; int code; { struct thread *td = curthread; struct ktr_request *req; struct ktr_psig *kp; req = ktr_getrequest(KTR_PSIG); if (req == NULL) return; kp = &req->ktr_data.ktr_psig; kp->signo = (char)sig; kp->action = action; kp->mask = *mask; kp->code = code; ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrcsw(out, user, wmesg) int out, user; const char *wmesg; { struct thread *td = curthread; struct ktr_request *req; struct ktr_csw *kc; req = ktr_getrequest(KTR_CSW); if (req == NULL) return; kc = &req->ktr_data.ktr_csw; kc->out = out; kc->user = user; if (wmesg != NULL) strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg)); else bzero(kc->wmesg, sizeof(kc->wmesg)); ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrstruct(name, data, datalen) const char *name; void *data; size_t datalen; { struct ktr_request *req; char *buf = NULL; size_t buflen; if (!data) datalen = 0; buflen = strlen(name) + 1 + datalen; buf = malloc(buflen, M_KTRACE, M_WAITOK); strcpy(buf, name); bcopy(data, buf + strlen(name) + 1, datalen); if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) { free(buf, M_KTRACE); return; } req->ktr_buffer = buf; req->ktr_header.ktr_len = buflen; ktr_submitrequest(curthread, req); } void ktrfault(vaddr, type) vm_offset_t vaddr; int type; { struct thread *td = curthread; struct ktr_request *req; struct ktr_fault *kf; req = ktr_getrequest(KTR_FAULT); if (req == NULL) return; kf = &req->ktr_data.ktr_fault; kf->vaddr = vaddr; kf->type = type; ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrfaultend(result) int result; { struct thread *td = curthread; struct ktr_request *req; struct ktr_faultend *kf; req = ktr_getrequest(KTR_FAULTEND); if (req == NULL) return; kf = &req->ktr_data.ktr_faultend; kf->result = result; ktr_enqueuerequest(td, req); ktrace_exit(td); } #endif /* KTRACE */ /* Interface and common routines */ #ifndef _SYS_SYSPROTO_H_ struct ktrace_args { char *fname; int ops; int facs; int pid; }; #endif /* ARGSUSED */ int sys_ktrace(td, uap) struct thread *td; register struct ktrace_args *uap; { #ifdef KTRACE register struct vnode *vp = NULL; register struct proc *p; struct pgrp *pg; int facs = uap->facs & ~KTRFAC_ROOT; int ops = KTROP(uap->ops); int descend = uap->ops & KTRFLAG_DESCEND; int nfound, ret = 0; int flags, error = 0, vfslocked; struct nameidata nd; struct ucred *cred; /* * Need something to (un)trace. */ if (ops != KTROP_CLEARFILE && facs == 0) return (EINVAL); ktrace_enter(td); if (ops != KTROP_CLEAR) { /* * an operation which requires a file argument. */ NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_USERSPACE, uap->fname, td); flags = FREAD | FWRITE | O_NOFOLLOW; error = vn_open(&nd, &flags, 0, NULL); if (error) { ktrace_exit(td); return (error); } vfslocked = NDHASGIANT(&nd); NDFREE(&nd, NDF_ONLY_PNBUF); vp = nd.ni_vp; VOP_UNLOCK(vp, 0); if (vp->v_type != VREG) { (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td); VFS_UNLOCK_GIANT(vfslocked); ktrace_exit(td); return (EACCES); } VFS_UNLOCK_GIANT(vfslocked); } /* * Clear all uses of the tracefile. */ if (ops == KTROP_CLEARFILE) { int vrele_count; vrele_count = 0; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_tracevp == vp) { if (ktrcanset(td, p)) { mtx_lock(&ktrace_mtx); ktr_freeproc(p, &cred, NULL); mtx_unlock(&ktrace_mtx); vrele_count++; crfree(cred); } else error = EPERM; } PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); if (vrele_count > 0) { vfslocked = VFS_LOCK_GIANT(vp->v_mount); while (vrele_count-- > 0) vrele(vp); VFS_UNLOCK_GIANT(vfslocked); } goto done; } /* * do it */ sx_slock(&proctree_lock); if (uap->pid < 0) { /* * by process group */ pg = pgfind(-uap->pid); if (pg == NULL) { sx_sunlock(&proctree_lock); error = ESRCH; goto done; } /* * ktrops() may call vrele(). Lock pg_members * by the proctree_lock rather than pg_mtx. */ PGRP_UNLOCK(pg); nfound = 0; LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_state == PRS_NEW || p_cansee(td, p) != 0) { PROC_UNLOCK(p); continue; } nfound++; if (descend) ret |= ktrsetchildren(td, p, ops, facs, vp); else ret |= ktrops(td, p, ops, facs, vp); } if (nfound == 0) { sx_sunlock(&proctree_lock); error = ESRCH; goto done; } } else { /* * by pid */ p = pfind(uap->pid); if (p == NULL) error = ESRCH; else error = p_cansee(td, p); if (error) { if (p != NULL) PROC_UNLOCK(p); sx_sunlock(&proctree_lock); goto done; } if (descend) ret |= ktrsetchildren(td, p, ops, facs, vp); else ret |= ktrops(td, p, ops, facs, vp); } sx_sunlock(&proctree_lock); if (!ret) error = EPERM; done: if (vp != NULL) { vfslocked = VFS_LOCK_GIANT(vp->v_mount); (void) vn_close(vp, FWRITE, td->td_ucred, td); VFS_UNLOCK_GIANT(vfslocked); } ktrace_exit(td); return (error); #else /* !KTRACE */ return (ENOSYS); #endif /* KTRACE */ } /* ARGSUSED */ int sys_utrace(td, uap) struct thread *td; register struct utrace_args *uap; { #ifdef KTRACE struct ktr_request *req; void *cp; int error; if (!KTRPOINT(td, KTR_USER)) return (0); if (uap->len > KTR_USER_MAXLEN) return (EINVAL); cp = malloc(uap->len, M_KTRACE, M_WAITOK); error = copyin(uap->addr, cp, uap->len); if (error) { free(cp, M_KTRACE); return (error); } req = ktr_getrequest(KTR_USER); if (req == NULL) { free(cp, M_KTRACE); return (ENOMEM); } req->ktr_buffer = cp; req->ktr_header.ktr_len = uap->len; ktr_submitrequest(td, req); return (0); #else /* !KTRACE */ return (ENOSYS); #endif /* KTRACE */ } #ifdef KTRACE static int ktrops(td, p, ops, facs, vp) struct thread *td; struct proc *p; int ops, facs; struct vnode *vp; { struct vnode *tracevp = NULL; struct ucred *tracecred = NULL; PROC_LOCK_ASSERT(p, MA_OWNED); if (!ktrcanset(td, p)) { PROC_UNLOCK(p); return (0); } if (p->p_flag & P_WEXIT) { /* If the process is exiting, just ignore it. */ PROC_UNLOCK(p); return (1); } mtx_lock(&ktrace_mtx); if (ops == KTROP_SET) { if (p->p_tracevp != vp) { /* * if trace file already in use, relinquish below */ tracevp = p->p_tracevp; VREF(vp); p->p_tracevp = vp; } if (p->p_tracecred != td->td_ucred) { tracecred = p->p_tracecred; p->p_tracecred = crhold(td->td_ucred); } p->p_traceflag |= facs; if (priv_check(td, PRIV_KTRACE) == 0) p->p_traceflag |= KTRFAC_ROOT; } else { /* KTROP_CLEAR */ if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) /* no more tracing */ ktr_freeproc(p, &tracecred, &tracevp); } mtx_unlock(&ktrace_mtx); if ((p->p_traceflag & KTRFAC_MASK) != 0) ktrprocctor_entered(td, p); PROC_UNLOCK(p); if (tracevp != NULL) { int vfslocked; vfslocked = VFS_LOCK_GIANT(tracevp->v_mount); vrele(tracevp); VFS_UNLOCK_GIANT(vfslocked); } if (tracecred != NULL) crfree(tracecred); return (1); } static int ktrsetchildren(td, top, ops, facs, vp) struct thread *td; struct proc *top; int ops, facs; struct vnode *vp; { register struct proc *p; register int ret = 0; p = top; PROC_LOCK_ASSERT(p, MA_OWNED); sx_assert(&proctree_lock, SX_LOCKED); for (;;) { ret |= ktrops(td, p, ops, facs, vp); /* * If this process has children, descend to them next, * otherwise do any siblings, and if done with this level, * follow back up the tree (but not past top). */ if (!LIST_EMPTY(&p->p_children)) p = LIST_FIRST(&p->p_children); else for (;;) { if (p == top) return (ret); if (LIST_NEXT(p, p_sibling)) { p = LIST_NEXT(p, p_sibling); break; } p = p->p_pptr; } PROC_LOCK(p); } /*NOTREACHED*/ } static void ktr_writerequest(struct thread *td, struct ktr_request *req) { struct ktr_header *kth; struct vnode *vp; struct proc *p; struct ucred *cred; struct uio auio; struct iovec aiov[3]; struct mount *mp; int datalen, buflen, vrele_count; int error, vfslocked; /* * We hold the vnode and credential for use in I/O in case ktrace is * disabled on the process as we write out the request. * * XXXRW: This is not ideal: we could end up performing a write after * the vnode has been closed. */ mtx_lock(&ktrace_mtx); vp = td->td_proc->p_tracevp; cred = td->td_proc->p_tracecred; /* * If vp is NULL, the vp has been cleared out from under this * request, so just drop it. Make sure the credential and vnode are * in sync: we should have both or neither. */ if (vp == NULL) { KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL")); mtx_unlock(&ktrace_mtx); return; } VREF(vp); KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL")); crhold(cred); mtx_unlock(&ktrace_mtx); kth = &req->ktr_header; KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < sizeof(data_lengths) / sizeof(data_lengths[0]), ("data_lengths array overflow")); datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP]; buflen = kth->ktr_len; auio.uio_iov = &aiov[0]; auio.uio_offset = 0; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_WRITE; aiov[0].iov_base = (caddr_t)kth; aiov[0].iov_len = sizeof(struct ktr_header); auio.uio_resid = sizeof(struct ktr_header); auio.uio_iovcnt = 1; auio.uio_td = td; if (datalen != 0) { aiov[1].iov_base = (caddr_t)&req->ktr_data; aiov[1].iov_len = datalen; auio.uio_resid += datalen; auio.uio_iovcnt++; kth->ktr_len += datalen; } if (buflen != 0) { KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write")); aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer; aiov[auio.uio_iovcnt].iov_len = buflen; auio.uio_resid += buflen; auio.uio_iovcnt++; } vfslocked = VFS_LOCK_GIANT(vp->v_mount); vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); #ifdef MAC error = mac_vnode_check_write(cred, NOCRED, vp); if (error == 0) #endif error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred); VOP_UNLOCK(vp, 0); vn_finished_write(mp); crfree(cred); if (!error) { vrele(vp); VFS_UNLOCK_GIANT(vfslocked); return; } VFS_UNLOCK_GIANT(vfslocked); /* * If error encountered, give up tracing on this vnode. We defer * all the vrele()'s on the vnode until after we are finished walking * the various lists to avoid needlessly holding locks. * NB: at this point we still hold the vnode reference that must * not go away as we need the valid vnode to compare with. Thus let * vrele_count start at 1 and the reference will be freed * by the loop at the end after our last use of vp. */ log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n", error); vrele_count = 1; /* * First, clear this vnode from being used by any processes in the * system. * XXX - If one process gets an EPERM writing to the vnode, should * we really do this? Other processes might have suitable * credentials for the operation. */ cred = NULL; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_tracevp == vp) { mtx_lock(&ktrace_mtx); ktr_freeproc(p, &cred, NULL); mtx_unlock(&ktrace_mtx); vrele_count++; } PROC_UNLOCK(p); if (cred != NULL) { crfree(cred); cred = NULL; } } sx_sunlock(&allproc_lock); vfslocked = VFS_LOCK_GIANT(vp->v_mount); while (vrele_count-- > 0) vrele(vp); VFS_UNLOCK_GIANT(vfslocked); } /* * Return true if caller has permission to set the ktracing state * of target. Essentially, the target can't possess any * more permissions than the caller. KTRFAC_ROOT signifies that * root previously set the tracing status on the target process, and * so, only root may further change it. */ static int ktrcanset(td, targetp) struct thread *td; struct proc *targetp; { PROC_LOCK_ASSERT(targetp, MA_OWNED); if (targetp->p_traceflag & KTRFAC_ROOT && priv_check(td, PRIV_KTRACE)) return (0); if (p_candebug(td, targetp) != 0) return (0); return (1); } #endif /* KTRACE */