Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_tun/@/contrib/octeon-sdk/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_tun/@/contrib/octeon-sdk/cvmx-usbcx-defs.h |
/***********************license start*************** * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights * reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Cavium Networks nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * This Software, including technical data, may be subject to U.S. export control * laws, including the U.S. Export Administration Act and its associated * regulations, and may be subject to export or import regulations in other * countries. * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. ***********************license end**************************************/ /** * cvmx-usbcx-defs.h * * Configuration and status register (CSR) type definitions for * Octeon usbcx. * * This file is auto generated. Do not edit. * * <hr>$Revision$<hr> * */ #ifndef __CVMX_USBCX_TYPEDEFS_H__ #define __CVMX_USBCX_TYPEDEFS_H__ #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DAINT(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DAINT(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000818ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DAINT(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000818ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DAINTMSK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DAINTMSK(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F001000081Cull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DAINTMSK(block_id) (CVMX_ADD_IO_SEG(0x00016F001000081Cull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DCFG(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DCFG(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000800ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DCFG(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000800ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DCTL(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DCTL(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000804ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DCTL(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000804ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DIEPCTLX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 4)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 4)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_DIEPCTLX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000900ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_DIEPCTLX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000900ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DIEPINTX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 4)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 4)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_DIEPINTX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000908ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_DIEPINTX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000908ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DIEPMSK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DIEPMSK(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000810ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DIEPMSK(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000810ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DIEPTSIZX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 4)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 4)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_DIEPTSIZX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000910ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_DIEPTSIZX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000910ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DOEPCTLX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 4)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 4)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_DOEPCTLX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000B00ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_DOEPCTLX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000B00ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DOEPINTX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 4)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 4)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_DOEPINTX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000B08ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_DOEPINTX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000B08ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DOEPMSK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DOEPMSK(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000814ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DOEPMSK(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000814ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DOEPTSIZX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 4)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 4)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 4)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_DOEPTSIZX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000B10ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_DOEPTSIZX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000B10ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DPTXFSIZX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((((offset >= 1) && (offset <= 4))) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((((offset >= 1) && (offset <= 4))) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((((offset >= 1) && (offset <= 4))) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((((offset >= 1) && (offset <= 4))) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((((offset >= 1) && (offset <= 4))) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_DPTXFSIZX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000100ull) + (((offset) & 7) + ((block_id) & 1) * 0x40000000000ull) * 4; } #else #define CVMX_USBCX_DPTXFSIZX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000100ull) + (((offset) & 7) + ((block_id) & 1) * 0x40000000000ull) * 4) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DSTS(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DSTS(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000808ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DSTS(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000808ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DTKNQR1(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DTKNQR1(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000820ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DTKNQR1(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000820ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DTKNQR2(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DTKNQR2(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000824ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DTKNQR2(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000824ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DTKNQR3(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DTKNQR3(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000830ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DTKNQR3(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000830ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_DTKNQR4(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_DTKNQR4(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000834ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_DTKNQR4(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000834ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GAHBCFG(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GAHBCFG(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000008ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GAHBCFG(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000008ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GHWCFG1(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GHWCFG1(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000044ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GHWCFG1(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000044ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GHWCFG2(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GHWCFG2(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000048ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GHWCFG2(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000048ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GHWCFG3(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GHWCFG3(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F001000004Cull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GHWCFG3(block_id) (CVMX_ADD_IO_SEG(0x00016F001000004Cull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GHWCFG4(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GHWCFG4(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000050ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GHWCFG4(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000050ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GINTMSK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GINTMSK(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000018ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GINTMSK(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000018ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GINTSTS(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GINTSTS(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000014ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GINTSTS(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000014ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GNPTXFSIZ(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GNPTXFSIZ(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000028ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GNPTXFSIZ(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000028ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GNPTXSTS(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GNPTXSTS(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F001000002Cull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GNPTXSTS(block_id) (CVMX_ADD_IO_SEG(0x00016F001000002Cull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GOTGCTL(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GOTGCTL(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000000ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GOTGCTL(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000000ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GOTGINT(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GOTGINT(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000004ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GOTGINT(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000004ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GRSTCTL(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GRSTCTL(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000010ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GRSTCTL(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000010ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GRXFSIZ(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GRXFSIZ(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000024ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GRXFSIZ(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000024ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GRXSTSPD(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GRXSTSPD(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010040020ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GRXSTSPD(block_id) (CVMX_ADD_IO_SEG(0x00016F0010040020ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GRXSTSPH(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GRXSTSPH(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000020ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GRXSTSPH(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000020ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GRXSTSRD(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GRXSTSRD(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F001004001Cull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GRXSTSRD(block_id) (CVMX_ADD_IO_SEG(0x00016F001004001Cull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GRXSTSRH(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GRXSTSRH(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F001000001Cull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GRXSTSRH(block_id) (CVMX_ADD_IO_SEG(0x00016F001000001Cull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GSNPSID(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GSNPSID(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000040ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GSNPSID(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000040ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_GUSBCFG(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_GUSBCFG(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F001000000Cull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_GUSBCFG(block_id) (CVMX_ADD_IO_SEG(0x00016F001000000Cull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HAINT(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_HAINT(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000414ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_HAINT(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000414ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HAINTMSK(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_HAINTMSK(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000418ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_HAINTMSK(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000418ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HCCHARX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 7)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 7)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_HCCHARX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000500ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_HCCHARX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000500ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HCFG(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_HCFG(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000400ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_HCFG(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000400ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HCINTMSKX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 7)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 7)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_HCINTMSKX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F001000050Cull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_HCINTMSKX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F001000050Cull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HCINTX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 7)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 7)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_HCINTX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000508ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_HCINTX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000508ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HCSPLTX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 7)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 7)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_HCSPLTX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000504ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_HCSPLTX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000504ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HCTSIZX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 7)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 7)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_HCTSIZX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010000510ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32; } #else #define CVMX_USBCX_HCTSIZX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010000510ull) + (((offset) & 7) + ((block_id) & 1) * 0x8000000000ull) * 32) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HFIR(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_HFIR(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000404ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_HFIR(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000404ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HFNUM(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_HFNUM(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000408ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_HFNUM(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000408ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HPRT(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_HPRT(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000440ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_HPRT(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000440ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HPTXFSIZ(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_HPTXFSIZ(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000100ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_HPTXFSIZ(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000100ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_HPTXSTS(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_HPTXSTS(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000410ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_HPTXSTS(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000410ull) + ((block_id) & 1) * 0x100000000000ull) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_NPTXDFIFOX(unsigned long offset, unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && (((offset <= 7)) && ((block_id == 0)))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && (((offset <= 7)) && ((block_id <= 1)))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && (((offset <= 7)) && ((block_id == 0)))))) cvmx_warn("CVMX_USBCX_NPTXDFIFOX(%lu,%lu) is invalid on this chip\n", offset, block_id); return CVMX_ADD_IO_SEG(0x00016F0010001000ull) + (((offset) & 7) + ((block_id) & 1) * 0x100000000ull) * 4096; } #else #define CVMX_USBCX_NPTXDFIFOX(offset, block_id) (CVMX_ADD_IO_SEG(0x00016F0010001000ull) + (((offset) & 7) + ((block_id) & 1) * 0x100000000ull) * 4096) #endif #if CVMX_ENABLE_CSR_ADDRESS_CHECKING static inline uint64_t CVMX_USBCX_PCGCCTL(unsigned long block_id) { if (!( (OCTEON_IS_MODEL(OCTEON_CN30XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN31XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN50XX) && ((block_id == 0))) || (OCTEON_IS_MODEL(OCTEON_CN52XX) && ((block_id <= 1))) || (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((block_id == 0))))) cvmx_warn("CVMX_USBCX_PCGCCTL(%lu) is invalid on this chip\n", block_id); return CVMX_ADD_IO_SEG(0x00016F0010000E00ull) + ((block_id) & 1) * 0x100000000000ull; } #else #define CVMX_USBCX_PCGCCTL(block_id) (CVMX_ADD_IO_SEG(0x00016F0010000E00ull) + ((block_id) & 1) * 0x100000000000ull) #endif /** * cvmx_usbc#_daint * * Device All Endpoints Interrupt Register (DAINT) * * When a significant event occurs on an endpoint, a Device All Endpoints Interrupt register * interrupts the application using the Device OUT Endpoints Interrupt bit or Device IN Endpoints * Interrupt bit of the Core Interrupt register (GINTSTS.OEPInt or GINTSTS.IEPInt, respectively). * There is one interrupt bit per endpoint, up to a maximum of 16 bits for OUT endpoints and 16 * bits for IN endpoints. For a bidirectional endpoint, the corresponding IN and OUT interrupt * bits are used. Bits in this register are set and cleared when the application sets and clears * bits in the corresponding Device Endpoint-n Interrupt register (DIEPINTn/DOEPINTn). */ union cvmx_usbcx_daint { uint32_t u32; struct cvmx_usbcx_daint_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t outepint : 16; /**< OUT Endpoint Interrupt Bits (OutEPInt) One bit per OUT endpoint: Bit 16 for OUT endpoint 0, bit 31 for OUT endpoint 15 */ uint32_t inepint : 16; /**< IN Endpoint Interrupt Bits (InEpInt) One bit per IN Endpoint: Bit 0 for IN endpoint 0, bit 15 for endpoint 15 */ #else uint32_t inepint : 16; uint32_t outepint : 16; #endif } s; struct cvmx_usbcx_daint_s cn30xx; struct cvmx_usbcx_daint_s cn31xx; struct cvmx_usbcx_daint_s cn50xx; struct cvmx_usbcx_daint_s cn52xx; struct cvmx_usbcx_daint_s cn52xxp1; struct cvmx_usbcx_daint_s cn56xx; struct cvmx_usbcx_daint_s cn56xxp1; }; typedef union cvmx_usbcx_daint cvmx_usbcx_daint_t; /** * cvmx_usbc#_daintmsk * * Device All Endpoints Interrupt Mask Register (DAINTMSK) * * The Device Endpoint Interrupt Mask register works with the Device Endpoint Interrupt register * to interrupt the application when an event occurs on a device endpoint. However, the Device * All Endpoints Interrupt (DAINT) register bit corresponding to that interrupt will still be set. * Mask Interrupt: 1'b0 Unmask Interrupt: 1'b1 */ union cvmx_usbcx_daintmsk { uint32_t u32; struct cvmx_usbcx_daintmsk_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t outepmsk : 16; /**< OUT EP Interrupt Mask Bits (OutEpMsk) One per OUT Endpoint: Bit 16 for OUT EP 0, bit 31 for OUT EP 15 */ uint32_t inepmsk : 16; /**< IN EP Interrupt Mask Bits (InEpMsk) One bit per IN Endpoint: Bit 0 for IN EP 0, bit 15 for IN EP 15 */ #else uint32_t inepmsk : 16; uint32_t outepmsk : 16; #endif } s; struct cvmx_usbcx_daintmsk_s cn30xx; struct cvmx_usbcx_daintmsk_s cn31xx; struct cvmx_usbcx_daintmsk_s cn50xx; struct cvmx_usbcx_daintmsk_s cn52xx; struct cvmx_usbcx_daintmsk_s cn52xxp1; struct cvmx_usbcx_daintmsk_s cn56xx; struct cvmx_usbcx_daintmsk_s cn56xxp1; }; typedef union cvmx_usbcx_daintmsk cvmx_usbcx_daintmsk_t; /** * cvmx_usbc#_dcfg * * Device Configuration Register (DCFG) * * This register configures the core in Device mode after power-on or after certain control * commands or enumeration. Do not make changes to this register after initial programming. */ union cvmx_usbcx_dcfg { uint32_t u32; struct cvmx_usbcx_dcfg_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_23_31 : 9; uint32_t epmiscnt : 5; /**< IN Endpoint Mismatch Count (EPMisCnt) The application programs this filed with a count that determines when the core generates an Endpoint Mismatch interrupt (GINTSTS.EPMis). The core loads this value into an internal counter and decrements it. The counter is reloaded whenever there is a match or when the counter expires. The width of this counter depends on the depth of the Token Queue. */ uint32_t reserved_13_17 : 5; uint32_t perfrint : 2; /**< Periodic Frame Interval (PerFrInt) Indicates the time within a (micro)frame at which the application must be notified using the End Of Periodic Frame Interrupt. This can be used to determine if all the isochronous traffic for that (micro)frame is complete. * 2'b00: 80% of the (micro)frame interval * 2'b01: 85% * 2'b10: 90% * 2'b11: 95% */ uint32_t devaddr : 7; /**< Device Address (DevAddr) The application must program this field after every SetAddress control command. */ uint32_t reserved_3_3 : 1; uint32_t nzstsouthshk : 1; /**< Non-Zero-Length Status OUT Handshake (NZStsOUTHShk) The application can use this field to select the handshake the core sends on receiving a nonzero-length data packet during the OUT transaction of a control transfer's Status stage. * 1'b1: Send a STALL handshake on a nonzero-length status OUT transaction and do not send the received OUT packet to the application. * 1'b0: Send the received OUT packet to the application (zero- length or nonzero-length) and send a handshake based on the NAK and STALL bits for the endpoint in the Device Endpoint Control register. */ uint32_t devspd : 2; /**< Device Speed (DevSpd) Indicates the speed at which the application requires the core to enumerate, or the maximum speed the application can support. However, the actual bus speed is determined only after the chirp sequence is completed, and is based on the speed of the USB host to which the core is connected. See "Device Initialization" on page 249 for details. * 2'b00: High speed (USB 2.0 PHY clock is 30 MHz or 60 MHz) * 2'b01: Full speed (USB 2.0 PHY clock is 30 MHz or 60 MHz) * 2'b10: Low speed (USB 1.1 transceiver clock is 6 MHz). If you select 6 MHz LS mode, you must do a soft reset. * 2'b11: Full speed (USB 1.1 transceiver clock is 48 MHz) */ #else uint32_t devspd : 2; uint32_t nzstsouthshk : 1; uint32_t reserved_3_3 : 1; uint32_t devaddr : 7; uint32_t perfrint : 2; uint32_t reserved_13_17 : 5; uint32_t epmiscnt : 5; uint32_t reserved_23_31 : 9; #endif } s; struct cvmx_usbcx_dcfg_s cn30xx; struct cvmx_usbcx_dcfg_s cn31xx; struct cvmx_usbcx_dcfg_s cn50xx; struct cvmx_usbcx_dcfg_s cn52xx; struct cvmx_usbcx_dcfg_s cn52xxp1; struct cvmx_usbcx_dcfg_s cn56xx; struct cvmx_usbcx_dcfg_s cn56xxp1; }; typedef union cvmx_usbcx_dcfg cvmx_usbcx_dcfg_t; /** * cvmx_usbc#_dctl * * Device Control Register (DCTL) * */ union cvmx_usbcx_dctl { uint32_t u32; struct cvmx_usbcx_dctl_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_12_31 : 20; uint32_t pwronprgdone : 1; /**< Power-On Programming Done (PWROnPrgDone) The application uses this bit to indicate that register programming is completed after a wake-up from Power Down mode. For more information, see "Device Mode Suspend and Resume With Partial Power-Down" on page 357. */ uint32_t cgoutnak : 1; /**< Clear Global OUT NAK (CGOUTNak) A write to this field clears the Global OUT NAK. */ uint32_t sgoutnak : 1; /**< Set Global OUT NAK (SGOUTNak) A write to this field sets the Global OUT NAK. The application uses this bit to send a NAK handshake on all OUT endpoints. The application should set the this bit only after making sure that the Global OUT NAK Effective bit in the Core Interrupt Register (GINTSTS.GOUTNakEff) is cleared. */ uint32_t cgnpinnak : 1; /**< Clear Global Non-Periodic IN NAK (CGNPInNak) A write to this field clears the Global Non-Periodic IN NAK. */ uint32_t sgnpinnak : 1; /**< Set Global Non-Periodic IN NAK (SGNPInNak) A write to this field sets the Global Non-Periodic IN NAK.The application uses this bit to send a NAK handshake on all non- periodic IN endpoints. The core can also set this bit when a timeout condition is detected on a non-periodic endpoint. The application should set this bit only after making sure that the Global IN NAK Effective bit in the Core Interrupt Register (GINTSTS.GINNakEff) is cleared. */ uint32_t tstctl : 3; /**< Test Control (TstCtl) * 3'b000: Test mode disabled * 3'b001: Test_J mode * 3'b010: Test_K mode * 3'b011: Test_SE0_NAK mode * 3'b100: Test_Packet mode * 3'b101: Test_Force_Enable * Others: Reserved */ uint32_t goutnaksts : 1; /**< Global OUT NAK Status (GOUTNakSts) * 1'b0: A handshake is sent based on the FIFO Status and the NAK and STALL bit settings. * 1'b1: No data is written to the RxFIFO, irrespective of space availability. Sends a NAK handshake on all packets, except on SETUP transactions. All isochronous OUT packets are dropped. */ uint32_t gnpinnaksts : 1; /**< Global Non-Periodic IN NAK Status (GNPINNakSts) * 1'b0: A handshake is sent out based on the data availability in the transmit FIFO. * 1'b1: A NAK handshake is sent out on all non-periodic IN endpoints, irrespective of the data availability in the transmit FIFO. */ uint32_t sftdiscon : 1; /**< Soft Disconnect (SftDiscon) The application uses this bit to signal the O2P USB core to do a soft disconnect. As long as this bit is set, the host will not see that the device is connected, and the device will not receive signals on the USB. The core stays in the disconnected state until the application clears this bit. The minimum duration for which the core must keep this bit set is specified in Minimum Duration for Soft Disconnect . * 1'b0: Normal operation. When this bit is cleared after a soft disconnect, the core drives the phy_opmode_o signal on the UTMI+ to 2'b00, which generates a device connect event to the USB host. When the device is reconnected, the USB host restarts device enumeration. * 1'b1: The core drives the phy_opmode_o signal on the UTMI+ to 2'b01, which generates a device disconnect event to the USB host. */ uint32_t rmtwkupsig : 1; /**< Remote Wakeup Signaling (RmtWkUpSig) When the application sets this bit, the core initiates remote signaling to wake up the USB host.The application must set this bit to get the core out of Suspended state and must clear this bit after the core comes out of Suspended state. */ #else uint32_t rmtwkupsig : 1; uint32_t sftdiscon : 1; uint32_t gnpinnaksts : 1; uint32_t goutnaksts : 1; uint32_t tstctl : 3; uint32_t sgnpinnak : 1; uint32_t cgnpinnak : 1; uint32_t sgoutnak : 1; uint32_t cgoutnak : 1; uint32_t pwronprgdone : 1; uint32_t reserved_12_31 : 20; #endif } s; struct cvmx_usbcx_dctl_s cn30xx; struct cvmx_usbcx_dctl_s cn31xx; struct cvmx_usbcx_dctl_s cn50xx; struct cvmx_usbcx_dctl_s cn52xx; struct cvmx_usbcx_dctl_s cn52xxp1; struct cvmx_usbcx_dctl_s cn56xx; struct cvmx_usbcx_dctl_s cn56xxp1; }; typedef union cvmx_usbcx_dctl cvmx_usbcx_dctl_t; /** * cvmx_usbc#_diepctl# * * Device IN Endpoint-n Control Register (DIEPCTLn) * * The application uses the register to control the behaviour of each logical endpoint other than endpoint 0. */ union cvmx_usbcx_diepctlx { uint32_t u32; struct cvmx_usbcx_diepctlx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t epena : 1; /**< Endpoint Enable (EPEna) Indicates that data is ready to be transmitted on the endpoint. The core clears this bit before setting any of the following interrupts on this endpoint: * Endpoint Disabled * Transfer Completed */ uint32_t epdis : 1; /**< Endpoint Disable (EPDis) The application sets this bit to stop transmitting data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the Endpoint Disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the Endpoint Disabled Interrupt. The application should set this bit only if Endpoint Enable is already set for this endpoint. */ uint32_t setd1pid : 1; /**< For Interrupt/BULK enpoints: Set DATA1 PID (SetD1PID) Writing to this field sets the Endpoint Data Pid (DPID) field in this register to DATA1. For Isochronous endpoints: Set Odd (micro)frame (SetOddFr) Writing to this field sets the Even/Odd (micro)frame (EO_FrNum) field to odd (micro)frame. */ uint32_t setd0pid : 1; /**< For Interrupt/BULK enpoints: Writing to this field sets the Endpoint Data Pid (DPID) field in this register to DATA0. For Isochronous endpoints: Set Odd (micro)frame (SetEvenFr) Writing to this field sets the Even/Odd (micro)frame (EO_FrNum) field to even (micro)frame. */ uint32_t snak : 1; /**< Set NAK (SNAK) A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for an endpoint after a SETUP packet is received on the endpoint. */ uint32_t cnak : 1; /**< Clear NAK (CNAK) A write to this bit clears the NAK bit for the endpoint. */ uint32_t txfnum : 4; /**< TxFIFO Number (TxFNum) Non-periodic endpoints must set this bit to zero. Periodic endpoints must map this to the corresponding Periodic TxFIFO number. * 4'h0: Non-Periodic TxFIFO * Others: Specified Periodic TxFIFO number */ uint32_t stall : 1; /**< STALL Handshake (Stall) For non-control, non-isochronous endpoints: The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit, Global Non-Periodic IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. For control endpoints: The application can only set this bit, and the core clears it, when a SETUP token i received for this endpoint. If a NAK bit, Global Non-Periodic IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit's setting, the core always responds to SETUP data packets with an ACK handshake. */ uint32_t reserved_20_20 : 1; uint32_t eptype : 2; /**< Endpoint Type (EPType) This is the transfer type supported by this logical endpoint. * 2'b00: Control * 2'b01: Isochronous * 2'b10: Bulk * 2'b11: Interrupt */ uint32_t naksts : 1; /**< NAK Status (NAKSts) Indicates the following: * 1'b0: The core is transmitting non-NAK handshakes based on the FIFO status * 1'b1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit: * For non-isochronous IN endpoints: The core stops transmitting any data on an IN endpoint, even if data is available in the TxFIFO. * For isochronous IN endpoints: The core sends out a zero- length data packet, even if data is available in the TxFIFO. Irrespective of this bit's setting, the core always responds to SETUP data packets with an ACK handshake. */ uint32_t dpid : 1; /**< For interrupt/bulk IN and OUT endpoints: Endpoint Data PID (DPID) Contains the PID of the packet to be received or transmitted on this endpoint. The application should program the PID of the first packet to be received or transmitted on this endpoint, after the endpoint is activated. Applications use the SetD1PID and SetD0PID fields of this register to program either DATA0 or DATA1 PID. * 1'b0: DATA0 * 1'b1: DATA1 For isochronous IN and OUT endpoints: Even/Odd (Micro)Frame (EO_FrNum) Indicates the (micro)frame number in which the core transmits/ receives isochronous data for this endpoint. The application should program the even/odd (micro) frame number in which it intends to transmit/receive isochronous data for this endpoint using the SetEvnFr and SetOddFr fields in this register. * 1'b0: Even (micro)frame * 1'b1: Odd (micro)frame */ uint32_t usbactep : 1; /**< USB Active Endpoint (USBActEP) Indicates whether this endpoint is active in the current configuration and interface. The core clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program endpoint registers accordingly and set this bit. */ uint32_t nextep : 4; /**< Next Endpoint (NextEp) Applies to non-periodic IN endpoints only. Indicates the endpoint number to be fetched after the data for the current endpoint is fetched. The core can access this field, even when the Endpoint Enable (EPEna) bit is not set. This field is not valid in Slave mode. */ uint32_t mps : 11; /**< Maximum Packet Size (MPS) Applies to IN and OUT endpoints. The application must program this field with the maximum packet size for the current logical endpoint. This value is in bytes. */ #else uint32_t mps : 11; uint32_t nextep : 4; uint32_t usbactep : 1; uint32_t dpid : 1; uint32_t naksts : 1; uint32_t eptype : 2; uint32_t reserved_20_20 : 1; uint32_t stall : 1; uint32_t txfnum : 4; uint32_t cnak : 1; uint32_t snak : 1; uint32_t setd0pid : 1; uint32_t setd1pid : 1; uint32_t epdis : 1; uint32_t epena : 1; #endif } s; struct cvmx_usbcx_diepctlx_s cn30xx; struct cvmx_usbcx_diepctlx_s cn31xx; struct cvmx_usbcx_diepctlx_s cn50xx; struct cvmx_usbcx_diepctlx_s cn52xx; struct cvmx_usbcx_diepctlx_s cn52xxp1; struct cvmx_usbcx_diepctlx_s cn56xx; struct cvmx_usbcx_diepctlx_s cn56xxp1; }; typedef union cvmx_usbcx_diepctlx cvmx_usbcx_diepctlx_t; /** * cvmx_usbc#_diepint# * * Device Endpoint-n Interrupt Register (DIEPINTn) * * This register indicates the status of an endpoint with respect to * USB- and AHB-related events. The application must read this register * when the OUT Endpoints Interrupt bit or IN Endpoints Interrupt bit of * the Core Interrupt register (GINTSTS.OEPInt or GINTSTS.IEPInt, * respectively) is set. Before the application can read this register, * it must first read the Device All Endpoints Interrupt (DAINT) register * to get the exact endpoint number for the Device Endpoint-n Interrupt * register. The application must clear the appropriate bit in this register * to clear the corresponding bits in the DAINT and GINTSTS registers. */ union cvmx_usbcx_diepintx { uint32_t u32; struct cvmx_usbcx_diepintx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_7_31 : 25; uint32_t inepnakeff : 1; /**< IN Endpoint NAK Effective (INEPNakEff) Applies to periodic IN endpoints only. Indicates that the IN endpoint NAK bit set by the application has taken effect in the core. This bit can be cleared when the application clears the IN endpoint NAK by writing to DIEPCTLn.CNAK. This interrupt indicates that the core has sampled the NAK bit set (either by the application or by the core). This interrupt does not necessarily mean that a NAK handshake is sent on the USB. A STALL bit takes priority over a NAK bit. */ uint32_t intknepmis : 1; /**< IN Token Received with EP Mismatch (INTknEPMis) Applies to non-periodic IN endpoints only. Indicates that the data in the top of the non-periodic TxFIFO belongs to an endpoint other than the one for which the IN token was received. This interrupt is asserted on the endpoint for which the IN token was received. */ uint32_t intkntxfemp : 1; /**< IN Token Received When TxFIFO is Empty (INTknTXFEmp) Applies only to non-periodic IN endpoints. Indicates that an IN token was received when the associated TxFIFO (periodic/non-periodic) was empty. This interrupt is asserted on the endpoint for which the IN token was received. */ uint32_t timeout : 1; /**< Timeout Condition (TimeOUT) Applies to non-isochronous IN endpoints only. Indicates that the core has detected a timeout condition on the USB for the last IN token on this endpoint. */ uint32_t ahberr : 1; /**< AHB Error (AHBErr) This is generated only in Internal DMA mode when there is an AHB error during an AHB read/write. The application can read the corresponding endpoint DMA address register to get the error address. */ uint32_t epdisbld : 1; /**< Endpoint Disabled Interrupt (EPDisbld) This bit indicates that the endpoint is disabled per the application's request. */ uint32_t xfercompl : 1; /**< Transfer Completed Interrupt (XferCompl) Indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. */ #else uint32_t xfercompl : 1; uint32_t epdisbld : 1; uint32_t ahberr : 1; uint32_t timeout : 1; uint32_t intkntxfemp : 1; uint32_t intknepmis : 1; uint32_t inepnakeff : 1; uint32_t reserved_7_31 : 25; #endif } s; struct cvmx_usbcx_diepintx_s cn30xx; struct cvmx_usbcx_diepintx_s cn31xx; struct cvmx_usbcx_diepintx_s cn50xx; struct cvmx_usbcx_diepintx_s cn52xx; struct cvmx_usbcx_diepintx_s cn52xxp1; struct cvmx_usbcx_diepintx_s cn56xx; struct cvmx_usbcx_diepintx_s cn56xxp1; }; typedef union cvmx_usbcx_diepintx cvmx_usbcx_diepintx_t; /** * cvmx_usbc#_diepmsk * * Device IN Endpoint Common Interrupt Mask Register (DIEPMSK) * * This register works with each of the Device IN Endpoint Interrupt (DIEPINTn) registers * for all endpoints to generate an interrupt per IN endpoint. The IN endpoint interrupt * for a specific status in the DIEPINTn register can be masked by writing to the corresponding * bit in this register. Status bits are masked by default. * Mask interrupt: 1'b0 Unmask interrupt: 1'b1 */ union cvmx_usbcx_diepmsk { uint32_t u32; struct cvmx_usbcx_diepmsk_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_7_31 : 25; uint32_t inepnakeffmsk : 1; /**< IN Endpoint NAK Effective Mask (INEPNakEffMsk) */ uint32_t intknepmismsk : 1; /**< IN Token received with EP Mismatch Mask (INTknEPMisMsk) */ uint32_t intkntxfempmsk : 1; /**< IN Token Received When TxFIFO Empty Mask (INTknTXFEmpMsk) */ uint32_t timeoutmsk : 1; /**< Timeout Condition Mask (TimeOUTMsk) (Non-isochronous endpoints) */ uint32_t ahberrmsk : 1; /**< AHB Error Mask (AHBErrMsk) */ uint32_t epdisbldmsk : 1; /**< Endpoint Disabled Interrupt Mask (EPDisbldMsk) */ uint32_t xfercomplmsk : 1; /**< Transfer Completed Interrupt Mask (XferComplMsk) */ #else uint32_t xfercomplmsk : 1; uint32_t epdisbldmsk : 1; uint32_t ahberrmsk : 1; uint32_t timeoutmsk : 1; uint32_t intkntxfempmsk : 1; uint32_t intknepmismsk : 1; uint32_t inepnakeffmsk : 1; uint32_t reserved_7_31 : 25; #endif } s; struct cvmx_usbcx_diepmsk_s cn30xx; struct cvmx_usbcx_diepmsk_s cn31xx; struct cvmx_usbcx_diepmsk_s cn50xx; struct cvmx_usbcx_diepmsk_s cn52xx; struct cvmx_usbcx_diepmsk_s cn52xxp1; struct cvmx_usbcx_diepmsk_s cn56xx; struct cvmx_usbcx_diepmsk_s cn56xxp1; }; typedef union cvmx_usbcx_diepmsk cvmx_usbcx_diepmsk_t; /** * cvmx_usbc#_dieptsiz# * * Device Endpoint-n Transfer Size Register (DIEPTSIZn) * * The application must modify this register before enabling the endpoint. * Once the endpoint is enabled using Endpoint Enable bit of the Device Endpoint-n Control registers (DIEPCTLn.EPEna/DOEPCTLn.EPEna), * the core modifies this register. The application can only read this register once the core has cleared the Endpoint Enable bit. * This register is used only for endpoints other than Endpoint 0. */ union cvmx_usbcx_dieptsizx { uint32_t u32; struct cvmx_usbcx_dieptsizx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_31_31 : 1; uint32_t mc : 2; /**< Multi Count (MC) Applies to IN endpoints only. For periodic IN endpoints, this field indicates the number of packets that must be transmitted per microframe on the USB. The core uses this field to calculate the data PID for isochronous IN endpoints. * 2'b01: 1 packet * 2'b10: 2 packets * 2'b11: 3 packets For non-periodic IN endpoints, this field is valid only in Internal DMA mode. It specifies the number of packets the core should fetch for an IN endpoint before it switches to the endpoint pointed to by the Next Endpoint field of the Device Endpoint-n Control register (DIEPCTLn.NextEp) */ uint32_t pktcnt : 10; /**< Packet Count (PktCnt) Indicates the total number of USB packets that constitute the Transfer Size amount of data for this endpoint. IN Endpoints: This field is decremented every time a packet (maximum size or short packet) is read from the TxFIFO. */ uint32_t xfersize : 19; /**< Transfer Size (XferSize) This field contains the transfer size in bytes for the current endpoint. The core only interrupts the application after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. IN Endpoints: The core decrements this field every time a packet from the external memory is written to the TxFIFO. */ #else uint32_t xfersize : 19; uint32_t pktcnt : 10; uint32_t mc : 2; uint32_t reserved_31_31 : 1; #endif } s; struct cvmx_usbcx_dieptsizx_s cn30xx; struct cvmx_usbcx_dieptsizx_s cn31xx; struct cvmx_usbcx_dieptsizx_s cn50xx; struct cvmx_usbcx_dieptsizx_s cn52xx; struct cvmx_usbcx_dieptsizx_s cn52xxp1; struct cvmx_usbcx_dieptsizx_s cn56xx; struct cvmx_usbcx_dieptsizx_s cn56xxp1; }; typedef union cvmx_usbcx_dieptsizx cvmx_usbcx_dieptsizx_t; /** * cvmx_usbc#_doepctl# * * Device OUT Endpoint-n Control Register (DOEPCTLn) * * The application uses the register to control the behaviour of each logical endpoint other than endpoint 0. */ union cvmx_usbcx_doepctlx { uint32_t u32; struct cvmx_usbcx_doepctlx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t epena : 1; /**< Endpoint Enable (EPEna) Indicates that the application has allocated the memory tp start receiving data from the USB. The core clears this bit before setting any of the following interrupts on this endpoint: * SETUP Phase Done * Endpoint Disabled * Transfer Completed For control OUT endpoints in DMA mode, this bit must be set to be able to transfer SETUP data packets in memory. */ uint32_t epdis : 1; /**< Endpoint Disable (EPDis) The application sets this bit to stop transmitting data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the Endpoint Disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the Endpoint Disabled Interrupt. The application should set this bit only if Endpoint Enable is already set for this endpoint. */ uint32_t setd1pid : 1; /**< For Interrupt/BULK enpoints: Set DATA1 PID (SetD1PID) Writing to this field sets the Endpoint Data Pid (DPID) field in this register to DATA1. For Isochronous endpoints: Set Odd (micro)frame (SetOddFr) Writing to this field sets the Even/Odd (micro)frame (EO_FrNum) field to odd (micro)frame. */ uint32_t setd0pid : 1; /**< For Interrupt/BULK enpoints: Writing to this field sets the Endpoint Data Pid (DPID) field in this register to DATA0. For Isochronous endpoints: Set Odd (micro)frame (SetEvenFr) Writing to this field sets the Even/Odd (micro)frame (EO_FrNum) field to even (micro)frame. */ uint32_t snak : 1; /**< Set NAK (SNAK) A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for an endpoint after a SETUP packet is received on the endpoint. */ uint32_t cnak : 1; /**< Clear NAK (CNAK) A write to this bit clears the NAK bit for the endpoint. */ uint32_t reserved_22_25 : 4; uint32_t stall : 1; /**< STALL Handshake (Stall) For non-control, non-isochronous endpoints: The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit, Global Non-Periodic IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. For control endpoints: The application can only set this bit, and the core clears it, when a SETUP token i received for this endpoint. If a NAK bit, Global Non-Periodic IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit's setting, the core always responds to SETUP data packets with an ACK handshake. */ uint32_t snp : 1; /**< Snoop Mode (Snp) This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not check the correctness of OUT packets before transferring them to application memory. */ uint32_t eptype : 2; /**< Endpoint Type (EPType) This is the transfer type supported by this logical endpoint. * 2'b00: Control * 2'b01: Isochronous * 2'b10: Bulk * 2'b11: Interrupt */ uint32_t naksts : 1; /**< NAK Status (NAKSts) Indicates the following: * 1'b0: The core is transmitting non-NAK handshakes based on the FIFO status * 1'b1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit: * The core stops receiving any data on an OUT endpoint, even if there is space in the RxFIFO to accomodate the incoming packet. */ uint32_t dpid : 1; /**< For interrupt/bulk IN and OUT endpoints: Endpoint Data PID (DPID) Contains the PID of the packet to be received or transmitted on this endpoint. The application should program the PID of the first packet to be received or transmitted on this endpoint, after the endpoint is activated. Applications use the SetD1PID and SetD0PID fields of this register to program either DATA0 or DATA1 PID. * 1'b0: DATA0 * 1'b1: DATA1 For isochronous IN and OUT endpoints: Even/Odd (Micro)Frame (EO_FrNum) Indicates the (micro)frame number in which the core transmits/ receives isochronous data for this endpoint. The application should program the even/odd (micro) frame number in which it intends to transmit/receive isochronous data for this endpoint using the SetEvnFr and SetOddFr fields in this register. * 1'b0: Even (micro)frame * 1'b1: Odd (micro)frame */ uint32_t usbactep : 1; /**< USB Active Endpoint (USBActEP) Indicates whether this endpoint is active in the current configuration and interface. The core clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program endpoint registers accordingly and set this bit. */ uint32_t reserved_11_14 : 4; uint32_t mps : 11; /**< Maximum Packet Size (MPS) Applies to IN and OUT endpoints. The application must program this field with the maximum packet size for the current logical endpoint. This value is in bytes. */ #else uint32_t mps : 11; uint32_t reserved_11_14 : 4; uint32_t usbactep : 1; uint32_t dpid : 1; uint32_t naksts : 1; uint32_t eptype : 2; uint32_t snp : 1; uint32_t stall : 1; uint32_t reserved_22_25 : 4; uint32_t cnak : 1; uint32_t snak : 1; uint32_t setd0pid : 1; uint32_t setd1pid : 1; uint32_t epdis : 1; uint32_t epena : 1; #endif } s; struct cvmx_usbcx_doepctlx_s cn30xx; struct cvmx_usbcx_doepctlx_s cn31xx; struct cvmx_usbcx_doepctlx_s cn50xx; struct cvmx_usbcx_doepctlx_s cn52xx; struct cvmx_usbcx_doepctlx_s cn52xxp1; struct cvmx_usbcx_doepctlx_s cn56xx; struct cvmx_usbcx_doepctlx_s cn56xxp1; }; typedef union cvmx_usbcx_doepctlx cvmx_usbcx_doepctlx_t; /** * cvmx_usbc#_doepint# * * Device Endpoint-n Interrupt Register (DOEPINTn) * * This register indicates the status of an endpoint with respect to USB- and AHB-related events. * The application must read this register when the OUT Endpoints Interrupt bit or IN Endpoints * Interrupt bit of the Core Interrupt register (GINTSTS.OEPInt or GINTSTS.IEPInt, respectively) * is set. Before the application can read this register, it must first read the Device All * Endpoints Interrupt (DAINT) register to get the exact endpoint number for the Device Endpoint-n * Interrupt register. The application must clear the appropriate bit in this register to clear the * corresponding bits in the DAINT and GINTSTS registers. */ union cvmx_usbcx_doepintx { uint32_t u32; struct cvmx_usbcx_doepintx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_5_31 : 27; uint32_t outtknepdis : 1; /**< OUT Token Received When Endpoint Disabled (OUTTknEPdis) Applies only to control OUT endpoints. Indicates that an OUT token was received when the endpoint was not yet enabled. This interrupt is asserted on the endpoint for which the OUT token was received. */ uint32_t setup : 1; /**< SETUP Phase Done (SetUp) Applies to control OUT endpoints only. Indicates that the SETUP phase for the control endpoint is complete and no more back-to-back SETUP packets were received for the current control transfer. On this interrupt, the application can decode the received SETUP data packet. */ uint32_t ahberr : 1; /**< AHB Error (AHBErr) This is generated only in Internal DMA mode when there is an AHB error during an AHB read/write. The application can read the corresponding endpoint DMA address register to get the error address. */ uint32_t epdisbld : 1; /**< Endpoint Disabled Interrupt (EPDisbld) This bit indicates that the endpoint is disabled per the application's request. */ uint32_t xfercompl : 1; /**< Transfer Completed Interrupt (XferCompl) Indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. */ #else uint32_t xfercompl : 1; uint32_t epdisbld : 1; uint32_t ahberr : 1; uint32_t setup : 1; uint32_t outtknepdis : 1; uint32_t reserved_5_31 : 27; #endif } s; struct cvmx_usbcx_doepintx_s cn30xx; struct cvmx_usbcx_doepintx_s cn31xx; struct cvmx_usbcx_doepintx_s cn50xx; struct cvmx_usbcx_doepintx_s cn52xx; struct cvmx_usbcx_doepintx_s cn52xxp1; struct cvmx_usbcx_doepintx_s cn56xx; struct cvmx_usbcx_doepintx_s cn56xxp1; }; typedef union cvmx_usbcx_doepintx cvmx_usbcx_doepintx_t; /** * cvmx_usbc#_doepmsk * * Device OUT Endpoint Common Interrupt Mask Register (DOEPMSK) * * This register works with each of the Device OUT Endpoint Interrupt (DOEPINTn) registers * for all endpoints to generate an interrupt per OUT endpoint. The OUT endpoint interrupt * for a specific status in the DOEPINTn register can be masked by writing into the * corresponding bit in this register. Status bits are masked by default. * Mask interrupt: 1'b0 Unmask interrupt: 1'b1 */ union cvmx_usbcx_doepmsk { uint32_t u32; struct cvmx_usbcx_doepmsk_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_5_31 : 27; uint32_t outtknepdismsk : 1; /**< OUT Token Received when Endpoint Disabled Mask (OUTTknEPdisMsk) Applies to control OUT endpoints only. */ uint32_t setupmsk : 1; /**< SETUP Phase Done Mask (SetUPMsk) Applies to control endpoints only. */ uint32_t ahberrmsk : 1; /**< AHB Error (AHBErrMsk) */ uint32_t epdisbldmsk : 1; /**< Endpoint Disabled Interrupt Mask (EPDisbldMsk) */ uint32_t xfercomplmsk : 1; /**< Transfer Completed Interrupt Mask (XferComplMsk) */ #else uint32_t xfercomplmsk : 1; uint32_t epdisbldmsk : 1; uint32_t ahberrmsk : 1; uint32_t setupmsk : 1; uint32_t outtknepdismsk : 1; uint32_t reserved_5_31 : 27; #endif } s; struct cvmx_usbcx_doepmsk_s cn30xx; struct cvmx_usbcx_doepmsk_s cn31xx; struct cvmx_usbcx_doepmsk_s cn50xx; struct cvmx_usbcx_doepmsk_s cn52xx; struct cvmx_usbcx_doepmsk_s cn52xxp1; struct cvmx_usbcx_doepmsk_s cn56xx; struct cvmx_usbcx_doepmsk_s cn56xxp1; }; typedef union cvmx_usbcx_doepmsk cvmx_usbcx_doepmsk_t; /** * cvmx_usbc#_doeptsiz# * * Device Endpoint-n Transfer Size Register (DOEPTSIZn) * * The application must modify this register before enabling the endpoint. * Once the endpoint is enabled using Endpoint Enable bit of the Device Endpoint-n Control * registers (DOEPCTLn.EPEna/DOEPCTLn.EPEna), the core modifies this register. The application * can only read this register once the core has cleared the Endpoint Enable bit. * This register is used only for endpoints other than Endpoint 0. */ union cvmx_usbcx_doeptsizx { uint32_t u32; struct cvmx_usbcx_doeptsizx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_31_31 : 1; uint32_t mc : 2; /**< Multi Count (MC) Received Data PID (RxDPID) Applies to isochronous OUT endpoints only. This is the data PID received in the last packet for this endpoint. 2'b00: DATA0 2'b01: DATA1 2'b10: DATA2 2'b11: MDATA SETUP Packet Count (SUPCnt) Applies to control OUT Endpoints only. This field specifies the number of back-to-back SETUP data packets the endpoint can receive. 2'b01: 1 packet 2'b10: 2 packets 2'b11: 3 packets */ uint32_t pktcnt : 10; /**< Packet Count (PktCnt) Indicates the total number of USB packets that constitute the Transfer Size amount of data for this endpoint. OUT Endpoints: This field is decremented every time a packet (maximum size or short packet) is written to the RxFIFO. */ uint32_t xfersize : 19; /**< Transfer Size (XferSize) This field contains the transfer size in bytes for the current endpoint. The core only interrupts the application after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. OUT Endpoints: The core decrements this field every time a packet is read from the RxFIFO and written to the external memory. */ #else uint32_t xfersize : 19; uint32_t pktcnt : 10; uint32_t mc : 2; uint32_t reserved_31_31 : 1; #endif } s; struct cvmx_usbcx_doeptsizx_s cn30xx; struct cvmx_usbcx_doeptsizx_s cn31xx; struct cvmx_usbcx_doeptsizx_s cn50xx; struct cvmx_usbcx_doeptsizx_s cn52xx; struct cvmx_usbcx_doeptsizx_s cn52xxp1; struct cvmx_usbcx_doeptsizx_s cn56xx; struct cvmx_usbcx_doeptsizx_s cn56xxp1; }; typedef union cvmx_usbcx_doeptsizx cvmx_usbcx_doeptsizx_t; /** * cvmx_usbc#_dptxfsiz# * * Device Periodic Transmit FIFO-n Size Register (DPTXFSIZ) * * This register holds the memory start address of each periodic TxFIFO to implemented * in Device mode. Each periodic FIFO holds the data for one periodic IN endpoint. * This register is repeated for each periodic FIFO instantiated. */ union cvmx_usbcx_dptxfsizx { uint32_t u32; struct cvmx_usbcx_dptxfsizx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dptxfsize : 16; /**< Device Periodic TxFIFO Size (DPTxFSize) This value is in terms of 32-bit words. * Minimum value is 4 * Maximum value is 768 */ uint32_t dptxfstaddr : 16; /**< Device Periodic TxFIFO RAM Start Address (DPTxFStAddr) Holds the start address in the RAM for this periodic FIFO. */ #else uint32_t dptxfstaddr : 16; uint32_t dptxfsize : 16; #endif } s; struct cvmx_usbcx_dptxfsizx_s cn30xx; struct cvmx_usbcx_dptxfsizx_s cn31xx; struct cvmx_usbcx_dptxfsizx_s cn50xx; struct cvmx_usbcx_dptxfsizx_s cn52xx; struct cvmx_usbcx_dptxfsizx_s cn52xxp1; struct cvmx_usbcx_dptxfsizx_s cn56xx; struct cvmx_usbcx_dptxfsizx_s cn56xxp1; }; typedef union cvmx_usbcx_dptxfsizx cvmx_usbcx_dptxfsizx_t; /** * cvmx_usbc#_dsts * * Device Status Register (DSTS) * * This register indicates the status of the core with respect to USB-related events. * It must be read on interrupts from Device All Interrupts (DAINT) register. */ union cvmx_usbcx_dsts { uint32_t u32; struct cvmx_usbcx_dsts_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_22_31 : 10; uint32_t soffn : 14; /**< Frame or Microframe Number of the Received SOF (SOFFN) When the core is operating at high speed, this field contains a microframe number. When the core is operating at full or low speed, this field contains a frame number. */ uint32_t reserved_4_7 : 4; uint32_t errticerr : 1; /**< Erratic Error (ErrticErr) The core sets this bit to report any erratic errors (phy_rxvalid_i/phy_rxvldh_i or phy_rxactive_i is asserted for at least 2 ms, due to PHY error) seen on the UTMI+. Due to erratic errors, the O2P USB core goes into Suspended state and an interrupt is generated to the application with Early Suspend bit of the Core Interrupt register (GINTSTS.ErlySusp). If the early suspend is asserted due to an erratic error, the application can only perform a soft disconnect recover. */ uint32_t enumspd : 2; /**< Enumerated Speed (EnumSpd) Indicates the speed at which the O2P USB core has come up after speed detection through a chirp sequence. * 2'b00: High speed (PHY clock is running at 30 or 60 MHz) * 2'b01: Full speed (PHY clock is running at 30 or 60 MHz) * 2'b10: Low speed (PHY clock is running at 6 MHz) * 2'b11: Full speed (PHY clock is running at 48 MHz) Low speed is not supported for devices using a UTMI+ PHY. */ uint32_t suspsts : 1; /**< Suspend Status (SuspSts) In Device mode, this bit is set as long as a Suspend condition is detected on the USB. The core enters the Suspended state when there is no activity on the phy_line_state_i signal for an extended period of time. The core comes out of the suspend: * When there is any activity on the phy_line_state_i signal * When the application writes to the Remote Wakeup Signaling bit in the Device Control register (DCTL.RmtWkUpSig). */ #else uint32_t suspsts : 1; uint32_t enumspd : 2; uint32_t errticerr : 1; uint32_t reserved_4_7 : 4; uint32_t soffn : 14; uint32_t reserved_22_31 : 10; #endif } s; struct cvmx_usbcx_dsts_s cn30xx; struct cvmx_usbcx_dsts_s cn31xx; struct cvmx_usbcx_dsts_s cn50xx; struct cvmx_usbcx_dsts_s cn52xx; struct cvmx_usbcx_dsts_s cn52xxp1; struct cvmx_usbcx_dsts_s cn56xx; struct cvmx_usbcx_dsts_s cn56xxp1; }; typedef union cvmx_usbcx_dsts cvmx_usbcx_dsts_t; /** * cvmx_usbc#_dtknqr1 * * Device IN Token Sequence Learning Queue Read Register 1 (DTKNQR1) * * The depth of the IN Token Sequence Learning Queue is specified for Device Mode IN Token * Sequence Learning Queue Depth. The queue is 4 bits wide to store the endpoint number. * A read from this register returns the first 5 endpoint entries of the IN Token Sequence * Learning Queue. When the queue is full, the new token is pushed into the queue and oldest * token is discarded. */ union cvmx_usbcx_dtknqr1 { uint32_t u32; struct cvmx_usbcx_dtknqr1_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t eptkn : 24; /**< Endpoint Token (EPTkn) Four bits per token represent the endpoint number of the token: * Bits [31:28]: Endpoint number of Token 5 * Bits [27:24]: Endpoint number of Token 4 - ....... * Bits [15:12]: Endpoint number of Token 1 * Bits [11:8]: Endpoint number of Token 0 */ uint32_t wrapbit : 1; /**< Wrap Bit (WrapBit) This bit is set when the write pointer wraps. It is cleared when the learning queue is cleared. */ uint32_t reserved_5_6 : 2; uint32_t intknwptr : 5; /**< IN Token Queue Write Pointer (INTknWPtr) */ #else uint32_t intknwptr : 5; uint32_t reserved_5_6 : 2; uint32_t wrapbit : 1; uint32_t eptkn : 24; #endif } s; struct cvmx_usbcx_dtknqr1_s cn30xx; struct cvmx_usbcx_dtknqr1_s cn31xx; struct cvmx_usbcx_dtknqr1_s cn50xx; struct cvmx_usbcx_dtknqr1_s cn52xx; struct cvmx_usbcx_dtknqr1_s cn52xxp1; struct cvmx_usbcx_dtknqr1_s cn56xx; struct cvmx_usbcx_dtknqr1_s cn56xxp1; }; typedef union cvmx_usbcx_dtknqr1 cvmx_usbcx_dtknqr1_t; /** * cvmx_usbc#_dtknqr2 * * Device IN Token Sequence Learning Queue Read Register 2 (DTKNQR2) * * A read from this register returns the next 8 endpoint entries of the learning queue. */ union cvmx_usbcx_dtknqr2 { uint32_t u32; struct cvmx_usbcx_dtknqr2_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t eptkn : 32; /**< Endpoint Token (EPTkn) Four bits per token represent the endpoint number of the token: * Bits [31:28]: Endpoint number of Token 13 * Bits [27:24]: Endpoint number of Token 12 - ....... * Bits [7:4]: Endpoint number of Token 7 * Bits [3:0]: Endpoint number of Token 6 */ #else uint32_t eptkn : 32; #endif } s; struct cvmx_usbcx_dtknqr2_s cn30xx; struct cvmx_usbcx_dtknqr2_s cn31xx; struct cvmx_usbcx_dtknqr2_s cn50xx; struct cvmx_usbcx_dtknqr2_s cn52xx; struct cvmx_usbcx_dtknqr2_s cn52xxp1; struct cvmx_usbcx_dtknqr2_s cn56xx; struct cvmx_usbcx_dtknqr2_s cn56xxp1; }; typedef union cvmx_usbcx_dtknqr2 cvmx_usbcx_dtknqr2_t; /** * cvmx_usbc#_dtknqr3 * * Device IN Token Sequence Learning Queue Read Register 3 (DTKNQR3) * * A read from this register returns the next 8 endpoint entries of the learning queue. */ union cvmx_usbcx_dtknqr3 { uint32_t u32; struct cvmx_usbcx_dtknqr3_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t eptkn : 32; /**< Endpoint Token (EPTkn) Four bits per token represent the endpoint number of the token: * Bits [31:28]: Endpoint number of Token 21 * Bits [27:24]: Endpoint number of Token 20 - ....... * Bits [7:4]: Endpoint number of Token 15 * Bits [3:0]: Endpoint number of Token 14 */ #else uint32_t eptkn : 32; #endif } s; struct cvmx_usbcx_dtknqr3_s cn30xx; struct cvmx_usbcx_dtknqr3_s cn31xx; struct cvmx_usbcx_dtknqr3_s cn50xx; struct cvmx_usbcx_dtknqr3_s cn52xx; struct cvmx_usbcx_dtknqr3_s cn52xxp1; struct cvmx_usbcx_dtknqr3_s cn56xx; struct cvmx_usbcx_dtknqr3_s cn56xxp1; }; typedef union cvmx_usbcx_dtknqr3 cvmx_usbcx_dtknqr3_t; /** * cvmx_usbc#_dtknqr4 * * Device IN Token Sequence Learning Queue Read Register 4 (DTKNQR4) * * A read from this register returns the last 8 endpoint entries of the learning queue. */ union cvmx_usbcx_dtknqr4 { uint32_t u32; struct cvmx_usbcx_dtknqr4_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t eptkn : 32; /**< Endpoint Token (EPTkn) Four bits per token represent the endpoint number of the token: * Bits [31:28]: Endpoint number of Token 29 * Bits [27:24]: Endpoint number of Token 28 - ....... * Bits [7:4]: Endpoint number of Token 23 * Bits [3:0]: Endpoint number of Token 22 */ #else uint32_t eptkn : 32; #endif } s; struct cvmx_usbcx_dtknqr4_s cn30xx; struct cvmx_usbcx_dtknqr4_s cn31xx; struct cvmx_usbcx_dtknqr4_s cn50xx; struct cvmx_usbcx_dtknqr4_s cn52xx; struct cvmx_usbcx_dtknqr4_s cn52xxp1; struct cvmx_usbcx_dtknqr4_s cn56xx; struct cvmx_usbcx_dtknqr4_s cn56xxp1; }; typedef union cvmx_usbcx_dtknqr4 cvmx_usbcx_dtknqr4_t; /** * cvmx_usbc#_gahbcfg * * Core AHB Configuration Register (GAHBCFG) * * This register can be used to configure the core after power-on or a change in mode of operation. * This register mainly contains AHB system-related configuration parameters. The AHB is the processor * interface to the O2P USB core. In general, software need not know about this interface except to * program the values as specified. * * The application must program this register as part of the O2P USB core initialization. * Do not change this register after the initial programming. */ union cvmx_usbcx_gahbcfg { uint32_t u32; struct cvmx_usbcx_gahbcfg_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_9_31 : 23; uint32_t ptxfemplvl : 1; /**< Periodic TxFIFO Empty Level (PTxFEmpLvl) Software should set this bit to 0x1. Indicates when the Periodic TxFIFO Empty Interrupt bit in the Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This bit is used only in Slave mode. * 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic TxFIFO is half empty * 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic TxFIFO is completely empty */ uint32_t nptxfemplvl : 1; /**< Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl) Software should set this bit to 0x1. Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered. This bit is used only in Slave mode. * 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non- Periodic TxFIFO is half empty * 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non- Periodic TxFIFO is completely empty */ uint32_t reserved_6_6 : 1; uint32_t dmaen : 1; /**< DMA Enable (DMAEn) * 1'b0: Core operates in Slave mode * 1'b1: Core operates in a DMA mode */ uint32_t hbstlen : 4; /**< Burst Length/Type (HBstLen) This field has not effect and should be left as 0x0. */ uint32_t glblintrmsk : 1; /**< Global Interrupt Mask (GlblIntrMsk) Software should set this field to 0x1. The application uses this bit to mask or unmask the interrupt line assertion to itself. Irrespective of this bit's setting, the interrupt status registers are updated by the core. * 1'b0: Mask the interrupt assertion to the application. * 1'b1: Unmask the interrupt assertion to the application. */ #else uint32_t glblintrmsk : 1; uint32_t hbstlen : 4; uint32_t dmaen : 1; uint32_t reserved_6_6 : 1; uint32_t nptxfemplvl : 1; uint32_t ptxfemplvl : 1; uint32_t reserved_9_31 : 23; #endif } s; struct cvmx_usbcx_gahbcfg_s cn30xx; struct cvmx_usbcx_gahbcfg_s cn31xx; struct cvmx_usbcx_gahbcfg_s cn50xx; struct cvmx_usbcx_gahbcfg_s cn52xx; struct cvmx_usbcx_gahbcfg_s cn52xxp1; struct cvmx_usbcx_gahbcfg_s cn56xx; struct cvmx_usbcx_gahbcfg_s cn56xxp1; }; typedef union cvmx_usbcx_gahbcfg cvmx_usbcx_gahbcfg_t; /** * cvmx_usbc#_ghwcfg1 * * User HW Config1 Register (GHWCFG1) * * This register contains the logical endpoint direction(s) of the O2P USB core. */ union cvmx_usbcx_ghwcfg1 { uint32_t u32; struct cvmx_usbcx_ghwcfg1_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t epdir : 32; /**< Endpoint Direction (epdir) Two bits per endpoint represent the direction. * 2'b00: BIDIR (IN and OUT) endpoint * 2'b01: IN endpoint * 2'b10: OUT endpoint * 2'b11: Reserved Bits [31:30]: Endpoint 15 direction Bits [29:28]: Endpoint 14 direction - ... Bits [3:2]: Endpoint 1 direction Bits[1:0]: Endpoint 0 direction (always BIDIR) */ #else uint32_t epdir : 32; #endif } s; struct cvmx_usbcx_ghwcfg1_s cn30xx; struct cvmx_usbcx_ghwcfg1_s cn31xx; struct cvmx_usbcx_ghwcfg1_s cn50xx; struct cvmx_usbcx_ghwcfg1_s cn52xx; struct cvmx_usbcx_ghwcfg1_s cn52xxp1; struct cvmx_usbcx_ghwcfg1_s cn56xx; struct cvmx_usbcx_ghwcfg1_s cn56xxp1; }; typedef union cvmx_usbcx_ghwcfg1 cvmx_usbcx_ghwcfg1_t; /** * cvmx_usbc#_ghwcfg2 * * User HW Config2 Register (GHWCFG2) * * This register contains configuration options of the O2P USB core. */ union cvmx_usbcx_ghwcfg2 { uint32_t u32; struct cvmx_usbcx_ghwcfg2_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_31_31 : 1; uint32_t tknqdepth : 5; /**< Device Mode IN Token Sequence Learning Queue Depth (TknQDepth) Range: 0-30 */ uint32_t ptxqdepth : 2; /**< Host Mode Periodic Request Queue Depth (PTxQDepth) * 2'b00: 2 * 2'b01: 4 * 2'b10: 8 * Others: Reserved */ uint32_t nptxqdepth : 2; /**< Non-Periodic Request Queue Depth (NPTxQDepth) * 2'b00: 2 * 2'b01: 4 * 2'b10: 8 * Others: Reserved */ uint32_t reserved_20_21 : 2; uint32_t dynfifosizing : 1; /**< Dynamic FIFO Sizing Enabled (DynFifoSizing) * 1'b0: No * 1'b1: Yes */ uint32_t periosupport : 1; /**< Periodic OUT Channels Supported in Host Mode (PerioSupport) * 1'b0: No * 1'b1: Yes */ uint32_t numhstchnl : 4; /**< Number of Host Channels (NumHstChnl) Indicates the number of host channels supported by the core in Host mode. The range of this field is 0-15: 0 specifies 1 channel, 15 specifies 16 channels. */ uint32_t numdeveps : 4; /**< Number of Device Endpoints (NumDevEps) Indicates the number of device endpoints supported by the core in Device mode in addition to control endpoint 0. The range of this field is 1-15. */ uint32_t fsphytype : 2; /**< Full-Speed PHY Interface Type (FSPhyType) * 2'b00: Full-speed interface not supported * 2'b01: Dedicated full-speed interface * 2'b10: FS pins shared with UTMI+ pins * 2'b11: FS pins shared with ULPI pins */ uint32_t hsphytype : 2; /**< High-Speed PHY Interface Type (HSPhyType) * 2'b00: High-Speed interface not supported * 2'b01: UTMI+ * 2'b10: ULPI * 2'b11: UTMI+ and ULPI */ uint32_t singpnt : 1; /**< Point-to-Point (SingPnt) * 1'b0: Multi-point application * 1'b1: Single-point application */ uint32_t otgarch : 2; /**< Architecture (OtgArch) * 2'b00: Slave-Only * 2'b01: External DMA * 2'b10: Internal DMA * Others: Reserved */ uint32_t otgmode : 3; /**< Mode of Operation (OtgMode) * 3'b000: HNP- and SRP-Capable OTG (Host & Device) * 3'b001: SRP-Capable OTG (Host & Device) * 3'b010: Non-HNP and Non-SRP Capable OTG (Host & Device) * 3'b011: SRP-Capable Device * 3'b100: Non-OTG Device * 3'b101: SRP-Capable Host * 3'b110: Non-OTG Host * Others: Reserved */ #else uint32_t otgmode : 3; uint32_t otgarch : 2; uint32_t singpnt : 1; uint32_t hsphytype : 2; uint32_t fsphytype : 2; uint32_t numdeveps : 4; uint32_t numhstchnl : 4; uint32_t periosupport : 1; uint32_t dynfifosizing : 1; uint32_t reserved_20_21 : 2; uint32_t nptxqdepth : 2; uint32_t ptxqdepth : 2; uint32_t tknqdepth : 5; uint32_t reserved_31_31 : 1; #endif } s; struct cvmx_usbcx_ghwcfg2_s cn30xx; struct cvmx_usbcx_ghwcfg2_s cn31xx; struct cvmx_usbcx_ghwcfg2_s cn50xx; struct cvmx_usbcx_ghwcfg2_s cn52xx; struct cvmx_usbcx_ghwcfg2_s cn52xxp1; struct cvmx_usbcx_ghwcfg2_s cn56xx; struct cvmx_usbcx_ghwcfg2_s cn56xxp1; }; typedef union cvmx_usbcx_ghwcfg2 cvmx_usbcx_ghwcfg2_t; /** * cvmx_usbc#_ghwcfg3 * * User HW Config3 Register (GHWCFG3) * * This register contains the configuration options of the O2P USB core. */ union cvmx_usbcx_ghwcfg3 { uint32_t u32; struct cvmx_usbcx_ghwcfg3_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dfifodepth : 16; /**< DFIFO Depth (DfifoDepth) This value is in terms of 32-bit words. * Minimum value is 32 * Maximum value is 32768 */ uint32_t reserved_13_15 : 3; uint32_t ahbphysync : 1; /**< AHB and PHY Synchronous (AhbPhySync) Indicates whether AHB and PHY clocks are synchronous to each other. * 1'b0: No * 1'b1: Yes This bit is tied to 1. */ uint32_t rsttype : 1; /**< Reset Style for Clocked always Blocks in RTL (RstType) * 1'b0: Asynchronous reset is used in the core * 1'b1: Synchronous reset is used in the core */ uint32_t optfeature : 1; /**< Optional Features Removed (OptFeature) Indicates whether the User ID register, GPIO interface ports, and SOF toggle and counter ports were removed for gate count optimization. */ uint32_t vendor_control_interface_support : 1;/**< Vendor Control Interface Support * 1'b0: Vendor Control Interface is not available on the core. * 1'b1: Vendor Control Interface is available. */ uint32_t i2c_selection : 1; /**< I2C Selection * 1'b0: I2C Interface is not available on the core. * 1'b1: I2C Interface is available on the core. */ uint32_t otgen : 1; /**< OTG Function Enabled (OtgEn) The application uses this bit to indicate the O2P USB core's OTG capabilities. * 1'b0: Not OTG capable * 1'b1: OTG Capable */ uint32_t pktsizewidth : 3; /**< Width of Packet Size Counters (PktSizeWidth) * 3'b000: 4 bits * 3'b001: 5 bits * 3'b010: 6 bits * 3'b011: 7 bits * 3'b100: 8 bits * 3'b101: 9 bits * 3'b110: 10 bits * Others: Reserved */ uint32_t xfersizewidth : 4; /**< Width of Transfer Size Counters (XferSizeWidth) * 4'b0000: 11 bits * 4'b0001: 12 bits - ... * 4'b1000: 19 bits * Others: Reserved */ #else uint32_t xfersizewidth : 4; uint32_t pktsizewidth : 3; uint32_t otgen : 1; uint32_t i2c_selection : 1; uint32_t vendor_control_interface_support : 1; uint32_t optfeature : 1; uint32_t rsttype : 1; uint32_t ahbphysync : 1; uint32_t reserved_13_15 : 3; uint32_t dfifodepth : 16; #endif } s; struct cvmx_usbcx_ghwcfg3_s cn30xx; struct cvmx_usbcx_ghwcfg3_s cn31xx; struct cvmx_usbcx_ghwcfg3_s cn50xx; struct cvmx_usbcx_ghwcfg3_s cn52xx; struct cvmx_usbcx_ghwcfg3_s cn52xxp1; struct cvmx_usbcx_ghwcfg3_s cn56xx; struct cvmx_usbcx_ghwcfg3_s cn56xxp1; }; typedef union cvmx_usbcx_ghwcfg3 cvmx_usbcx_ghwcfg3_t; /** * cvmx_usbc#_ghwcfg4 * * User HW Config4 Register (GHWCFG4) * * This register contains the configuration options of the O2P USB core. */ union cvmx_usbcx_ghwcfg4 { uint32_t u32; struct cvmx_usbcx_ghwcfg4_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_30_31 : 2; uint32_t numdevmodinend : 4; /**< Enable dedicatd transmit FIFO for device IN endpoints. */ uint32_t endedtrfifo : 1; /**< Enable dedicatd transmit FIFO for device IN endpoints. */ uint32_t sessendfltr : 1; /**< "session_end" Filter Enabled (SessEndFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t bvalidfltr : 1; /**< "b_valid" Filter Enabled (BValidFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t avalidfltr : 1; /**< "a_valid" Filter Enabled (AValidFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t vbusvalidfltr : 1; /**< "vbus_valid" Filter Enabled (VBusValidFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t iddgfltr : 1; /**< "iddig" Filter Enable (IddgFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t numctleps : 4; /**< Number of Device Mode Control Endpoints in Addition to Endpoint 0 (NumCtlEps) Range: 1-15 */ uint32_t phydatawidth : 2; /**< UTMI+ PHY/ULPI-to-Internal UTMI+ Wrapper Data Width (PhyDataWidth) When a ULPI PHY is used, an internal wrapper converts ULPI to UTMI+. * 2'b00: 8 bits * 2'b01: 16 bits * 2'b10: 8/16 bits, software selectable * Others: Reserved */ uint32_t reserved_6_13 : 8; uint32_t ahbfreq : 1; /**< Minimum AHB Frequency Less Than 60 MHz (AhbFreq) * 1'b0: No * 1'b1: Yes */ uint32_t enablepwropt : 1; /**< Enable Power Optimization? (EnablePwrOpt) * 1'b0: No * 1'b1: Yes */ uint32_t numdevperioeps : 4; /**< Number of Device Mode Periodic IN Endpoints (NumDevPerioEps) Range: 0-15 */ #else uint32_t numdevperioeps : 4; uint32_t enablepwropt : 1; uint32_t ahbfreq : 1; uint32_t reserved_6_13 : 8; uint32_t phydatawidth : 2; uint32_t numctleps : 4; uint32_t iddgfltr : 1; uint32_t vbusvalidfltr : 1; uint32_t avalidfltr : 1; uint32_t bvalidfltr : 1; uint32_t sessendfltr : 1; uint32_t endedtrfifo : 1; uint32_t numdevmodinend : 4; uint32_t reserved_30_31 : 2; #endif } s; struct cvmx_usbcx_ghwcfg4_cn30xx { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_25_31 : 7; uint32_t sessendfltr : 1; /**< "session_end" Filter Enabled (SessEndFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t bvalidfltr : 1; /**< "b_valid" Filter Enabled (BValidFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t avalidfltr : 1; /**< "a_valid" Filter Enabled (AValidFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t vbusvalidfltr : 1; /**< "vbus_valid" Filter Enabled (VBusValidFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t iddgfltr : 1; /**< "iddig" Filter Enable (IddgFltr) * 1'b0: No filter * 1'b1: Filter */ uint32_t numctleps : 4; /**< Number of Device Mode Control Endpoints in Addition to Endpoint 0 (NumCtlEps) Range: 1-15 */ uint32_t phydatawidth : 2; /**< UTMI+ PHY/ULPI-to-Internal UTMI+ Wrapper Data Width (PhyDataWidth) When a ULPI PHY is used, an internal wrapper converts ULPI to UTMI+. * 2'b00: 8 bits * 2'b01: 16 bits * 2'b10: 8/16 bits, software selectable * Others: Reserved */ uint32_t reserved_6_13 : 8; uint32_t ahbfreq : 1; /**< Minimum AHB Frequency Less Than 60 MHz (AhbFreq) * 1'b0: No * 1'b1: Yes */ uint32_t enablepwropt : 1; /**< Enable Power Optimization? (EnablePwrOpt) * 1'b0: No * 1'b1: Yes */ uint32_t numdevperioeps : 4; /**< Number of Device Mode Periodic IN Endpoints (NumDevPerioEps) Range: 0-15 */ #else uint32_t numdevperioeps : 4; uint32_t enablepwropt : 1; uint32_t ahbfreq : 1; uint32_t reserved_6_13 : 8; uint32_t phydatawidth : 2; uint32_t numctleps : 4; uint32_t iddgfltr : 1; uint32_t vbusvalidfltr : 1; uint32_t avalidfltr : 1; uint32_t bvalidfltr : 1; uint32_t sessendfltr : 1; uint32_t reserved_25_31 : 7; #endif } cn30xx; struct cvmx_usbcx_ghwcfg4_cn30xx cn31xx; struct cvmx_usbcx_ghwcfg4_s cn50xx; struct cvmx_usbcx_ghwcfg4_s cn52xx; struct cvmx_usbcx_ghwcfg4_s cn52xxp1; struct cvmx_usbcx_ghwcfg4_s cn56xx; struct cvmx_usbcx_ghwcfg4_s cn56xxp1; }; typedef union cvmx_usbcx_ghwcfg4 cvmx_usbcx_ghwcfg4_t; /** * cvmx_usbc#_gintmsk * * Core Interrupt Mask Register (GINTMSK) * * This register works with the Core Interrupt register to interrupt the application. * When an interrupt bit is masked, the interrupt associated with that bit will not be generated. * However, the Core Interrupt (GINTSTS) register bit corresponding to that interrupt will still be set. * Mask interrupt: 1'b0, Unmask interrupt: 1'b1 */ union cvmx_usbcx_gintmsk { uint32_t u32; struct cvmx_usbcx_gintmsk_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t wkupintmsk : 1; /**< Resume/Remote Wakeup Detected Interrupt Mask (WkUpIntMsk) */ uint32_t sessreqintmsk : 1; /**< Session Request/New Session Detected Interrupt Mask (SessReqIntMsk) */ uint32_t disconnintmsk : 1; /**< Disconnect Detected Interrupt Mask (DisconnIntMsk) */ uint32_t conidstschngmsk : 1; /**< Connector ID Status Change Mask (ConIDStsChngMsk) */ uint32_t reserved_27_27 : 1; uint32_t ptxfempmsk : 1; /**< Periodic TxFIFO Empty Mask (PTxFEmpMsk) */ uint32_t hchintmsk : 1; /**< Host Channels Interrupt Mask (HChIntMsk) */ uint32_t prtintmsk : 1; /**< Host Port Interrupt Mask (PrtIntMsk) */ uint32_t reserved_23_23 : 1; uint32_t fetsuspmsk : 1; /**< Data Fetch Suspended Mask (FetSuspMsk) */ uint32_t incomplpmsk : 1; /**< Incomplete Periodic Transfer Mask (incomplPMsk) Incomplete Isochronous OUT Transfer Mask (incompISOOUTMsk) */ uint32_t incompisoinmsk : 1; /**< Incomplete Isochronous IN Transfer Mask (incompISOINMsk) */ uint32_t oepintmsk : 1; /**< OUT Endpoints Interrupt Mask (OEPIntMsk) */ uint32_t inepintmsk : 1; /**< IN Endpoints Interrupt Mask (INEPIntMsk) */ uint32_t epmismsk : 1; /**< Endpoint Mismatch Interrupt Mask (EPMisMsk) */ uint32_t reserved_16_16 : 1; uint32_t eopfmsk : 1; /**< End of Periodic Frame Interrupt Mask (EOPFMsk) */ uint32_t isooutdropmsk : 1; /**< Isochronous OUT Packet Dropped Interrupt Mask (ISOOutDropMsk) */ uint32_t enumdonemsk : 1; /**< Enumeration Done Mask (EnumDoneMsk) */ uint32_t usbrstmsk : 1; /**< USB Reset Mask (USBRstMsk) */ uint32_t usbsuspmsk : 1; /**< USB Suspend Mask (USBSuspMsk) */ uint32_t erlysuspmsk : 1; /**< Early Suspend Mask (ErlySuspMsk) */ uint32_t i2cint : 1; /**< I2C Interrupt Mask (I2CINT) */ uint32_t ulpickintmsk : 1; /**< ULPI Carkit Interrupt Mask (ULPICKINTMsk) I2C Carkit Interrupt Mask (I2CCKINTMsk) */ uint32_t goutnakeffmsk : 1; /**< Global OUT NAK Effective Mask (GOUTNakEffMsk) */ uint32_t ginnakeffmsk : 1; /**< Global Non-Periodic IN NAK Effective Mask (GINNakEffMsk) */ uint32_t nptxfempmsk : 1; /**< Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk) */ uint32_t rxflvlmsk : 1; /**< Receive FIFO Non-Empty Mask (RxFLvlMsk) */ uint32_t sofmsk : 1; /**< Start of (micro)Frame Mask (SofMsk) */ uint32_t otgintmsk : 1; /**< OTG Interrupt Mask (OTGIntMsk) */ uint32_t modemismsk : 1; /**< Mode Mismatch Interrupt Mask (ModeMisMsk) */ uint32_t reserved_0_0 : 1; #else uint32_t reserved_0_0 : 1; uint32_t modemismsk : 1; uint32_t otgintmsk : 1; uint32_t sofmsk : 1; uint32_t rxflvlmsk : 1; uint32_t nptxfempmsk : 1; uint32_t ginnakeffmsk : 1; uint32_t goutnakeffmsk : 1; uint32_t ulpickintmsk : 1; uint32_t i2cint : 1; uint32_t erlysuspmsk : 1; uint32_t usbsuspmsk : 1; uint32_t usbrstmsk : 1; uint32_t enumdonemsk : 1; uint32_t isooutdropmsk : 1; uint32_t eopfmsk : 1; uint32_t reserved_16_16 : 1; uint32_t epmismsk : 1; uint32_t inepintmsk : 1; uint32_t oepintmsk : 1; uint32_t incompisoinmsk : 1; uint32_t incomplpmsk : 1; uint32_t fetsuspmsk : 1; uint32_t reserved_23_23 : 1; uint32_t prtintmsk : 1; uint32_t hchintmsk : 1; uint32_t ptxfempmsk : 1; uint32_t reserved_27_27 : 1; uint32_t conidstschngmsk : 1; uint32_t disconnintmsk : 1; uint32_t sessreqintmsk : 1; uint32_t wkupintmsk : 1; #endif } s; struct cvmx_usbcx_gintmsk_s cn30xx; struct cvmx_usbcx_gintmsk_s cn31xx; struct cvmx_usbcx_gintmsk_s cn50xx; struct cvmx_usbcx_gintmsk_s cn52xx; struct cvmx_usbcx_gintmsk_s cn52xxp1; struct cvmx_usbcx_gintmsk_s cn56xx; struct cvmx_usbcx_gintmsk_s cn56xxp1; }; typedef union cvmx_usbcx_gintmsk cvmx_usbcx_gintmsk_t; /** * cvmx_usbc#_gintsts * * Core Interrupt Register (GINTSTS) * * This register interrupts the application for system-level events in the current mode of operation * (Device mode or Host mode). It is shown in Interrupt. Some of the bits in this register are valid only in Host mode, * while others are valid in Device mode only. This register also indicates the current mode of operation. * In order to clear the interrupt status bits of type R_SS_WC, the application must write 1'b1 into the bit. * The FIFO status interrupts are read only; once software reads from or writes to the FIFO while servicing these * interrupts, FIFO interrupt conditions are cleared automatically. */ union cvmx_usbcx_gintsts { uint32_t u32; struct cvmx_usbcx_gintsts_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t wkupint : 1; /**< Resume/Remote Wakeup Detected Interrupt (WkUpInt) In Device mode, this interrupt is asserted when a resume is detected on the USB. In Host mode, this interrupt is asserted when a remote wakeup is detected on the USB. For more information on how to use this interrupt, see "Partial Power-Down and Clock Gating Programming Model" on page 353. */ uint32_t sessreqint : 1; /**< Session Request/New Session Detected Interrupt (SessReqInt) In Host mode, this interrupt is asserted when a session request is detected from the device. In Device mode, this interrupt is asserted when the utmiotg_bvalid signal goes high. For more information on how to use this interrupt, see "Partial Power-Down and Clock Gating Programming Model" on page 353. */ uint32_t disconnint : 1; /**< Disconnect Detected Interrupt (DisconnInt) Asserted when a device disconnect is detected. */ uint32_t conidstschng : 1; /**< Connector ID Status Change (ConIDStsChng) The core sets this bit when there is a change in connector ID status. */ uint32_t reserved_27_27 : 1; uint32_t ptxfemp : 1; /**< Periodic TxFIFO Empty (PTxFEmp) Asserted when the Periodic Transmit FIFO is either half or completely empty and there is space for at least one entry to be written in the Periodic Request Queue. The half or completely empty status is determined by the Periodic TxFIFO Empty Level bit in the Core AHB Configuration register (GAHBCFG.PTxFEmpLvl). */ uint32_t hchint : 1; /**< Host Channels Interrupt (HChInt) The core sets this bit to indicate that an interrupt is pending on one of the channels of the core (in Host mode). The application must read the Host All Channels Interrupt (HAINT) register to determine the exact number of the channel on which the interrupt occurred, and then read the corresponding Host Channel-n Interrupt (HCINTn) register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the HCINTn register to clear this bit. */ uint32_t prtint : 1; /**< Host Port Interrupt (PrtInt) The core sets this bit to indicate a change in port status of one of the O2P USB core ports in Host mode. The application must read the Host Port Control and Status (HPRT) register to determine the exact event that caused this interrupt. The application must clear the appropriate status bit in the Host Port Control and Status register to clear this bit. */ uint32_t reserved_23_23 : 1; uint32_t fetsusp : 1; /**< Data Fetch Suspended (FetSusp) This interrupt is valid only in DMA mode. This interrupt indicates that the core has stopped fetching data for IN endpoints due to the unavailability of TxFIFO space or Request Queue space. This interrupt is used by the application for an endpoint mismatch algorithm. */ uint32_t incomplp : 1; /**< Incomplete Periodic Transfer (incomplP) In Host mode, the core sets this interrupt bit when there are incomplete periodic transactions still pending which are scheduled for the current microframe. Incomplete Isochronous OUT Transfer (incompISOOUT) The Device mode, the core sets this interrupt to indicate that there is at least one isochronous OUT endpoint on which the transfer is not completed in the current microframe. This interrupt is asserted along with the End of Periodic Frame Interrupt (EOPF) bit in this register. */ uint32_t incompisoin : 1; /**< Incomplete Isochronous IN Transfer (incompISOIN) The core sets this interrupt to indicate that there is at least one isochronous IN endpoint on which the transfer is not completed in the current microframe. This interrupt is asserted along with the End of Periodic Frame Interrupt (EOPF) bit in this register. */ uint32_t oepint : 1; /**< OUT Endpoints Interrupt (OEPInt) The core sets this bit to indicate that an interrupt is pending on one of the OUT endpoints of the core (in Device mode). The application must read the Device All Endpoints Interrupt (DAINT) register to determine the exact number of the OUT endpoint on which the interrupt occurred, and then read the corresponding Device OUT Endpoint-n Interrupt (DOEPINTn) register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the corresponding DOEPINTn register to clear this bit. */ uint32_t iepint : 1; /**< IN Endpoints Interrupt (IEPInt) The core sets this bit to indicate that an interrupt is pending on one of the IN endpoints of the core (in Device mode). The application must read the Device All Endpoints Interrupt (DAINT) register to determine the exact number of the IN endpoint on which the interrupt occurred, and then read the corresponding Device IN Endpoint-n Interrupt (DIEPINTn) register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the corresponding DIEPINTn register to clear this bit. */ uint32_t epmis : 1; /**< Endpoint Mismatch Interrupt (EPMis) Indicates that an IN token has been received for a non-periodic endpoint, but the data for another endpoint is present in the top of the Non-Periodic Transmit FIFO and the IN endpoint mismatch count programmed by the application has expired. */ uint32_t reserved_16_16 : 1; uint32_t eopf : 1; /**< End of Periodic Frame Interrupt (EOPF) Indicates that the period specified in the Periodic Frame Interval field of the Device Configuration register (DCFG.PerFrInt) has been reached in the current microframe. */ uint32_t isooutdrop : 1; /**< Isochronous OUT Packet Dropped Interrupt (ISOOutDrop) The core sets this bit when it fails to write an isochronous OUT packet into the RxFIFO because the RxFIFO doesn't have enough space to accommodate a maximum packet size packet for the isochronous OUT endpoint. */ uint32_t enumdone : 1; /**< Enumeration Done (EnumDone) The core sets this bit to indicate that speed enumeration is complete. The application must read the Device Status (DSTS) register to obtain the enumerated speed. */ uint32_t usbrst : 1; /**< USB Reset (USBRst) The core sets this bit to indicate that a reset is detected on the USB. */ uint32_t usbsusp : 1; /**< USB Suspend (USBSusp) The core sets this bit to indicate that a suspend was detected on the USB. The core enters the Suspended state when there is no activity on the phy_line_state_i signal for an extended period of time. */ uint32_t erlysusp : 1; /**< Early Suspend (ErlySusp) The core sets this bit to indicate that an Idle state has been detected on the USB for 3 ms. */ uint32_t i2cint : 1; /**< I2C Interrupt (I2CINT) This bit is always 0x0. */ uint32_t ulpickint : 1; /**< ULPI Carkit Interrupt (ULPICKINT) This bit is always 0x0. */ uint32_t goutnakeff : 1; /**< Global OUT NAK Effective (GOUTNakEff) Indicates that the Set Global OUT NAK bit in the Device Control register (DCTL.SGOUTNak), set by the application, has taken effect in the core. This bit can be cleared by writing the Clear Global OUT NAK bit in the Device Control register (DCTL.CGOUTNak). */ uint32_t ginnakeff : 1; /**< Global IN Non-Periodic NAK Effective (GINNakEff) Indicates that the Set Global Non-Periodic IN NAK bit in the Device Control register (DCTL.SGNPInNak), set by the application, has taken effect in the core. That is, the core has sampled the Global IN NAK bit set by the application. This bit can be cleared by clearing the Clear Global Non-Periodic IN NAK bit in the Device Control register (DCTL.CGNPInNak). This interrupt does not necessarily mean that a NAK handshake is sent out on the USB. The STALL bit takes precedence over the NAK bit. */ uint32_t nptxfemp : 1; /**< Non-Periodic TxFIFO Empty (NPTxFEmp) This interrupt is asserted when the Non-Periodic TxFIFO is either half or completely empty, and there is space for at least one entry to be written to the Non-Periodic Transmit Request Queue. The half or completely empty status is determined by the Non-Periodic TxFIFO Empty Level bit in the Core AHB Configuration register (GAHBCFG.NPTxFEmpLvl). */ uint32_t rxflvl : 1; /**< RxFIFO Non-Empty (RxFLvl) Indicates that there is at least one packet pending to be read from the RxFIFO. */ uint32_t sof : 1; /**< Start of (micro)Frame (Sof) In Host mode, the core sets this bit to indicate that an SOF (FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the USB. The application must write a 1 to this bit to clear the interrupt. In Device mode, in the core sets this bit to indicate that an SOF token has been received on the USB. The application can read the Device Status register to get the current (micro)frame number. This interrupt is seen only when the core is operating at either HS or FS. */ uint32_t otgint : 1; /**< OTG Interrupt (OTGInt) The core sets this bit to indicate an OTG protocol event. The application must read the OTG Interrupt Status (GOTGINT) register to determine the exact event that caused this interrupt. The application must clear the appropriate status bit in the GOTGINT register to clear this bit. */ uint32_t modemis : 1; /**< Mode Mismatch Interrupt (ModeMis) The core sets this bit when the application is trying to access: * A Host mode register, when the core is operating in Device mode * A Device mode register, when the core is operating in Host mode The register access is completed on the AHB with an OKAY response, but is ignored by the core internally and doesn't affect the operation of the core. */ uint32_t curmod : 1; /**< Current Mode of Operation (CurMod) Indicates the current mode of operation. * 1'b0: Device mode * 1'b1: Host mode */ #else uint32_t curmod : 1; uint32_t modemis : 1; uint32_t otgint : 1; uint32_t sof : 1; uint32_t rxflvl : 1; uint32_t nptxfemp : 1; uint32_t ginnakeff : 1; uint32_t goutnakeff : 1; uint32_t ulpickint : 1; uint32_t i2cint : 1; uint32_t erlysusp : 1; uint32_t usbsusp : 1; uint32_t usbrst : 1; uint32_t enumdone : 1; uint32_t isooutdrop : 1; uint32_t eopf : 1; uint32_t reserved_16_16 : 1; uint32_t epmis : 1; uint32_t iepint : 1; uint32_t oepint : 1; uint32_t incompisoin : 1; uint32_t incomplp : 1; uint32_t fetsusp : 1; uint32_t reserved_23_23 : 1; uint32_t prtint : 1; uint32_t hchint : 1; uint32_t ptxfemp : 1; uint32_t reserved_27_27 : 1; uint32_t conidstschng : 1; uint32_t disconnint : 1; uint32_t sessreqint : 1; uint32_t wkupint : 1; #endif } s; struct cvmx_usbcx_gintsts_s cn30xx; struct cvmx_usbcx_gintsts_s cn31xx; struct cvmx_usbcx_gintsts_s cn50xx; struct cvmx_usbcx_gintsts_s cn52xx; struct cvmx_usbcx_gintsts_s cn52xxp1; struct cvmx_usbcx_gintsts_s cn56xx; struct cvmx_usbcx_gintsts_s cn56xxp1; }; typedef union cvmx_usbcx_gintsts cvmx_usbcx_gintsts_t; /** * cvmx_usbc#_gnptxfsiz * * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ) * * The application can program the RAM size and the memory start address for the Non-Periodic TxFIFO. */ union cvmx_usbcx_gnptxfsiz { uint32_t u32; struct cvmx_usbcx_gnptxfsiz_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t nptxfdep : 16; /**< Non-Periodic TxFIFO Depth (NPTxFDep) This value is in terms of 32-bit words. Minimum value is 16 Maximum value is 32768 */ uint32_t nptxfstaddr : 16; /**< Non-Periodic Transmit RAM Start Address (NPTxFStAddr) This field contains the memory start address for Non-Periodic Transmit FIFO RAM. */ #else uint32_t nptxfstaddr : 16; uint32_t nptxfdep : 16; #endif } s; struct cvmx_usbcx_gnptxfsiz_s cn30xx; struct cvmx_usbcx_gnptxfsiz_s cn31xx; struct cvmx_usbcx_gnptxfsiz_s cn50xx; struct cvmx_usbcx_gnptxfsiz_s cn52xx; struct cvmx_usbcx_gnptxfsiz_s cn52xxp1; struct cvmx_usbcx_gnptxfsiz_s cn56xx; struct cvmx_usbcx_gnptxfsiz_s cn56xxp1; }; typedef union cvmx_usbcx_gnptxfsiz cvmx_usbcx_gnptxfsiz_t; /** * cvmx_usbc#_gnptxsts * * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS) * * This read-only register contains the free space information for the Non-Periodic TxFIFO and * the Non-Periodic Transmit Request Queue */ union cvmx_usbcx_gnptxsts { uint32_t u32; struct cvmx_usbcx_gnptxsts_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_31_31 : 1; uint32_t nptxqtop : 7; /**< Top of the Non-Periodic Transmit Request Queue (NPTxQTop) Entry in the Non-Periodic Tx Request Queue that is currently being processed by the MAC. * Bits [30:27]: Channel/endpoint number * Bits [26:25]: - 2'b00: IN/OUT token - 2'b01: Zero-length transmit packet (device IN/host OUT) - 2'b10: PING/CSPLIT token - 2'b11: Channel halt command * Bit [24]: Terminate (last entry for selected channel/endpoint) */ uint32_t nptxqspcavail : 8; /**< Non-Periodic Transmit Request Queue Space Available (NPTxQSpcAvail) Indicates the amount of free space available in the Non- Periodic Transmit Request Queue. This queue holds both IN and OUT requests in Host mode. Device mode has only IN requests. * 8'h0: Non-Periodic Transmit Request Queue is full * 8'h1: 1 location available * 8'h2: 2 locations available * n: n locations available (0..8) * Others: Reserved */ uint32_t nptxfspcavail : 16; /**< Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail) Indicates the amount of free space available in the Non- Periodic TxFIFO. Values are in terms of 32-bit words. * 16'h0: Non-Periodic TxFIFO is full * 16'h1: 1 word available * 16'h2: 2 words available * 16'hn: n words available (where 0..32768) * 16'h8000: 32768 words available * Others: Reserved */ #else uint32_t nptxfspcavail : 16; uint32_t nptxqspcavail : 8; uint32_t nptxqtop : 7; uint32_t reserved_31_31 : 1; #endif } s; struct cvmx_usbcx_gnptxsts_s cn30xx; struct cvmx_usbcx_gnptxsts_s cn31xx; struct cvmx_usbcx_gnptxsts_s cn50xx; struct cvmx_usbcx_gnptxsts_s cn52xx; struct cvmx_usbcx_gnptxsts_s cn52xxp1; struct cvmx_usbcx_gnptxsts_s cn56xx; struct cvmx_usbcx_gnptxsts_s cn56xxp1; }; typedef union cvmx_usbcx_gnptxsts cvmx_usbcx_gnptxsts_t; /** * cvmx_usbc#_gotgctl * * OTG Control and Status Register (GOTGCTL) * * The OTG Control and Status register controls the behavior and reflects the status of the OTG function of the core.: */ union cvmx_usbcx_gotgctl { uint32_t u32; struct cvmx_usbcx_gotgctl_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_20_31 : 12; uint32_t bsesvld : 1; /**< B-Session Valid (BSesVld) Valid only when O2P USB core is configured as a USB device. Indicates the Device mode transceiver status. * 1'b0: B-session is not valid. * 1'b1: B-session is valid. */ uint32_t asesvld : 1; /**< A-Session Valid (ASesVld) Valid only when O2P USB core is configured as a USB host. Indicates the Host mode transceiver status. * 1'b0: A-session is not valid * 1'b1: A-session is valid */ uint32_t dbnctime : 1; /**< Long/Short Debounce Time (DbncTime) In the present version of the core this bit will only read as '0'. */ uint32_t conidsts : 1; /**< Connector ID Status (ConIDSts) Indicates the connector ID status on a connect event. * 1'b0: The O2P USB core is in A-device mode * 1'b1: The O2P USB core is in B-device mode */ uint32_t reserved_12_15 : 4; uint32_t devhnpen : 1; /**< Device HNP Enabled (DevHNPEn) Since O2P USB core is not HNP capable this bit is 0x0. */ uint32_t hstsethnpen : 1; /**< Host Set HNP Enable (HstSetHNPEn) Since O2P USB core is not HNP capable this bit is 0x0. */ uint32_t hnpreq : 1; /**< HNP Request (HNPReq) Since O2P USB core is not HNP capable this bit is 0x0. */ uint32_t hstnegscs : 1; /**< Host Negotiation Success (HstNegScs) Since O2P USB core is not HNP capable this bit is 0x0. */ uint32_t reserved_2_7 : 6; uint32_t sesreq : 1; /**< Session Request (SesReq) Since O2P USB core is not SRP capable this bit is 0x0. */ uint32_t sesreqscs : 1; /**< Session Request Success (SesReqScs) Since O2P USB core is not SRP capable this bit is 0x0. */ #else uint32_t sesreqscs : 1; uint32_t sesreq : 1; uint32_t reserved_2_7 : 6; uint32_t hstnegscs : 1; uint32_t hnpreq : 1; uint32_t hstsethnpen : 1; uint32_t devhnpen : 1; uint32_t reserved_12_15 : 4; uint32_t conidsts : 1; uint32_t dbnctime : 1; uint32_t asesvld : 1; uint32_t bsesvld : 1; uint32_t reserved_20_31 : 12; #endif } s; struct cvmx_usbcx_gotgctl_s cn30xx; struct cvmx_usbcx_gotgctl_s cn31xx; struct cvmx_usbcx_gotgctl_s cn50xx; struct cvmx_usbcx_gotgctl_s cn52xx; struct cvmx_usbcx_gotgctl_s cn52xxp1; struct cvmx_usbcx_gotgctl_s cn56xx; struct cvmx_usbcx_gotgctl_s cn56xxp1; }; typedef union cvmx_usbcx_gotgctl cvmx_usbcx_gotgctl_t; /** * cvmx_usbc#_gotgint * * OTG Interrupt Register (GOTGINT) * * The application reads this register whenever there is an OTG interrupt and clears the bits in this register * to clear the OTG interrupt. It is shown in Interrupt .: */ union cvmx_usbcx_gotgint { uint32_t u32; struct cvmx_usbcx_gotgint_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_20_31 : 12; uint32_t dbncedone : 1; /**< Debounce Done (DbnceDone) In the present version of the code this bit is tied to '0'. */ uint32_t adevtoutchg : 1; /**< A-Device Timeout Change (ADevTOUTChg) Since O2P USB core is not HNP or SRP capable this bit is always 0x0. */ uint32_t hstnegdet : 1; /**< Host Negotiation Detected (HstNegDet) Since O2P USB core is not HNP or SRP capable this bit is always 0x0. */ uint32_t reserved_10_16 : 7; uint32_t hstnegsucstschng : 1; /**< Host Negotiation Success Status Change (HstNegSucStsChng) Since O2P USB core is not HNP or SRP capable this bit is always 0x0. */ uint32_t sesreqsucstschng : 1; /**< Session Request Success Status Change Since O2P USB core is not HNP or SRP capable this bit is always 0x0. */ uint32_t reserved_3_7 : 5; uint32_t sesenddet : 1; /**< Session End Detected (SesEndDet) Since O2P USB core is not HNP or SRP capable this bit is always 0x0. */ uint32_t reserved_0_1 : 2; #else uint32_t reserved_0_1 : 2; uint32_t sesenddet : 1; uint32_t reserved_3_7 : 5; uint32_t sesreqsucstschng : 1; uint32_t hstnegsucstschng : 1; uint32_t reserved_10_16 : 7; uint32_t hstnegdet : 1; uint32_t adevtoutchg : 1; uint32_t dbncedone : 1; uint32_t reserved_20_31 : 12; #endif } s; struct cvmx_usbcx_gotgint_s cn30xx; struct cvmx_usbcx_gotgint_s cn31xx; struct cvmx_usbcx_gotgint_s cn50xx; struct cvmx_usbcx_gotgint_s cn52xx; struct cvmx_usbcx_gotgint_s cn52xxp1; struct cvmx_usbcx_gotgint_s cn56xx; struct cvmx_usbcx_gotgint_s cn56xxp1; }; typedef union cvmx_usbcx_gotgint cvmx_usbcx_gotgint_t; /** * cvmx_usbc#_grstctl * * Core Reset Register (GRSTCTL) * * The application uses this register to reset various hardware features inside the core. */ union cvmx_usbcx_grstctl { uint32_t u32; struct cvmx_usbcx_grstctl_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ahbidle : 1; /**< AHB Master Idle (AHBIdle) Indicates that the AHB Master State Machine is in the IDLE condition. */ uint32_t dmareq : 1; /**< DMA Request Signal (DMAReq) Indicates that the DMA request is in progress. Used for debug. */ uint32_t reserved_11_29 : 19; uint32_t txfnum : 5; /**< TxFIFO Number (TxFNum) This is the FIFO number that must be flushed using the TxFIFO Flush bit. This field must not be changed until the core clears the TxFIFO Flush bit. * 5'h0: Non-Periodic TxFIFO flush * 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic TxFIFO flush in Host mode * 5'h2: Periodic TxFIFO 2 flush in Device mode - ... * 5'hF: Periodic TxFIFO 15 flush in Device mode * 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the core */ uint32_t txfflsh : 1; /**< TxFIFO Flush (TxFFlsh) This bit selectively flushes a single or all transmit FIFOs, but cannot do so if the core is in the midst of a transaction. The application must only write this bit after checking that the core is neither writing to the TxFIFO nor reading from the TxFIFO. The application must wait until the core clears this bit before performing any operations. This bit takes 8 clocks (of phy_clk or hclk, whichever is slower) to clear. */ uint32_t rxfflsh : 1; /**< RxFIFO Flush (RxFFlsh) The application can flush the entire RxFIFO using this bit, but must first ensure that the core is not in the middle of a transaction. The application must only write to this bit after checking that the core is neither reading from the RxFIFO nor writing to the RxFIFO. The application must wait until the bit is cleared before performing any other operations. This bit will take 8 clocks (slowest of PHY or AHB clock) to clear. */ uint32_t intknqflsh : 1; /**< IN Token Sequence Learning Queue Flush (INTknQFlsh) The application writes this bit to flush the IN Token Sequence Learning Queue. */ uint32_t frmcntrrst : 1; /**< Host Frame Counter Reset (FrmCntrRst) The application writes this bit to reset the (micro)frame number counter inside the core. When the (micro)frame counter is reset, the subsequent SOF sent out by the core will have a (micro)frame number of 0. */ uint32_t hsftrst : 1; /**< HClk Soft Reset (HSftRst) The application uses this bit to flush the control logic in the AHB Clock domain. Only AHB Clock Domain pipelines are reset. * FIFOs are not flushed with this bit. * All state machines in the AHB clock domain are reset to the Idle state after terminating the transactions on the AHB, following the protocol. * CSR control bits used by the AHB clock domain state machines are cleared. * To clear this interrupt, status mask bits that control the interrupt status and are generated by the AHB clock domain state machine are cleared. * Because interrupt status bits are not cleared, the application can get the status of any core events that occurred after it set this bit. This is a self-clearing bit that the core clears after all necessary logic is reset in the core. This may take several clocks, depending on the core's current state. */ uint32_t csftrst : 1; /**< Core Soft Reset (CSftRst) Resets the hclk and phy_clock domains as follows: * Clears the interrupts and all the CSR registers except the following register bits: - PCGCCTL.RstPdwnModule - PCGCCTL.GateHclk - PCGCCTL.PwrClmp - PCGCCTL.StopPPhyLPwrClkSelclk - GUSBCFG.PhyLPwrClkSel - GUSBCFG.DDRSel - GUSBCFG.PHYSel - GUSBCFG.FSIntf - GUSBCFG.ULPI_UTMI_Sel - GUSBCFG.PHYIf - HCFG.FSLSPclkSel - DCFG.DevSpd * All module state machines (except the AHB Slave Unit) are reset to the IDLE state, and all the transmit FIFOs and the receive FIFO are flushed. * Any transactions on the AHB Master are terminated as soon as possible, after gracefully completing the last data phase of an AHB transfer. Any transactions on the USB are terminated immediately. The application can write to this bit any time it wants to reset the core. This is a self-clearing bit and the core clears this bit after all the necessary logic is reset in the core, which may take several clocks, depending on the current state of the core. Once this bit is cleared software should wait at least 3 PHY clocks before doing any access to the PHY domain (synchronization delay). Software should also should check that bit 31 of this register is 1 (AHB Master is IDLE) before starting any operation. Typically software reset is used during software development and also when you dynamically change the PHY selection bits in the USB configuration registers listed above. When you change the PHY, the corresponding clock for the PHY is selected and used in the PHY domain. Once a new clock is selected, the PHY domain has to be reset for proper operation. */ #else uint32_t csftrst : 1; uint32_t hsftrst : 1; uint32_t frmcntrrst : 1; uint32_t intknqflsh : 1; uint32_t rxfflsh : 1; uint32_t txfflsh : 1; uint32_t txfnum : 5; uint32_t reserved_11_29 : 19; uint32_t dmareq : 1; uint32_t ahbidle : 1; #endif } s; struct cvmx_usbcx_grstctl_s cn30xx; struct cvmx_usbcx_grstctl_s cn31xx; struct cvmx_usbcx_grstctl_s cn50xx; struct cvmx_usbcx_grstctl_s cn52xx; struct cvmx_usbcx_grstctl_s cn52xxp1; struct cvmx_usbcx_grstctl_s cn56xx; struct cvmx_usbcx_grstctl_s cn56xxp1; }; typedef union cvmx_usbcx_grstctl cvmx_usbcx_grstctl_t; /** * cvmx_usbc#_grxfsiz * * Receive FIFO Size Register (GRXFSIZ) * * The application can program the RAM size that must be allocated to the RxFIFO. */ union cvmx_usbcx_grxfsiz { uint32_t u32; struct cvmx_usbcx_grxfsiz_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_16_31 : 16; uint32_t rxfdep : 16; /**< RxFIFO Depth (RxFDep) This value is in terms of 32-bit words. * Minimum value is 16 * Maximum value is 32768 */ #else uint32_t rxfdep : 16; uint32_t reserved_16_31 : 16; #endif } s; struct cvmx_usbcx_grxfsiz_s cn30xx; struct cvmx_usbcx_grxfsiz_s cn31xx; struct cvmx_usbcx_grxfsiz_s cn50xx; struct cvmx_usbcx_grxfsiz_s cn52xx; struct cvmx_usbcx_grxfsiz_s cn52xxp1; struct cvmx_usbcx_grxfsiz_s cn56xx; struct cvmx_usbcx_grxfsiz_s cn56xxp1; }; typedef union cvmx_usbcx_grxfsiz cvmx_usbcx_grxfsiz_t; /** * cvmx_usbc#_grxstspd * * Receive Status Debug Read Register, Device Mode (GRXSTSPD) * * A read to the Receive Status Read and Pop register returns and additionally pops the top data entry out of the RxFIFO. * This Description is only valid when the core is in Device Mode. For Host Mode use USBC_GRXSTSPH instead. * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the same offset in the O2P USB core. * The offset difference shown in this document is for software clarity and is actually ignored by the * hardware. */ union cvmx_usbcx_grxstspd { uint32_t u32; struct cvmx_usbcx_grxstspd_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_25_31 : 7; uint32_t fn : 4; /**< Frame Number (FN) This is the least significant 4 bits of the (micro)frame number in which the packet is received on the USB. This field is supported only when the isochronous OUT endpoints are supported. */ uint32_t pktsts : 4; /**< Packet Status (PktSts) Indicates the status of the received packet * 4'b0001: Glogal OUT NAK (triggers an interrupt) * 4'b0010: OUT data packet received * 4'b0100: SETUP transaction completed (triggers an interrupt) * 4'b0110: SETUP data packet received * Others: Reserved */ uint32_t dpid : 2; /**< Data PID (DPID) * 2'b00: DATA0 * 2'b10: DATA1 * 2'b01: DATA2 * 2'b11: MDATA */ uint32_t bcnt : 11; /**< Byte Count (BCnt) Indicates the byte count of the received data packet */ uint32_t epnum : 4; /**< Endpoint Number (EPNum) Indicates the endpoint number to which the current received packet belongs. */ #else uint32_t epnum : 4; uint32_t bcnt : 11; uint32_t dpid : 2; uint32_t pktsts : 4; uint32_t fn : 4; uint32_t reserved_25_31 : 7; #endif } s; struct cvmx_usbcx_grxstspd_s cn30xx; struct cvmx_usbcx_grxstspd_s cn31xx; struct cvmx_usbcx_grxstspd_s cn50xx; struct cvmx_usbcx_grxstspd_s cn52xx; struct cvmx_usbcx_grxstspd_s cn52xxp1; struct cvmx_usbcx_grxstspd_s cn56xx; struct cvmx_usbcx_grxstspd_s cn56xxp1; }; typedef union cvmx_usbcx_grxstspd cvmx_usbcx_grxstspd_t; /** * cvmx_usbc#_grxstsph * * Receive Status Read and Pop Register, Host Mode (GRXSTSPH) * * A read to the Receive Status Read and Pop register returns and additionally pops the top data entry out of the RxFIFO. * This Description is only valid when the core is in Host Mode. For Device Mode use USBC_GRXSTSPD instead. * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the same offset in the O2P USB core. * The offset difference shown in this document is for software clarity and is actually ignored by the * hardware. */ union cvmx_usbcx_grxstsph { uint32_t u32; struct cvmx_usbcx_grxstsph_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_21_31 : 11; uint32_t pktsts : 4; /**< Packet Status (PktSts) Indicates the status of the received packet * 4'b0010: IN data packet received * 4'b0011: IN transfer completed (triggers an interrupt) * 4'b0101: Data toggle error (triggers an interrupt) * 4'b0111: Channel halted (triggers an interrupt) * Others: Reserved */ uint32_t dpid : 2; /**< Data PID (DPID) * 2'b00: DATA0 * 2'b10: DATA1 * 2'b01: DATA2 * 2'b11: MDATA */ uint32_t bcnt : 11; /**< Byte Count (BCnt) Indicates the byte count of the received IN data packet */ uint32_t chnum : 4; /**< Channel Number (ChNum) Indicates the channel number to which the current received packet belongs. */ #else uint32_t chnum : 4; uint32_t bcnt : 11; uint32_t dpid : 2; uint32_t pktsts : 4; uint32_t reserved_21_31 : 11; #endif } s; struct cvmx_usbcx_grxstsph_s cn30xx; struct cvmx_usbcx_grxstsph_s cn31xx; struct cvmx_usbcx_grxstsph_s cn50xx; struct cvmx_usbcx_grxstsph_s cn52xx; struct cvmx_usbcx_grxstsph_s cn52xxp1; struct cvmx_usbcx_grxstsph_s cn56xx; struct cvmx_usbcx_grxstsph_s cn56xxp1; }; typedef union cvmx_usbcx_grxstsph cvmx_usbcx_grxstsph_t; /** * cvmx_usbc#_grxstsrd * * Receive Status Debug Read Register, Device Mode (GRXSTSRD) * * A read to the Receive Status Debug Read register returns the contents of the top of the Receive FIFO. * This Description is only valid when the core is in Device Mode. For Host Mode use USBC_GRXSTSRH instead. * NOTE: GRXSTSRH and GRXSTSRD are physically the same register and share the same offset in the O2P USB core. * The offset difference shown in this document is for software clarity and is actually ignored by the * hardware. */ union cvmx_usbcx_grxstsrd { uint32_t u32; struct cvmx_usbcx_grxstsrd_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_25_31 : 7; uint32_t fn : 4; /**< Frame Number (FN) This is the least significant 4 bits of the (micro)frame number in which the packet is received on the USB. This field is supported only when the isochronous OUT endpoints are supported. */ uint32_t pktsts : 4; /**< Packet Status (PktSts) Indicates the status of the received packet * 4'b0001: Glogal OUT NAK (triggers an interrupt) * 4'b0010: OUT data packet received * 4'b0100: SETUP transaction completed (triggers an interrupt) * 4'b0110: SETUP data packet received * Others: Reserved */ uint32_t dpid : 2; /**< Data PID (DPID) * 2'b00: DATA0 * 2'b10: DATA1 * 2'b01: DATA2 * 2'b11: MDATA */ uint32_t bcnt : 11; /**< Byte Count (BCnt) Indicates the byte count of the received data packet */ uint32_t epnum : 4; /**< Endpoint Number (EPNum) Indicates the endpoint number to which the current received packet belongs. */ #else uint32_t epnum : 4; uint32_t bcnt : 11; uint32_t dpid : 2; uint32_t pktsts : 4; uint32_t fn : 4; uint32_t reserved_25_31 : 7; #endif } s; struct cvmx_usbcx_grxstsrd_s cn30xx; struct cvmx_usbcx_grxstsrd_s cn31xx; struct cvmx_usbcx_grxstsrd_s cn50xx; struct cvmx_usbcx_grxstsrd_s cn52xx; struct cvmx_usbcx_grxstsrd_s cn52xxp1; struct cvmx_usbcx_grxstsrd_s cn56xx; struct cvmx_usbcx_grxstsrd_s cn56xxp1; }; typedef union cvmx_usbcx_grxstsrd cvmx_usbcx_grxstsrd_t; /** * cvmx_usbc#_grxstsrh * * Receive Status Debug Read Register, Host Mode (GRXSTSRH) * * A read to the Receive Status Debug Read register returns the contents of the top of the Receive FIFO. * This Description is only valid when the core is in Host Mode. For Device Mode use USBC_GRXSTSRD instead. * NOTE: GRXSTSRH and GRXSTSRD are physically the same register and share the same offset in the O2P USB core. * The offset difference shown in this document is for software clarity and is actually ignored by the * hardware. */ union cvmx_usbcx_grxstsrh { uint32_t u32; struct cvmx_usbcx_grxstsrh_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_21_31 : 11; uint32_t pktsts : 4; /**< Packet Status (PktSts) Indicates the status of the received packet * 4'b0010: IN data packet received * 4'b0011: IN transfer completed (triggers an interrupt) * 4'b0101: Data toggle error (triggers an interrupt) * 4'b0111: Channel halted (triggers an interrupt) * Others: Reserved */ uint32_t dpid : 2; /**< Data PID (DPID) * 2'b00: DATA0 * 2'b10: DATA1 * 2'b01: DATA2 * 2'b11: MDATA */ uint32_t bcnt : 11; /**< Byte Count (BCnt) Indicates the byte count of the received IN data packet */ uint32_t chnum : 4; /**< Channel Number (ChNum) Indicates the channel number to which the current received packet belongs. */ #else uint32_t chnum : 4; uint32_t bcnt : 11; uint32_t dpid : 2; uint32_t pktsts : 4; uint32_t reserved_21_31 : 11; #endif } s; struct cvmx_usbcx_grxstsrh_s cn30xx; struct cvmx_usbcx_grxstsrh_s cn31xx; struct cvmx_usbcx_grxstsrh_s cn50xx; struct cvmx_usbcx_grxstsrh_s cn52xx; struct cvmx_usbcx_grxstsrh_s cn52xxp1; struct cvmx_usbcx_grxstsrh_s cn56xx; struct cvmx_usbcx_grxstsrh_s cn56xxp1; }; typedef union cvmx_usbcx_grxstsrh cvmx_usbcx_grxstsrh_t; /** * cvmx_usbc#_gsnpsid * * Synopsys ID Register (GSNPSID) * * This is a read-only register that contains the release number of the core being used. */ union cvmx_usbcx_gsnpsid { uint32_t u32; struct cvmx_usbcx_gsnpsid_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t synopsysid : 32; /**< 0x4F54\<version\>A, release number of the core being used. 0x4F54220A => pass1.x, 0x4F54240A => pass2.x */ #else uint32_t synopsysid : 32; #endif } s; struct cvmx_usbcx_gsnpsid_s cn30xx; struct cvmx_usbcx_gsnpsid_s cn31xx; struct cvmx_usbcx_gsnpsid_s cn50xx; struct cvmx_usbcx_gsnpsid_s cn52xx; struct cvmx_usbcx_gsnpsid_s cn52xxp1; struct cvmx_usbcx_gsnpsid_s cn56xx; struct cvmx_usbcx_gsnpsid_s cn56xxp1; }; typedef union cvmx_usbcx_gsnpsid cvmx_usbcx_gsnpsid_t; /** * cvmx_usbc#_gusbcfg * * Core USB Configuration Register (GUSBCFG) * * This register can be used to configure the core after power-on or a changing to Host mode or Device mode. * It contains USB and USB-PHY related configuration parameters. The application must program this register * before starting any transactions on either the AHB or the USB. * Do not make changes to this register after the initial programming. */ union cvmx_usbcx_gusbcfg { uint32_t u32; struct cvmx_usbcx_gusbcfg_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_17_31 : 15; uint32_t otgi2csel : 1; /**< UTMIFS or I2C Interface Select (OtgI2CSel) This bit is always 0x0. */ uint32_t phylpwrclksel : 1; /**< PHY Low-Power Clock Select (PhyLPwrClkSel) Software should set this bit to 0x0. Selects either 480-MHz or 48-MHz (low-power) PHY mode. In FS and LS modes, the PHY can usually operate on a 48-MHz clock to save power. * 1'b0: 480-MHz Internal PLL clock * 1'b1: 48-MHz External Clock In 480 MHz mode, the UTMI interface operates at either 60 or 30-MHz, depending upon whether 8- or 16-bit data width is selected. In 48-MHz mode, the UTMI interface operates at 48 MHz in FS mode and at either 48 or 6 MHz in LS mode (depending on the PHY vendor). This bit drives the utmi_fsls_low_power core output signal, and is valid only for UTMI+ PHYs. */ uint32_t reserved_14_14 : 1; uint32_t usbtrdtim : 4; /**< USB Turnaround Time (USBTrdTim) Sets the turnaround time in PHY clocks. Specifies the response time for a MAC request to the Packet FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM). This must be programmed to 0x5. */ uint32_t hnpcap : 1; /**< HNP-Capable (HNPCap) This bit is always 0x0. */ uint32_t srpcap : 1; /**< SRP-Capable (SRPCap) This bit is always 0x0. */ uint32_t ddrsel : 1; /**< ULPI DDR Select (DDRSel) Software should set this bit to 0x0. */ uint32_t physel : 1; /**< USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial Software should set this bit to 0x0. */ uint32_t fsintf : 1; /**< Full-Speed Serial Interface Select (FSIntf) Software should set this bit to 0x0. */ uint32_t ulpi_utmi_sel : 1; /**< ULPI or UTMI+ Select (ULPI_UTMI_Sel) This bit is always 0x0. */ uint32_t phyif : 1; /**< PHY Interface (PHYIf) This bit is always 0x1. */ uint32_t toutcal : 3; /**< HS/FS Timeout Calibration (TOutCal) The number of PHY clocks that the application programs in this field is added to the high-speed/full-speed interpacket timeout duration in the core to account for any additional delays introduced by the PHY. This may be required, since the delay introduced by the PHY in generating the linestate condition may vary from one PHY to another. The USB standard timeout value for high-speed operation is 736 to 816 (inclusive) bit times. The USB standard timeout value for full-speed operation is 16 to 18 (inclusive) bit times. The application must program this field based on the speed of enumeration. The number of bit times added per PHY clock are: High-speed operation: * One 30-MHz PHY clock = 16 bit times * One 60-MHz PHY clock = 8 bit times Full-speed operation: * One 30-MHz PHY clock = 0.4 bit times * One 60-MHz PHY clock = 0.2 bit times * One 48-MHz PHY clock = 0.25 bit times */ #else uint32_t toutcal : 3; uint32_t phyif : 1; uint32_t ulpi_utmi_sel : 1; uint32_t fsintf : 1; uint32_t physel : 1; uint32_t ddrsel : 1; uint32_t srpcap : 1; uint32_t hnpcap : 1; uint32_t usbtrdtim : 4; uint32_t reserved_14_14 : 1; uint32_t phylpwrclksel : 1; uint32_t otgi2csel : 1; uint32_t reserved_17_31 : 15; #endif } s; struct cvmx_usbcx_gusbcfg_s cn30xx; struct cvmx_usbcx_gusbcfg_s cn31xx; struct cvmx_usbcx_gusbcfg_s cn50xx; struct cvmx_usbcx_gusbcfg_s cn52xx; struct cvmx_usbcx_gusbcfg_s cn52xxp1; struct cvmx_usbcx_gusbcfg_s cn56xx; struct cvmx_usbcx_gusbcfg_s cn56xxp1; }; typedef union cvmx_usbcx_gusbcfg cvmx_usbcx_gusbcfg_t; /** * cvmx_usbc#_haint * * Host All Channels Interrupt Register (HAINT) * * When a significant event occurs on a channel, the Host All Channels Interrupt register * interrupts the application using the Host Channels Interrupt bit of the Core Interrupt * register (GINTSTS.HChInt). This is shown in Interrupt . There is one interrupt bit per * channel, up to a maximum of 16 bits. Bits in this register are set and cleared when the * application sets and clears bits in the corresponding Host Channel-n Interrupt register. */ union cvmx_usbcx_haint { uint32_t u32; struct cvmx_usbcx_haint_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_16_31 : 16; uint32_t haint : 16; /**< Channel Interrupts (HAINT) One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15 */ #else uint32_t haint : 16; uint32_t reserved_16_31 : 16; #endif } s; struct cvmx_usbcx_haint_s cn30xx; struct cvmx_usbcx_haint_s cn31xx; struct cvmx_usbcx_haint_s cn50xx; struct cvmx_usbcx_haint_s cn52xx; struct cvmx_usbcx_haint_s cn52xxp1; struct cvmx_usbcx_haint_s cn56xx; struct cvmx_usbcx_haint_s cn56xxp1; }; typedef union cvmx_usbcx_haint cvmx_usbcx_haint_t; /** * cvmx_usbc#_haintmsk * * Host All Channels Interrupt Mask Register (HAINTMSK) * * The Host All Channel Interrupt Mask register works with the Host All Channel Interrupt * register to interrupt the application when an event occurs on a channel. There is one * interrupt mask bit per channel, up to a maximum of 16 bits. * Mask interrupt: 1'b0 Unmask interrupt: 1'b1 */ union cvmx_usbcx_haintmsk { uint32_t u32; struct cvmx_usbcx_haintmsk_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_16_31 : 16; uint32_t haintmsk : 16; /**< Channel Interrupt Mask (HAINTMsk) One bit per channel: Bit 0 for channel 0, bit 15 for channel 15 */ #else uint32_t haintmsk : 16; uint32_t reserved_16_31 : 16; #endif } s; struct cvmx_usbcx_haintmsk_s cn30xx; struct cvmx_usbcx_haintmsk_s cn31xx; struct cvmx_usbcx_haintmsk_s cn50xx; struct cvmx_usbcx_haintmsk_s cn52xx; struct cvmx_usbcx_haintmsk_s cn52xxp1; struct cvmx_usbcx_haintmsk_s cn56xx; struct cvmx_usbcx_haintmsk_s cn56xxp1; }; typedef union cvmx_usbcx_haintmsk cvmx_usbcx_haintmsk_t; /** * cvmx_usbc#_hcchar# * * Host Channel-n Characteristics Register (HCCHAR) * */ union cvmx_usbcx_hccharx { uint32_t u32; struct cvmx_usbcx_hccharx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t chena : 1; /**< Channel Enable (ChEna) This field is set by the application and cleared by the OTG host. * 1'b0: Channel disabled * 1'b1: Channel enabled */ uint32_t chdis : 1; /**< Channel Disable (ChDis) The application sets this bit to stop transmitting/receiving data on a channel, even before the transfer for that channel is complete. The application must wait for the Channel Disabled interrupt before treating the channel as disabled. */ uint32_t oddfrm : 1; /**< Odd Frame (OddFrm) This field is set (reset) by the application to indicate that the OTG host must perform a transfer in an odd (micro)frame. This field is applicable for only periodic (isochronous and interrupt) transactions. * 1'b0: Even (micro)frame * 1'b1: Odd (micro)frame */ uint32_t devaddr : 7; /**< Device Address (DevAddr) This field selects the specific device serving as the data source or sink. */ uint32_t ec : 2; /**< Multi Count (MC) / Error Count (EC) When the Split Enable bit of the Host Channel-n Split Control register (HCSPLTn.SpltEna) is reset (1'b0), this field indicates to the host the number of transactions that should be executed per microframe for this endpoint. * 2'b00: Reserved. This field yields undefined results. * 2'b01: 1 transaction * 2'b10: 2 transactions to be issued for this endpoint per microframe * 2'b11: 3 transactions to be issued for this endpoint per microframe When HCSPLTn.SpltEna is set (1'b1), this field indicates the number of immediate retries to be performed for a periodic split transactions on transaction errors. This field must be set to at least 2'b01. */ uint32_t eptype : 2; /**< Endpoint Type (EPType) Indicates the transfer type selected. * 2'b00: Control * 2'b01: Isochronous * 2'b10: Bulk * 2'b11: Interrupt */ uint32_t lspddev : 1; /**< Low-Speed Device (LSpdDev) This field is set by the application to indicate that this channel is communicating to a low-speed device. */ uint32_t reserved_16_16 : 1; uint32_t epdir : 1; /**< Endpoint Direction (EPDir) Indicates whether the transaction is IN or OUT. * 1'b0: OUT * 1'b1: IN */ uint32_t epnum : 4; /**< Endpoint Number (EPNum) Indicates the endpoint number on the device serving as the data source or sink. */ uint32_t mps : 11; /**< Maximum Packet Size (MPS) Indicates the maximum packet size of the associated endpoint. */ #else uint32_t mps : 11; uint32_t epnum : 4; uint32_t epdir : 1; uint32_t reserved_16_16 : 1; uint32_t lspddev : 1; uint32_t eptype : 2; uint32_t ec : 2; uint32_t devaddr : 7; uint32_t oddfrm : 1; uint32_t chdis : 1; uint32_t chena : 1; #endif } s; struct cvmx_usbcx_hccharx_s cn30xx; struct cvmx_usbcx_hccharx_s cn31xx; struct cvmx_usbcx_hccharx_s cn50xx; struct cvmx_usbcx_hccharx_s cn52xx; struct cvmx_usbcx_hccharx_s cn52xxp1; struct cvmx_usbcx_hccharx_s cn56xx; struct cvmx_usbcx_hccharx_s cn56xxp1; }; typedef union cvmx_usbcx_hccharx cvmx_usbcx_hccharx_t; /** * cvmx_usbc#_hcfg * * Host Configuration Register (HCFG) * * This register configures the core after power-on. Do not make changes to this register after initializing the host. */ union cvmx_usbcx_hcfg { uint32_t u32; struct cvmx_usbcx_hcfg_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_3_31 : 29; uint32_t fslssupp : 1; /**< FS- and LS-Only Support (FSLSSupp) The application uses this bit to control the core's enumeration speed. Using this bit, the application can make the core enumerate as a FS host, even if the connected device supports HS traffic. Do not make changes to this field after initial programming. * 1'b0: HS/FS/LS, based on the maximum speed supported by the connected device * 1'b1: FS/LS-only, even if the connected device can support HS */ uint32_t fslspclksel : 2; /**< FS/LS PHY Clock Select (FSLSPclkSel) When the core is in FS Host mode * 2'b00: PHY clock is running at 30/60 MHz * 2'b01: PHY clock is running at 48 MHz * Others: Reserved When the core is in LS Host mode * 2'b00: PHY clock is running at 30/60 MHz. When the UTMI+/ULPI PHY Low Power mode is not selected, use 30/60 MHz. * 2'b01: PHY clock is running at 48 MHz. When the UTMI+ PHY Low Power mode is selected, use 48MHz if the PHY supplies a 48 MHz clock during LS mode. * 2'b10: PHY clock is running at 6 MHz. In USB 1.1 FS mode, use 6 MHz when the UTMI+ PHY Low Power mode is selected and the PHY supplies a 6 MHz clock during LS mode. If you select a 6 MHz clock during LS mode, you must do a soft reset. * 2'b11: Reserved */ #else uint32_t fslspclksel : 2; uint32_t fslssupp : 1; uint32_t reserved_3_31 : 29; #endif } s; struct cvmx_usbcx_hcfg_s cn30xx; struct cvmx_usbcx_hcfg_s cn31xx; struct cvmx_usbcx_hcfg_s cn50xx; struct cvmx_usbcx_hcfg_s cn52xx; struct cvmx_usbcx_hcfg_s cn52xxp1; struct cvmx_usbcx_hcfg_s cn56xx; struct cvmx_usbcx_hcfg_s cn56xxp1; }; typedef union cvmx_usbcx_hcfg cvmx_usbcx_hcfg_t; /** * cvmx_usbc#_hcint# * * Host Channel-n Interrupt Register (HCINT) * * This register indicates the status of a channel with respect to USB- and AHB-related events. * The application must read this register when the Host Channels Interrupt bit of the Core Interrupt * register (GINTSTS.HChInt) is set. Before the application can read this register, it must first read * the Host All Channels Interrupt (HAINT) register to get the exact channel number for the Host Channel-n * Interrupt register. The application must clear the appropriate bit in this register to clear the * corresponding bits in the HAINT and GINTSTS registers. */ union cvmx_usbcx_hcintx { uint32_t u32; struct cvmx_usbcx_hcintx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_11_31 : 21; uint32_t datatglerr : 1; /**< Data Toggle Error (DataTglErr) */ uint32_t frmovrun : 1; /**< Frame Overrun (FrmOvrun) */ uint32_t bblerr : 1; /**< Babble Error (BblErr) */ uint32_t xacterr : 1; /**< Transaction Error (XactErr) */ uint32_t nyet : 1; /**< NYET Response Received Interrupt (NYET) */ uint32_t ack : 1; /**< ACK Response Received Interrupt (ACK) */ uint32_t nak : 1; /**< NAK Response Received Interrupt (NAK) */ uint32_t stall : 1; /**< STALL Response Received Interrupt (STALL) */ uint32_t ahberr : 1; /**< This bit is always 0x0. */ uint32_t chhltd : 1; /**< Channel Halted (ChHltd) Indicates the transfer completed abnormally either because of any USB transaction error or in response to disable request by the application. */ uint32_t xfercompl : 1; /**< Transfer Completed (XferCompl) Transfer completed normally without any errors. */ #else uint32_t xfercompl : 1; uint32_t chhltd : 1; uint32_t ahberr : 1; uint32_t stall : 1; uint32_t nak : 1; uint32_t ack : 1; uint32_t nyet : 1; uint32_t xacterr : 1; uint32_t bblerr : 1; uint32_t frmovrun : 1; uint32_t datatglerr : 1; uint32_t reserved_11_31 : 21; #endif } s; struct cvmx_usbcx_hcintx_s cn30xx; struct cvmx_usbcx_hcintx_s cn31xx; struct cvmx_usbcx_hcintx_s cn50xx; struct cvmx_usbcx_hcintx_s cn52xx; struct cvmx_usbcx_hcintx_s cn52xxp1; struct cvmx_usbcx_hcintx_s cn56xx; struct cvmx_usbcx_hcintx_s cn56xxp1; }; typedef union cvmx_usbcx_hcintx cvmx_usbcx_hcintx_t; /** * cvmx_usbc#_hcintmsk# * * Host Channel-n Interrupt Mask Register (HCINTMSKn) * * This register reflects the mask for each channel status described in the previous section. * Mask interrupt: 1'b0 Unmask interrupt: 1'b1 */ union cvmx_usbcx_hcintmskx { uint32_t u32; struct cvmx_usbcx_hcintmskx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_11_31 : 21; uint32_t datatglerrmsk : 1; /**< Data Toggle Error Mask (DataTglErrMsk) */ uint32_t frmovrunmsk : 1; /**< Frame Overrun Mask (FrmOvrunMsk) */ uint32_t bblerrmsk : 1; /**< Babble Error Mask (BblErrMsk) */ uint32_t xacterrmsk : 1; /**< Transaction Error Mask (XactErrMsk) */ uint32_t nyetmsk : 1; /**< NYET Response Received Interrupt Mask (NyetMsk) */ uint32_t ackmsk : 1; /**< ACK Response Received Interrupt Mask (AckMsk) */ uint32_t nakmsk : 1; /**< NAK Response Received Interrupt Mask (NakMsk) */ uint32_t stallmsk : 1; /**< STALL Response Received Interrupt Mask (StallMsk) */ uint32_t ahberrmsk : 1; /**< AHB Error Mask (AHBErrMsk) */ uint32_t chhltdmsk : 1; /**< Channel Halted Mask (ChHltdMsk) */ uint32_t xfercomplmsk : 1; /**< Transfer Completed Mask (XferComplMsk) */ #else uint32_t xfercomplmsk : 1; uint32_t chhltdmsk : 1; uint32_t ahberrmsk : 1; uint32_t stallmsk : 1; uint32_t nakmsk : 1; uint32_t ackmsk : 1; uint32_t nyetmsk : 1; uint32_t xacterrmsk : 1; uint32_t bblerrmsk : 1; uint32_t frmovrunmsk : 1; uint32_t datatglerrmsk : 1; uint32_t reserved_11_31 : 21; #endif } s; struct cvmx_usbcx_hcintmskx_s cn30xx; struct cvmx_usbcx_hcintmskx_s cn31xx; struct cvmx_usbcx_hcintmskx_s cn50xx; struct cvmx_usbcx_hcintmskx_s cn52xx; struct cvmx_usbcx_hcintmskx_s cn52xxp1; struct cvmx_usbcx_hcintmskx_s cn56xx; struct cvmx_usbcx_hcintmskx_s cn56xxp1; }; typedef union cvmx_usbcx_hcintmskx cvmx_usbcx_hcintmskx_t; /** * cvmx_usbc#_hcsplt# * * Host Channel-n Split Control Register (HCSPLT) * */ union cvmx_usbcx_hcspltx { uint32_t u32; struct cvmx_usbcx_hcspltx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t spltena : 1; /**< Split Enable (SpltEna) The application sets this field to indicate that this channel is enabled to perform split transactions. */ uint32_t reserved_17_30 : 14; uint32_t compsplt : 1; /**< Do Complete Split (CompSplt) The application sets this field to request the OTG host to perform a complete split transaction. */ uint32_t xactpos : 2; /**< Transaction Position (XactPos) This field is used to determine whether to send all, first, middle, or last payloads with each OUT transaction. * 2'b11: All. This is the entire data payload is of this transaction (which is less than or equal to 188 bytes). * 2'b10: Begin. This is the first data payload of this transaction (which is larger than 188 bytes). * 2'b00: Mid. This is the middle payload of this transaction (which is larger than 188 bytes). * 2'b01: End. This is the last payload of this transaction (which is larger than 188 bytes). */ uint32_t hubaddr : 7; /**< Hub Address (HubAddr) This field holds the device address of the transaction translator's hub. */ uint32_t prtaddr : 7; /**< Port Address (PrtAddr) This field is the port number of the recipient transaction translator. */ #else uint32_t prtaddr : 7; uint32_t hubaddr : 7; uint32_t xactpos : 2; uint32_t compsplt : 1; uint32_t reserved_17_30 : 14; uint32_t spltena : 1; #endif } s; struct cvmx_usbcx_hcspltx_s cn30xx; struct cvmx_usbcx_hcspltx_s cn31xx; struct cvmx_usbcx_hcspltx_s cn50xx; struct cvmx_usbcx_hcspltx_s cn52xx; struct cvmx_usbcx_hcspltx_s cn52xxp1; struct cvmx_usbcx_hcspltx_s cn56xx; struct cvmx_usbcx_hcspltx_s cn56xxp1; }; typedef union cvmx_usbcx_hcspltx cvmx_usbcx_hcspltx_t; /** * cvmx_usbc#_hctsiz# * * Host Channel-n Transfer Size Register (HCTSIZ) * */ union cvmx_usbcx_hctsizx { uint32_t u32; struct cvmx_usbcx_hctsizx_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t dopng : 1; /**< Do Ping (DoPng) Setting this field to 1 directs the host to do PING protocol. */ uint32_t pid : 2; /**< PID (Pid) The application programs this field with the type of PID to use for the initial transaction. The host will maintain this field for the rest of the transfer. * 2'b00: DATA0 * 2'b01: DATA2 * 2'b10: DATA1 * 2'b11: MDATA (non-control)/SETUP (control) */ uint32_t pktcnt : 10; /**< Packet Count (PktCnt) This field is programmed by the application with the expected number of packets to be transmitted (OUT) or received (IN). The host decrements this count on every successful transmission or reception of an OUT/IN packet. Once this count reaches zero, the application is interrupted to indicate normal completion. */ uint32_t xfersize : 19; /**< Transfer Size (XferSize) For an OUT, this field is the number of data bytes the host will send during the transfer. For an IN, this field is the buffer size that the application has reserved for the transfer. The application is expected to program this field as an integer multiple of the maximum packet size for IN transactions (periodic and non-periodic). */ #else uint32_t xfersize : 19; uint32_t pktcnt : 10; uint32_t pid : 2; uint32_t dopng : 1; #endif } s; struct cvmx_usbcx_hctsizx_s cn30xx; struct cvmx_usbcx_hctsizx_s cn31xx; struct cvmx_usbcx_hctsizx_s cn50xx; struct cvmx_usbcx_hctsizx_s cn52xx; struct cvmx_usbcx_hctsizx_s cn52xxp1; struct cvmx_usbcx_hctsizx_s cn56xx; struct cvmx_usbcx_hctsizx_s cn56xxp1; }; typedef union cvmx_usbcx_hctsizx cvmx_usbcx_hctsizx_t; /** * cvmx_usbc#_hfir * * Host Frame Interval Register (HFIR) * * This register stores the frame interval information for the current speed to which the O2P USB core has enumerated. */ union cvmx_usbcx_hfir { uint32_t u32; struct cvmx_usbcx_hfir_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_16_31 : 16; uint32_t frint : 16; /**< Frame Interval (FrInt) The value that the application programs to this field specifies the interval between two consecutive SOFs (FS) or micro- SOFs (HS) or Keep-Alive tokens (HS). This field contains the number of PHY clocks that constitute the required frame interval. The default value set in this field for a FS operation when the PHY clock frequency is 60 MHz. The application can write a value to this register only after the Port Enable bit of the Host Port Control and Status register (HPRT.PrtEnaPort) has been set. If no value is programmed, the core calculates the value based on the PHY clock specified in the FS/LS PHY Clock Select field of the Host Configuration register (HCFG.FSLSPclkSel). Do not change the value of this field after the initial configuration. * 125 us (PHY clock frequency for HS) * 1 ms (PHY clock frequency for FS/LS) */ #else uint32_t frint : 16; uint32_t reserved_16_31 : 16; #endif } s; struct cvmx_usbcx_hfir_s cn30xx; struct cvmx_usbcx_hfir_s cn31xx; struct cvmx_usbcx_hfir_s cn50xx; struct cvmx_usbcx_hfir_s cn52xx; struct cvmx_usbcx_hfir_s cn52xxp1; struct cvmx_usbcx_hfir_s cn56xx; struct cvmx_usbcx_hfir_s cn56xxp1; }; typedef union cvmx_usbcx_hfir cvmx_usbcx_hfir_t; /** * cvmx_usbc#_hfnum * * Host Frame Number/Frame Time Remaining Register (HFNUM) * * This register indicates the current frame number. * It also indicates the time remaining (in terms of the number of PHY clocks) * in the current (micro)frame. */ union cvmx_usbcx_hfnum { uint32_t u32; struct cvmx_usbcx_hfnum_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t frrem : 16; /**< Frame Time Remaining (FrRem) Indicates the amount of time remaining in the current microframe (HS) or frame (FS/LS), in terms of PHY clocks. This field decrements on each PHY clock. When it reaches zero, this field is reloaded with the value in the Frame Interval register and a new SOF is transmitted on the USB. */ uint32_t frnum : 16; /**< Frame Number (FrNum) This field increments when a new SOF is transmitted on the USB, and is reset to 0 when it reaches 16'h3FFF. */ #else uint32_t frnum : 16; uint32_t frrem : 16; #endif } s; struct cvmx_usbcx_hfnum_s cn30xx; struct cvmx_usbcx_hfnum_s cn31xx; struct cvmx_usbcx_hfnum_s cn50xx; struct cvmx_usbcx_hfnum_s cn52xx; struct cvmx_usbcx_hfnum_s cn52xxp1; struct cvmx_usbcx_hfnum_s cn56xx; struct cvmx_usbcx_hfnum_s cn56xxp1; }; typedef union cvmx_usbcx_hfnum cvmx_usbcx_hfnum_t; /** * cvmx_usbc#_hprt * * Host Port Control and Status Register (HPRT) * * This register is available in both Host and Device modes. * Currently, the OTG Host supports only one port. * A single register holds USB port-related information such as USB reset, enable, suspend, resume, * connect status, and test mode for each port. The R_SS_WC bits in this register can trigger an * interrupt to the application through the Host Port Interrupt bit of the Core Interrupt * register (GINTSTS.PrtInt). On a Port Interrupt, the application must read this register and clear * the bit that caused the interrupt. For the R_SS_WC bits, the application must write a 1 to the bit * to clear the interrupt. */ union cvmx_usbcx_hprt { uint32_t u32; struct cvmx_usbcx_hprt_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_19_31 : 13; uint32_t prtspd : 2; /**< Port Speed (PrtSpd) Indicates the speed of the device attached to this port. * 2'b00: High speed * 2'b01: Full speed * 2'b10: Low speed * 2'b11: Reserved */ uint32_t prttstctl : 4; /**< Port Test Control (PrtTstCtl) The application writes a nonzero value to this field to put the port into a Test mode, and the corresponding pattern is signaled on the port. * 4'b0000: Test mode disabled * 4'b0001: Test_J mode * 4'b0010: Test_K mode * 4'b0011: Test_SE0_NAK mode * 4'b0100: Test_Packet mode * 4'b0101: Test_Force_Enable * Others: Reserved PrtSpd must be zero (i.e. the interface must be in high-speed mode) to use the PrtTstCtl test modes. */ uint32_t prtpwr : 1; /**< Port Power (PrtPwr) The application uses this field to control power to this port, and the core clears this bit on an overcurrent condition. * 1'b0: Power off * 1'b1: Power on */ uint32_t prtlnsts : 2; /**< Port Line Status (PrtLnSts) Indicates the current logic level USB data lines * Bit [10]: Logic level of D- * Bit [11]: Logic level of D+ */ uint32_t reserved_9_9 : 1; uint32_t prtrst : 1; /**< Port Reset (PrtRst) When the application sets this bit, a reset sequence is started on this port. The application must time the reset period and clear this bit after the reset sequence is complete. * 1'b0: Port not in reset * 1'b1: Port in reset The application must leave this bit set for at least a minimum duration mentioned below to start a reset on the port. The application can leave it set for another 10 ms in addition to the required minimum duration, before clearing the bit, even though there is no maximum limit set by the USB standard. * High speed: 50 ms * Full speed/Low speed: 10 ms */ uint32_t prtsusp : 1; /**< Port Suspend (PrtSusp) The application sets this bit to put this port in Suspend mode. The core only stops sending SOFs when this is set. To stop the PHY clock, the application must set the Port Clock Stop bit, which will assert the suspend input pin of the PHY. The read value of this bit reflects the current suspend status of the port. This bit is cleared by the core after a remote wakeup signal is detected or the application sets the Port Reset bit or Port Resume bit in this register or the Resume/Remote Wakeup Detected Interrupt bit or Disconnect Detected Interrupt bit in the Core Interrupt register (GINTSTS.WkUpInt or GINTSTS.DisconnInt, respectively). * 1'b0: Port not in Suspend mode * 1'b1: Port in Suspend mode */ uint32_t prtres : 1; /**< Port Resume (PrtRes) The application sets this bit to drive resume signaling on the port. The core continues to drive the resume signal until the application clears this bit. If the core detects a USB remote wakeup sequence, as indicated by the Port Resume/Remote Wakeup Detected Interrupt bit of the Core Interrupt register (GINTSTS.WkUpInt), the core starts driving resume signaling without application intervention and clears this bit when it detects a disconnect condition. The read value of this bit indicates whether the core is currently driving resume signaling. * 1'b0: No resume driven * 1'b1: Resume driven */ uint32_t prtovrcurrchng : 1; /**< Port Overcurrent Change (PrtOvrCurrChng) The core sets this bit when the status of the Port Overcurrent Active bit (bit 4) in this register changes. */ uint32_t prtovrcurract : 1; /**< Port Overcurrent Active (PrtOvrCurrAct) Indicates the overcurrent condition of the port. * 1'b0: No overcurrent condition * 1'b1: Overcurrent condition */ uint32_t prtenchng : 1; /**< Port Enable/Disable Change (PrtEnChng) The core sets this bit when the status of the Port Enable bit [2] of this register changes. */ uint32_t prtena : 1; /**< Port Enable (PrtEna) A port is enabled only by the core after a reset sequence, and is disabled by an overcurrent condition, a disconnect condition, or by the application clearing this bit. The application cannot set this bit by a register write. It can only clear it to disable the port. This bit does not trigger any interrupt to the application. * 1'b0: Port disabled * 1'b1: Port enabled */ uint32_t prtconndet : 1; /**< Port Connect Detected (PrtConnDet) The core sets this bit when a device connection is detected to trigger an interrupt to the application using the Host Port Interrupt bit of the Core Interrupt register (GINTSTS.PrtInt). The application must write a 1 to this bit to clear the interrupt. */ uint32_t prtconnsts : 1; /**< Port Connect Status (PrtConnSts) * 0: No device is attached to the port. * 1: A device is attached to the port. */ #else uint32_t prtconnsts : 1; uint32_t prtconndet : 1; uint32_t prtena : 1; uint32_t prtenchng : 1; uint32_t prtovrcurract : 1; uint32_t prtovrcurrchng : 1; uint32_t prtres : 1; uint32_t prtsusp : 1; uint32_t prtrst : 1; uint32_t reserved_9_9 : 1; uint32_t prtlnsts : 2; uint32_t prtpwr : 1; uint32_t prttstctl : 4; uint32_t prtspd : 2; uint32_t reserved_19_31 : 13; #endif } s; struct cvmx_usbcx_hprt_s cn30xx; struct cvmx_usbcx_hprt_s cn31xx; struct cvmx_usbcx_hprt_s cn50xx; struct cvmx_usbcx_hprt_s cn52xx; struct cvmx_usbcx_hprt_s cn52xxp1; struct cvmx_usbcx_hprt_s cn56xx; struct cvmx_usbcx_hprt_s cn56xxp1; }; typedef union cvmx_usbcx_hprt cvmx_usbcx_hprt_t; /** * cvmx_usbc#_hptxfsiz * * Host Periodic Transmit FIFO Size Register (HPTXFSIZ) * * This register holds the size and the memory start address of the Periodic TxFIFO, as shown in Figures 310 and 311. */ union cvmx_usbcx_hptxfsiz { uint32_t u32; struct cvmx_usbcx_hptxfsiz_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ptxfsize : 16; /**< Host Periodic TxFIFO Depth (PTxFSize) This value is in terms of 32-bit words. * Minimum value is 16 * Maximum value is 32768 */ uint32_t ptxfstaddr : 16; /**< Host Periodic TxFIFO Start Address (PTxFStAddr) */ #else uint32_t ptxfstaddr : 16; uint32_t ptxfsize : 16; #endif } s; struct cvmx_usbcx_hptxfsiz_s cn30xx; struct cvmx_usbcx_hptxfsiz_s cn31xx; struct cvmx_usbcx_hptxfsiz_s cn50xx; struct cvmx_usbcx_hptxfsiz_s cn52xx; struct cvmx_usbcx_hptxfsiz_s cn52xxp1; struct cvmx_usbcx_hptxfsiz_s cn56xx; struct cvmx_usbcx_hptxfsiz_s cn56xxp1; }; typedef union cvmx_usbcx_hptxfsiz cvmx_usbcx_hptxfsiz_t; /** * cvmx_usbc#_hptxsts * * Host Periodic Transmit FIFO/Queue Status Register (HPTXSTS) * * This read-only register contains the free space information for the Periodic TxFIFO and * the Periodic Transmit Request Queue */ union cvmx_usbcx_hptxsts { uint32_t u32; struct cvmx_usbcx_hptxsts_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t ptxqtop : 8; /**< Top of the Periodic Transmit Request Queue (PTxQTop) This indicates the entry in the Periodic Tx Request Queue that is currently being processes by the MAC. This register is used for debugging. * Bit [31]: Odd/Even (micro)frame - 1'b0: send in even (micro)frame - 1'b1: send in odd (micro)frame * Bits [30:27]: Channel/endpoint number * Bits [26:25]: Type - 2'b00: IN/OUT - 2'b01: Zero-length packet - 2'b10: CSPLIT - 2'b11: Disable channel command * Bit [24]: Terminate (last entry for the selected channel/endpoint) */ uint32_t ptxqspcavail : 8; /**< Periodic Transmit Request Queue Space Available (PTxQSpcAvail) Indicates the number of free locations available to be written in the Periodic Transmit Request Queue. This queue holds both IN and OUT requests. * 8'h0: Periodic Transmit Request Queue is full * 8'h1: 1 location available * 8'h2: 2 locations available * n: n locations available (0..8) * Others: Reserved */ uint32_t ptxfspcavail : 16; /**< Periodic Transmit Data FIFO Space Available (PTxFSpcAvail) Indicates the number of free locations available to be written to in the Periodic TxFIFO. Values are in terms of 32-bit words * 16'h0: Periodic TxFIFO is full * 16'h1: 1 word available * 16'h2: 2 words available * 16'hn: n words available (where 0..32768) * 16'h8000: 32768 words available * Others: Reserved */ #else uint32_t ptxfspcavail : 16; uint32_t ptxqspcavail : 8; uint32_t ptxqtop : 8; #endif } s; struct cvmx_usbcx_hptxsts_s cn30xx; struct cvmx_usbcx_hptxsts_s cn31xx; struct cvmx_usbcx_hptxsts_s cn50xx; struct cvmx_usbcx_hptxsts_s cn52xx; struct cvmx_usbcx_hptxsts_s cn52xxp1; struct cvmx_usbcx_hptxsts_s cn56xx; struct cvmx_usbcx_hptxsts_s cn56xxp1; }; typedef union cvmx_usbcx_hptxsts cvmx_usbcx_hptxsts_t; /** * cvmx_usbc#_nptxdfifo# * * NPTX Data Fifo (NPTXDFIFO) * * A slave mode application uses this register to access the Tx FIFO for channel n. */ union cvmx_usbcx_nptxdfifox { uint32_t u32; struct cvmx_usbcx_nptxdfifox_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t data : 32; /**< Reserved */ #else uint32_t data : 32; #endif } s; struct cvmx_usbcx_nptxdfifox_s cn30xx; struct cvmx_usbcx_nptxdfifox_s cn31xx; struct cvmx_usbcx_nptxdfifox_s cn50xx; struct cvmx_usbcx_nptxdfifox_s cn52xx; struct cvmx_usbcx_nptxdfifox_s cn52xxp1; struct cvmx_usbcx_nptxdfifox_s cn56xx; struct cvmx_usbcx_nptxdfifox_s cn56xxp1; }; typedef union cvmx_usbcx_nptxdfifox cvmx_usbcx_nptxdfifox_t; /** * cvmx_usbc#_pcgcctl * * Power and Clock Gating Control Register (PCGCCTL) * * The application can use this register to control the core's power-down and clock gating features. */ union cvmx_usbcx_pcgcctl { uint32_t u32; struct cvmx_usbcx_pcgcctl_s { #if __BYTE_ORDER == __BIG_ENDIAN uint32_t reserved_5_31 : 27; uint32_t physuspended : 1; /**< PHY Suspended. (PhySuspended) Indicates that the PHY has been suspended. After the application sets the Stop Pclk bit (bit 0), this bit is updated once the PHY is suspended. Since the UTMI+ PHY suspend is controlled through a port, the UTMI+ PHY is suspended immediately after Stop Pclk is set. However, the ULPI PHY takes a few clocks to suspend, because the suspend information is conveyed through the ULPI protocol to the ULPI PHY. */ uint32_t rstpdwnmodule : 1; /**< Reset Power-Down Modules (RstPdwnModule) This bit is valid only in Partial Power-Down mode. The application sets this bit when the power is turned off. The application clears this bit after the power is turned on and the PHY clock is up. */ uint32_t pwrclmp : 1; /**< Power Clamp (PwrClmp) This bit is only valid in Partial Power-Down mode. The application sets this bit before the power is turned off to clamp the signals between the power-on modules and the power-off modules. The application clears the bit to disable the clamping before the power is turned on. */ uint32_t gatehclk : 1; /**< Gate Hclk (GateHclk) The application sets this bit to gate hclk to modules other than the AHB Slave and Master and wakeup logic when the USB is suspended or the session is not valid. The application clears this bit when the USB is resumed or a new session starts. */ uint32_t stoppclk : 1; /**< Stop Pclk (StopPclk) The application sets this bit to stop the PHY clock (phy_clk) when the USB is suspended, the session is not valid, or the device is disconnected. The application clears this bit when the USB is resumed or a new session starts. */ #else uint32_t stoppclk : 1; uint32_t gatehclk : 1; uint32_t pwrclmp : 1; uint32_t rstpdwnmodule : 1; uint32_t physuspended : 1; uint32_t reserved_5_31 : 27; #endif } s; struct cvmx_usbcx_pcgcctl_s cn30xx; struct cvmx_usbcx_pcgcctl_s cn31xx; struct cvmx_usbcx_pcgcctl_s cn50xx; struct cvmx_usbcx_pcgcctl_s cn52xx; struct cvmx_usbcx_pcgcctl_s cn52xxp1; struct cvmx_usbcx_pcgcctl_s cn56xx; struct cvmx_usbcx_pcgcctl_s cn56xxp1; }; typedef union cvmx_usbcx_pcgcctl cvmx_usbcx_pcgcctl_t; #endif