Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_tun/@/dev/ath/ath_hal/ar5211/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_tun/@/dev/ath/ath_hal/ar5211/ar5211_reset.c |
/* * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2002-2006 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD: release/9.1.0/sys/dev/ath/ath_hal/ar5211/ar5211_reset.c 208644 2010-05-29 16:14:02Z rpaulo $ */ #include "opt_ah.h" /* * Chips specific device attachment and device info collection * Connects Init Reg Vectors, EEPROM Data, and device Functions. */ #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #include "ar5211/ar5211.h" #include "ar5211/ar5211reg.h" #include "ar5211/ar5211phy.h" #include "ah_eeprom_v3.h" /* Add static register initialization vectors */ #include "ar5211/boss.ini" /* * Structure to hold 11b tuning information for Beanie/Sombrero * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12 */ typedef struct { uint32_t refClkSel; /* reference clock, 1 for 16 MHz */ uint32_t channelSelect; /* P[7:4]S[3:0] bits */ uint16_t channel5111; /* 11a channel for 5111 */ } CHAN_INFO_2GHZ; #define CI_2GHZ_INDEX_CORRECTION 19 static const CHAN_INFO_2GHZ chan2GHzData[] = { { 1, 0x46, 96 }, /* 2312 -19 */ { 1, 0x46, 97 }, /* 2317 -18 */ { 1, 0x46, 98 }, /* 2322 -17 */ { 1, 0x46, 99 }, /* 2327 -16 */ { 1, 0x46, 100 }, /* 2332 -15 */ { 1, 0x46, 101 }, /* 2337 -14 */ { 1, 0x46, 102 }, /* 2342 -13 */ { 1, 0x46, 103 }, /* 2347 -12 */ { 1, 0x46, 104 }, /* 2352 -11 */ { 1, 0x46, 105 }, /* 2357 -10 */ { 1, 0x46, 106 }, /* 2362 -9 */ { 1, 0x46, 107 }, /* 2367 -8 */ { 1, 0x46, 108 }, /* 2372 -7 */ /* index -6 to 0 are pad to make this a nolookup table */ { 1, 0x46, 116 }, /* -6 */ { 1, 0x46, 116 }, /* -5 */ { 1, 0x46, 116 }, /* -4 */ { 1, 0x46, 116 }, /* -3 */ { 1, 0x46, 116 }, /* -2 */ { 1, 0x46, 116 }, /* -1 */ { 1, 0x46, 116 }, /* 0 */ { 1, 0x46, 116 }, /* 2412 1 */ { 1, 0x46, 117 }, /* 2417 2 */ { 1, 0x46, 118 }, /* 2422 3 */ { 1, 0x46, 119 }, /* 2427 4 */ { 1, 0x46, 120 }, /* 2432 5 */ { 1, 0x46, 121 }, /* 2437 6 */ { 1, 0x46, 122 }, /* 2442 7 */ { 1, 0x46, 123 }, /* 2447 8 */ { 1, 0x46, 124 }, /* 2452 9 */ { 1, 0x46, 125 }, /* 2457 10 */ { 1, 0x46, 126 }, /* 2462 11 */ { 1, 0x46, 127 }, /* 2467 12 */ { 1, 0x46, 128 }, /* 2472 13 */ { 1, 0x44, 124 }, /* 2484 14 */ { 1, 0x46, 136 }, /* 2512 15 */ { 1, 0x46, 140 }, /* 2532 16 */ { 1, 0x46, 144 }, /* 2552 17 */ { 1, 0x46, 148 }, /* 2572 18 */ { 1, 0x46, 152 }, /* 2592 19 */ { 1, 0x46, 156 }, /* 2612 20 */ { 1, 0x46, 160 }, /* 2632 21 */ { 1, 0x46, 164 }, /* 2652 22 */ { 1, 0x46, 168 }, /* 2672 23 */ { 1, 0x46, 172 }, /* 2692 24 */ { 1, 0x46, 176 }, /* 2712 25 */ { 1, 0x46, 180 } /* 2732 26 */ }; /* Power timeouts in usec to wait for chip to wake-up. */ #define POWER_UP_TIME 2000 #define DELAY_PLL_SETTLE 300 /* 300 us */ #define DELAY_BASE_ACTIVATE 100 /* 100 us */ #define NUM_RATES 8 static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask); static HAL_BOOL ar5211SetChannel(struct ath_hal *, const struct ieee80211_channel *); static int16_t ar5211RunNoiseFloor(struct ath_hal *, uint8_t runTime, int16_t startingNF); static HAL_BOOL ar5211IsNfGood(struct ath_hal *, struct ieee80211_channel *chan); static HAL_BOOL ar5211SetRf6and7(struct ath_hal *, const struct ieee80211_channel *chan); static HAL_BOOL ar5211SetBoardValues(struct ath_hal *, const struct ieee80211_channel *chan); static void ar5211SetPowerTable(struct ath_hal *, PCDACS_EEPROM *pSrcStruct, uint16_t channel); static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *, const struct ieee80211_channel *); static void ar5211SetRateTable(struct ath_hal *, RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels, const struct ieee80211_channel *chan); static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue, const PCDACS_EEPROM *pSrcStruct); static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue, const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue); static uint16_t ar5211GetInterpolatedValue(uint16_t target, uint16_t srcLeft, uint16_t srcRight, uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp); static void ar5211GetLowerUpperValues(uint16_t value, const uint16_t *pList, uint16_t listSize, uint16_t *pLowerValue, uint16_t *pUpperValue); static void ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel, const PCDACS_EEPROM *pSrcStruct, uint16_t *pLowerPcdac, uint16_t *pUpperPcdac); static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *); static void ar5211RequestRfgain(struct ath_hal *); static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *); static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *); static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *); static void ar5211SetOperatingMode(struct ath_hal *, int opmode); /* * Places the device in and out of reset and then places sane * values in the registers based on EEPROM config, initialization * vectors (as determined by the mode), and station configuration * * bChannelChange is used to preserve DMA/PCU registers across * a HW Reset during channel change. */ HAL_BOOL ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode, struct ieee80211_channel *chan, HAL_BOOL bChannelChange, HAL_STATUS *status) { uint32_t softLedCfg, softLedState; #define N(a) (sizeof (a) /sizeof (a[0])) #define FAIL(_code) do { ecode = _code; goto bad; } while (0) struct ath_hal_5211 *ahp = AH5211(ah); HAL_CHANNEL_INTERNAL *ichan; uint32_t i, ledstate; HAL_STATUS ecode; int q; uint32_t data, synthDelay; uint32_t macStaId1; uint16_t modesIndex = 0, freqIndex = 0; uint32_t saveFrameSeqCount[AR_NUM_DCU]; uint32_t saveTsfLow = 0, saveTsfHigh = 0; uint32_t saveDefAntenna; HALDEBUG(ah, HAL_DEBUG_RESET, "%s: opmode %u channel %u/0x%x %s channel\n", __func__, opmode, chan->ic_freq, chan->ic_flags, bChannelChange ? "change" : "same"); OS_MARK(ah, AH_MARK_RESET, bChannelChange); /* * Map public channel to private. */ ichan = ath_hal_checkchannel(ah, chan); if (ichan == AH_NULL) FAIL(HAL_EINVAL); switch (opmode) { case HAL_M_STA: case HAL_M_IBSS: case HAL_M_HOSTAP: case HAL_M_MONITOR: break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", __func__, opmode); FAIL(HAL_EINVAL); break; } HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3); /* Preserve certain DMA hardware registers on a channel change */ if (bChannelChange) { /* * Need to save/restore the TSF because of an issue * that accelerates the TSF during a chip reset. * * We could use system timer routines to more * accurately restore the TSF, but * 1. Timer routines on certain platforms are * not accurate enough (e.g. 1 ms resolution). * 2. It would still not be accurate. * * The most important aspect of this workaround, * is that, after reset, the TSF is behind * other STAs TSFs. This will allow the STA to * properly resynchronize its TSF in adhoc mode. */ saveTsfLow = OS_REG_READ(ah, AR_TSF_L32); saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32); /* Read frame sequence count */ if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM); } else { for (i = 0; i < AR_NUM_DCU; i++) saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i)); } if (!IEEE80211_IS_CHAN_DFS(chan)) chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; } /* * Preserve the antenna on a channel change */ saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); if (saveDefAntenna == 0) saveDefAntenna = 1; /* Save hardware flag before chip reset clears the register */ macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; /* Save led state from pci config register */ ledstate = OS_REG_READ(ah, AR_PCICFG) & (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK | AR_PCICFG_LEDSLOW); softLedCfg = OS_REG_READ(ah, AR_GPIOCR); softLedState = OS_REG_READ(ah, AR_GPIODO); if (!ar5211ChipReset(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); FAIL(HAL_EIO); } /* Setup the indices for the next set of register array writes */ if (IEEE80211_IS_CHAN_5GHZ(chan)) { freqIndex = 1; if (IEEE80211_IS_CHAN_TURBO(chan)) modesIndex = 2; else if (IEEE80211_IS_CHAN_A(chan)) modesIndex = 1; else { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u/0x%x\n", __func__, chan->ic_freq, chan->ic_flags); FAIL(HAL_EINVAL); } } else { freqIndex = 2; if (IEEE80211_IS_CHAN_B(chan)) modesIndex = 3; else if (IEEE80211_IS_CHAN_PUREG(chan)) modesIndex = 4; else { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u/0x%x\n", __func__, chan->ic_freq, chan->ic_flags); FAIL(HAL_EINVAL); } } /* Set correct Baseband to analog shift setting to access analog chips. */ if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007); } else { OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047); } /* Write parameters specific to AR5211 */ if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { if (IEEE80211_IS_CHAN_2GHZ(chan) && AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) { HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; uint32_t ob2GHz, db2GHz; if (IEEE80211_IS_CHAN_CCK(chan)) { ob2GHz = ee->ee_ob2GHz[0]; db2GHz = ee->ee_db2GHz[0]; } else { ob2GHz = ee->ee_ob2GHz[1]; db2GHz = ee->ee_db2GHz[1]; } ob2GHz = ath_hal_reverseBits(ob2GHz, 3); db2GHz = ath_hal_reverseBits(db2GHz, 3); ar5211Mode2_4[25][freqIndex] = (ar5211Mode2_4[25][freqIndex] & ~0xC0) | ((ob2GHz << 6) & 0xC0); ar5211Mode2_4[26][freqIndex] = (ar5211Mode2_4[26][freqIndex] & ~0x0F) | (((ob2GHz >> 2) & 0x1) | ((db2GHz << 1) & 0x0E)); } for (i = 0; i < N(ar5211Mode2_4); i++) OS_REG_WRITE(ah, ar5211Mode2_4[i][0], ar5211Mode2_4[i][freqIndex]); } /* Write the analog registers 6 and 7 before other config */ ar5211SetRf6and7(ah, chan); /* Write registers that vary across all modes */ for (i = 0; i < N(ar5211Modes); i++) OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]); /* Write RFGain Parameters that differ between 2.4 and 5 GHz */ for (i = 0; i < N(ar5211BB_RfGain); i++) OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]); /* Write Common Array Parameters */ for (i = 0; i < N(ar5211Common); i++) { uint32_t reg = ar5211Common[i][0]; /* On channel change, don't reset the PCU registers */ if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000))) OS_REG_WRITE(ah, reg, ar5211Common[i][1]); } /* Fix pre-AR5211 register values, this includes AR5311s. */ if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) { /* * The TX and RX latency values have changed locations * within the USEC register in AR5211. Since they're * set via the .ini, for both AR5211 and AR5311, they * are written properly here for AR5311. */ data = OS_REG_READ(ah, AR_USEC); /* Must be 0 for proper write in AR5311 */ HALASSERT((data & 0x00700000) == 0); OS_REG_WRITE(ah, AR_USEC, (data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) | ((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M)); /* The following registers exist only on AR5311. */ OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0); /* Set proper ADC & DAC delays for AR5311. */ OS_REG_WRITE(ah, 0x00009878, 0x00000008); /* Enable the PCU FIFO corruption ECO on AR5311. */ OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO); } /* Restore certain DMA hardware registers on a channel change */ if (bChannelChange) { /* Restore TSF */ OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow); OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh); if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) { OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]); } else { for (i = 0; i < AR_NUM_DCU; i++) OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]); } } OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) | macStaId1 ); ar5211SetOperatingMode(ah, opmode); /* Restore previous led state */ OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate); OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg); OS_REG_WRITE(ah, AR_GPIODO, softLedState); /* Restore previous antenna */ OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4)); /* Restore bmiss rssi & count thresholds */ OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ /* * for pre-Production Oahu only. * Disable clock gating in all DMA blocks. Helps when using * 11B and AES but results in higher power consumption. */ if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU && AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) { OS_REG_WRITE(ah, AR_CFG, OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS); } /* Setup the transmit power values. */ if (!ar5211SetTransmitPower(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error init'ing transmit power\n", __func__); FAIL(HAL_EIO); } /* * Configurable OFDM spoofing for 11n compatibility; used * only when operating in station mode. */ if (opmode != HAL_M_HOSTAP && (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) { /* NB: override the .ini setting */ OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_ERR_SERV, MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1); } /* Setup board specific options for EEPROM version 3 */ ar5211SetBoardValues(ah, chan); if (!ar5211SetChannel(ah, chan)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n", __func__); FAIL(HAL_EIO); } /* Activate the PHY */ if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B && IEEE80211_IS_CHAN_2GHZ(chan)) OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */ OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); /* * Wait for the frequency synth to settle (synth goes on * via AR_PHY_ACTIVE_EN). Read the phy active delay register. * Value is in 100ns increments. */ data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M; if (IEEE80211_IS_CHAN_CCK(chan)) { synthDelay = (4 * data) / 22; } else { synthDelay = data / 10; } /* * There is an issue if the AP starts the calibration before * the baseband timeout completes. This could result in the * rxclear false triggering. Add an extra delay to ensure this * this does not happen. */ OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE); /* Calibrate the AGC and wait for completion. */ OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); (void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0); /* Perform noise floor and set status */ if (!ar5211CalNoiseFloor(ah, chan)) { if (!IEEE80211_IS_CHAN_CCK(chan)) chan->ic_state |= IEEE80211_CHANSTATE_CWINT; HALDEBUG(ah, HAL_DEBUG_ANY, "%s: noise floor calibration failed\n", __func__); FAIL(HAL_EIO); } /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */ if (ahp->ah_calibrationTime != 0) { OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S)); ahp->ah_bIQCalibration = AH_TRUE; } /* set 1:1 QCU to DCU mapping for all queues */ for (q = 0; q < AR_NUM_DCU; q++) OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q); for (q = 0; q < HAL_NUM_TX_QUEUES; q++) ar5211ResetTxQueue(ah, q); /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */ OS_REG_WRITE(ah, AR_IMR_S0, (AR_IMR_S0_QCU_TXOK & AR_QCU_0) | (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S))); OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0)); OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0)); /* * GBL_EIFS must always be written after writing * to any QCUMASK register. */ OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS)); /* Now set up the Interrupt Mask Register and save it for future use */ OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK); ahp->ah_maskReg = INIT_INTERRUPT_MASK; /* Enable bus error interrupts */ OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR); /* Enable interrupts specific to AP */ if (opmode == HAL_M_HOSTAP) { OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB); ahp->ah_maskReg |= AR_IMR_MIB; } if (AH_PRIVATE(ah)->ah_rfkillEnabled) ar5211EnableRfKill(ah); /* * Writing to AR_BEACON will start timers. Hence it should * be the last register to be written. Do not reset tsf, do * not enable beacons at this point, but preserve other values * like beaconInterval. */ OS_REG_WRITE(ah, AR_BEACON, (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF))); /* Restore user-specified slot time and timeouts */ if (ahp->ah_sifstime != (u_int) -1) ar5211SetSifsTime(ah, ahp->ah_sifstime); if (ahp->ah_slottime != (u_int) -1) ar5211SetSlotTime(ah, ahp->ah_slottime); if (ahp->ah_acktimeout != (u_int) -1) ar5211SetAckTimeout(ah, ahp->ah_acktimeout); if (ahp->ah_ctstimeout != (u_int) -1) ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout); if (AH_PRIVATE(ah)->ah_diagreg != 0) OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); return AH_TRUE; bad: if (status != AH_NULL) *status = ecode; return AH_FALSE; #undef FAIL #undef N } /* * Places the PHY and Radio chips into reset. A full reset * must be called to leave this state. The PCI/MAC/PCU are * not placed into reset as we must receive interrupt to * re-enable the hardware. */ HAL_BOOL ar5211PhyDisable(struct ath_hal *ah) { return ar5211SetResetReg(ah, AR_RC_BB); } /* * Places all of hardware into reset */ HAL_BOOL ar5211Disable(struct ath_hal *ah) { if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) return AH_FALSE; /* * Reset the HW - PCI must be reset after the rest of the * device has been reset. */ if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI)) return AH_FALSE; OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ return AH_TRUE; } /* * Places the hardware into reset and then pulls it out of reset * * Only write the PLL if we're changing to or from CCK mode * * Attach calls with channelFlags = 0, as the coldreset should have * us in the correct mode and we cannot check the hwchannel flags. */ HAL_BOOL ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan) { if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) return AH_FALSE; /* NB: called from attach with chan null */ if (chan != AH_NULL) { /* Set CCK and Turbo modes correctly */ OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0); if (IEEE80211_IS_CHAN_B(chan)) { OS_REG_WRITE(ah, AR5211_PHY_MODE, AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ); OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44); /* Wait for the PLL to settle */ OS_DELAY(DELAY_PLL_SETTLE); } else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) { OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40); OS_DELAY(DELAY_PLL_SETTLE); OS_REG_WRITE(ah, AR5211_PHY_MODE, AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ? AR5211_PHY_MODE_RF2GHZ : AR5211_PHY_MODE_RF5GHZ)); } } /* * Reset the HW - PCI must be reset after the rest of the * device has been reset */ if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI)) return AH_FALSE; OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */ /* Bring out of sleep mode (AGAIN) */ if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) return AH_FALSE; /* Clear warm reset register */ return ar5211SetResetReg(ah, 0); } /* * Recalibrate the lower PHY chips to account for temperature/environment * changes. */ HAL_BOOL ar5211PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan, u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone) { struct ath_hal_5211 *ahp = AH5211(ah); HAL_CHANNEL_INTERNAL *ichan; int32_t qCoff, qCoffDenom; uint32_t data; int32_t iqCorrMeas; int32_t iCoff, iCoffDenom; uint32_t powerMeasQ, powerMeasI; ichan = ath_hal_checkchannel(ah, chan); if (ichan == AH_NULL) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u/0x%x; no mapping\n", __func__, chan->ic_freq, chan->ic_flags); return AH_FALSE; } /* IQ calibration in progress. Check to see if it has finished. */ if (ahp->ah_bIQCalibration && !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) { /* IQ Calibration has finished. */ ahp->ah_bIQCalibration = AH_FALSE; /* Read calibration results. */ powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I); powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q); iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS); /* * Prescale these values to remove 64-bit operation requirement at the loss * of a little precision. */ iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128; qCoffDenom = powerMeasQ / 64; /* Protect against divide-by-0. */ if (iCoffDenom != 0 && qCoffDenom != 0) { iCoff = (-iqCorrMeas) / iCoffDenom; /* IQCORR_Q_I_COFF is a signed 6 bit number */ iCoff = iCoff & 0x3f; qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64; /* IQCORR_Q_Q_COFF is a signed 5 bit number */ qCoff = qCoff & 0x1f; HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n", powerMeasI); HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n", powerMeasQ); HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n", iqCorrMeas); HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n", iCoff); HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n", qCoff); /* Write IQ */ data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) | AR_PHY_TIMING_CTRL4_IQCORR_ENABLE | (((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) | ((uint32_t)qCoff); OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data); } } *isCalDone = !ahp->ah_bIQCalibration; if (longCal) { /* Perform noise floor and set status */ if (!ar5211IsNfGood(ah, chan)) { /* report up and clear internal state */ chan->ic_state |= IEEE80211_CHANSTATE_CWINT; return AH_FALSE; } if (!ar5211CalNoiseFloor(ah, chan)) { /* * Delay 5ms before retrying the noise floor * just to make sure, as we are in an error * condition here. */ OS_DELAY(5000); if (!ar5211CalNoiseFloor(ah, chan)) { if (!IEEE80211_IS_CHAN_CCK(chan)) chan->ic_state |= IEEE80211_CHANSTATE_CWINT; return AH_FALSE; } } ar5211RequestRfgain(ah); } return AH_TRUE; } HAL_BOOL ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_BOOL *isIQdone) { return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone); } HAL_BOOL ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan) { /* XXX */ return AH_TRUE; } /* * Writes the given reset bit mask into the reset register */ static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask) { uint32_t mask = resetMask ? resetMask : ~0; HAL_BOOL rt; (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */ OS_REG_WRITE(ah, AR_RC, resetMask); /* need to wait at least 128 clocks when reseting PCI before read */ OS_DELAY(15); resetMask &= AR_RC_MAC | AR_RC_BB; mask &= AR_RC_MAC | AR_RC_BB; rt = ath_hal_wait(ah, AR_RC, mask, resetMask); if ((resetMask & AR_RC_MAC) == 0) { if (isBigEndian()) { /* * Set CFG, little-endian for register * and descriptor accesses. */ mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG; OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask)); } else OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); } return rt; } /* * Takes the MHz channel value and sets the Channel value * * ASSUMES: Writes enabled to analog bus before AGC is active * or by disabling the AGC. */ static HAL_BOOL ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint32_t refClk, reg32, data2111; int16_t chan5111, chanIEEE; chanIEEE = chan->ic_ieee; if (IEEE80211_IS_CHAN_2GHZ(chan)) { const CHAN_INFO_2GHZ* ci = &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION]; data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff) << 5) | (ci->refClkSel << 4); chan5111 = ci->channel5111; } else { data2111 = 0; chan5111 = chanIEEE; } /* Rest of the code is common for 5 GHz and 2.4 GHz. */ if (chan5111 >= 145 || (chan5111 & 0x1)) { reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF; refClk = 1; } else { reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF; refClk = 0; } reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1; OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff)); reg32 >>= 8; OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff)); AH_PRIVATE(ah)->ah_curchan = chan; return AH_TRUE; } static int16_t ar5211GetNoiseFloor(struct ath_hal *ah) { int16_t nf; nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff; if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); return nf; } /* * Peform the noisefloor calibration for the length of time set * in runTime (valid values 1 to 7) * * Returns: The NF value at the end of the given time (or 0 for failure) */ int16_t ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF) { int i, searchTime; HALASSERT(runTime <= 7); /* Setup noise floor run time and starting value */ OS_REG_WRITE(ah, AR_PHY(25), (OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) | ((runTime << 9) & 0xE00) | (startingNF & 0x1FF)); /* Calibrate the noise floor */ OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF); /* Compute the required amount of searchTime needed to finish NF */ if (runTime == 0) { /* 8 search windows * 6.4us each */ searchTime = 8 * 7; } else { /* 512 * runtime search windows * 6.4us each */ searchTime = (runTime * 512) * 7; } /* * Do not read noise floor until it has been updated * * As a guesstimate - we may only get 1/60th the time on * the air to see search windows in a heavily congested * network (40 us every 2400 us of time) */ for (i = 0; i < 60; i++) { if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) break; OS_DELAY(searchTime); } if (i >= 60) { HALDEBUG(ah, HAL_DEBUG_NFCAL, "NF with runTime %d failed to end on channel %d\n", runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq); HALDEBUG(ah, HAL_DEBUG_NFCAL, " PHY NF Reg state: 0x%x\n", OS_REG_READ(ah, AR_PHY_AGC_CONTROL)); HALDEBUG(ah, HAL_DEBUG_NFCAL, " PHY Active Reg state: 0x%x\n", OS_REG_READ(ah, AR_PHY_ACTIVE)); return 0; } return ar5211GetNoiseFloor(ah); } static HAL_BOOL getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan, int16_t *nft) { HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { case IEEE80211_CHAN_A: *nft = ee->ee_noiseFloorThresh[0]; break; case IEEE80211_CHAN_B: *nft = ee->ee_noiseFloorThresh[1]; break; case IEEE80211_CHAN_PUREG: *nft = ee->ee_noiseFloorThresh[2]; break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", __func__, chan->ic_flags); return AH_FALSE; } return AH_TRUE; } /* * Read the NF and check it against the noise floor threshhold * * Returns: TRUE if the NF is good */ static HAL_BOOL ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan) { HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); int16_t nf, nfThresh; if (!getNoiseFloorThresh(ah, chan, &nfThresh)) return AH_FALSE; if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: NF did not complete in calibration window\n", __func__); } nf = ar5211GetNoiseFloor(ah); if (nf > nfThresh) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: noise floor failed; detected %u, threshold %u\n", __func__, nf, nfThresh); /* * NB: Don't discriminate 2.4 vs 5Ghz, if this * happens it indicates a problem regardless * of the band. */ chan->ic_state |= IEEE80211_CHANSTATE_CWINT; } ichan->rawNoiseFloor = nf; return (nf <= nfThresh); } /* * Peform the noisefloor calibration and check for any constant channel * interference. * * NOTE: preAR5211 have a lengthy carrier wave detection process - hence * it is if'ed for MKK regulatory domain only. * * Returns: TRUE for a successful noise floor calibration; else FALSE */ HAL_BOOL ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan) { #define N(a) (sizeof (a) / sizeof (a[0])) /* Check for Carrier Wave interference in MKK regulatory zone */ if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU && (chan->ic_flags & CHANNEL_NFCREQUIRED)) { static const uint8_t runtime[3] = { 0, 2, 7 }; HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); int16_t nf, nfThresh; int i; if (!getNoiseFloorThresh(ah, chan, &nfThresh)) return AH_FALSE; /* * Run a quick noise floor that will hopefully * complete (decrease delay time). */ for (i = 0; i < N(runtime); i++) { nf = ar5211RunNoiseFloor(ah, runtime[i], 0); if (nf > nfThresh) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: run failed with %u > threshold %u " "(runtime %u)\n", __func__, nf, nfThresh, runtime[i]); ichan->rawNoiseFloor = 0; } else ichan->rawNoiseFloor = nf; } return (i <= N(runtime)); } else { /* Calibrate the noise floor */ OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF); } return AH_TRUE; #undef N } /* * Adjust NF based on statistical values for 5GHz frequencies. */ int16_t ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c) { static const struct { uint16_t freqLow; int16_t adjust; } adjust5111[] = { { 5790, 11 }, /* NB: ordered high -> low */ { 5730, 10 }, { 5690, 9 }, { 5660, 8 }, { 5610, 7 }, { 5530, 5 }, { 5450, 4 }, { 5379, 2 }, { 5209, 0 }, /* XXX? bogus but doesn't matter */ { 0, 1 }, }; int i; for (i = 0; c->channel <= adjust5111[i].freqLow; i++) ; /* NB: placeholder for 5111's less severe requirement */ return adjust5111[i].adjust / 3; } /* * Reads EEPROM header info from device structure and programs * analog registers 6 and 7 * * REQUIRES: Access to the analog device */ static HAL_BOOL ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan) { #define N(a) (sizeof (a) / sizeof (a[0])) uint16_t freq = ath_hal_gethwchannel(ah, chan); HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; struct ath_hal_5211 *ahp = AH5211(ah); uint16_t rfXpdGain, rfPloSel, rfPwdXpd; uint16_t tempOB, tempDB; uint16_t freqIndex; int i; freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1; /* * TODO: This array mode correspondes with the index used * during the read. * For readability, this should be changed to an enum or #define */ switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { case IEEE80211_CHAN_A: if (freq > 4000 && freq < 5260) { tempOB = ee->ee_ob1; tempDB = ee->ee_db1; } else if (freq >= 5260 && freq < 5500) { tempOB = ee->ee_ob2; tempDB = ee->ee_db2; } else if (freq >= 5500 && freq < 5725) { tempOB = ee->ee_ob3; tempDB = ee->ee_db3; } else if (freq >= 5725) { tempOB = ee->ee_ob4; tempDB = ee->ee_db4; } else { /* XXX panic?? */ tempOB = tempDB = 0; } rfXpdGain = ee->ee_xgain[0]; rfPloSel = ee->ee_xpd[0]; rfPwdXpd = !ee->ee_xpd[0]; ar5211Rf6n7[5][freqIndex] = (ar5211Rf6n7[5][freqIndex] & ~0x10000000) | (ee->ee_cornerCal.pd84<< 28); ar5211Rf6n7[6][freqIndex] = (ar5211Rf6n7[6][freqIndex] & ~0x04000000) | (ee->ee_cornerCal.pd90 << 26); ar5211Rf6n7[21][freqIndex] = (ar5211Rf6n7[21][freqIndex] & ~0x08) | (ee->ee_cornerCal.gSel << 3); break; case IEEE80211_CHAN_B: tempOB = ee->ee_obFor24; tempDB = ee->ee_dbFor24; rfXpdGain = ee->ee_xgain[1]; rfPloSel = ee->ee_xpd[1]; rfPwdXpd = !ee->ee_xpd[1]; break; case IEEE80211_CHAN_PUREG: tempOB = ee->ee_obFor24g; tempDB = ee->ee_dbFor24g; rfXpdGain = ee->ee_xgain[2]; rfPloSel = ee->ee_xpd[2]; rfPwdXpd = !ee->ee_xpd[2]; break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", __func__, chan->ic_flags); return AH_FALSE; } HALASSERT(1 <= tempOB && tempOB <= 5); HALASSERT(1 <= tempDB && tempDB <= 5); /* Set rfXpdGain and rfPwdXpd */ ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) | (((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0); ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) | ((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07); /* Set OB */ ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) | ((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80); ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) | ((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03); /* Set DB */ ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) | ((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C); /* Set rfPloSel */ ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) | ((rfPloSel << 3) & 0x08); /* Write the Rf registers 6 & 7 */ for (i = 0; i < N(ar5211Rf6n7); i++) OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]); /* Now that we have reprogrammed rfgain value, clear the flag. */ ahp->ah_rfgainState = RFGAIN_INACTIVE; return AH_TRUE; #undef N } HAL_BOOL ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings, const struct ieee80211_channel *chan) { #define ANT_SWITCH_TABLE1 0x9960 #define ANT_SWITCH_TABLE2 0x9964 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; struct ath_hal_5211 *ahp = AH5211(ah); uint32_t antSwitchA, antSwitchB; int ix; switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { case IEEE80211_CHAN_A: ix = 0; break; case IEEE80211_CHAN_B: ix = 1; break; case IEEE80211_CHAN_PUREG: ix = 2; break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", __func__, chan->ic_flags); return AH_FALSE; } antSwitchA = ee->ee_antennaControl[1][ix] | (ee->ee_antennaControl[2][ix] << 6) | (ee->ee_antennaControl[3][ix] << 12) | (ee->ee_antennaControl[4][ix] << 18) | (ee->ee_antennaControl[5][ix] << 24) ; antSwitchB = ee->ee_antennaControl[6][ix] | (ee->ee_antennaControl[7][ix] << 6) | (ee->ee_antennaControl[8][ix] << 12) | (ee->ee_antennaControl[9][ix] << 18) | (ee->ee_antennaControl[10][ix] << 24) ; /* * For fixed antenna, give the same setting for both switch banks */ switch (settings) { case HAL_ANT_FIXED_A: antSwitchB = antSwitchA; break; case HAL_ANT_FIXED_B: antSwitchA = antSwitchB; break; case HAL_ANT_VARIABLE: break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n", __func__, settings); return AH_FALSE; } ahp->ah_diversityControl = settings; OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA); OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB); return AH_TRUE; #undef ANT_SWITCH_TABLE1 #undef ANT_SWITCH_TABLE2 } /* * Reads EEPROM header info and programs the device for correct operation * given the channel value */ static HAL_BOOL ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) { HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; struct ath_hal_5211 *ahp = AH5211(ah); int arrayMode, falseDectectBackoff; switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { case IEEE80211_CHAN_A: arrayMode = 0; OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip); break; case IEEE80211_CHAN_B: arrayMode = 1; break; case IEEE80211_CHAN_PUREG: arrayMode = 2; break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", __func__, chan->ic_flags); return AH_FALSE; } /* Set the antenna register(s) correctly for the chip revision */ if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) { OS_REG_WRITE(ah, AR_PHY(68), (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3); } else { OS_REG_WRITE(ah, AR_PHY(68), (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) | (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1); ar5211SetAntennaSwitchInternal(ah, ahp->ah_diversityControl, chan); /* Set the Noise Floor Thresh on ar5211 devices */ OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2), (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9)); } OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2), (OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) | ((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80)); OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2), (OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) | ((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000)); OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2), (OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) | ((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) | (ee->ee_adcDesiredSize[arrayMode] & 0x00FF)); OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2), (ee->ee_txEndToXPAOff[arrayMode] << 24) | (ee->ee_txEndToXPAOff[arrayMode] << 16) | (ee->ee_txFrameToXPAOn[arrayMode] << 8) | ee->ee_txFrameToXPAOn[arrayMode]); OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2), (OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) | (ee->ee_txEndToXLNAOn[arrayMode] << 8)); OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2), (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) | ((ee->ee_thresh62[arrayMode] << 12) & 0x7F000)); #define NO_FALSE_DETECT_BACKOFF 2 #define CB22_FALSE_DETECT_BACKOFF 6 /* * False detect backoff - suspected 32 MHz spur causes * false detects in OFDM, causing Tx Hangs. Decrease * weak signal sensitivity for this card. */ falseDectectBackoff = NO_FALSE_DETECT_BACKOFF; if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) { if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 && IEEE80211_IS_CHAN_OFDM(chan)) falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF; } else { uint16_t freq = ath_hal_gethwchannel(ah, chan); uint32_t remainder = freq % 32; if (remainder && (remainder < 10 || remainder > 22)) falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode]; } OS_REG_WRITE(ah, 0x9924, (OS_REG_READ(ah, 0x9924) & 0xFFFFFF01) | ((falseDectectBackoff << 1) & 0xF7)); return AH_TRUE; #undef NO_FALSE_DETECT_BACKOFF #undef CB22_FALSE_DETECT_BACKOFF } /* * Set the limit on the overall output power. Used for dynamic * transmit power control and the like. * * NOTE: The power is passed in is in units of 0.5 dBm. */ HAL_BOOL ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) { AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit); return AH_TRUE; } /* * Sets the transmit power in the baseband for the given * operating channel and mode. */ static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint16_t freq = ath_hal_gethwchannel(ah, chan); HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; TRGT_POWER_INFO *pi; RD_EDGES_POWER *rep; PCDACS_EEPROM eepromPcdacs; u_int nchan, cfgCtl; int i; /* setup the pcdac struct to point to the correct info, based on mode */ switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) { case IEEE80211_CHAN_A: eepromPcdacs.numChannels = ee->ee_numChannels11a; eepromPcdacs.pChannelList= ee->ee_channels11a; eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a; nchan = ee->ee_numTargetPwr_11a; pi = ee->ee_trgtPwr_11a; break; case IEEE80211_CHAN_PUREG: eepromPcdacs.numChannels = ee->ee_numChannels2_4; eepromPcdacs.pChannelList= ee->ee_channels11g; eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g; nchan = ee->ee_numTargetPwr_11g; pi = ee->ee_trgtPwr_11g; break; case IEEE80211_CHAN_B: eepromPcdacs.numChannels = ee->ee_numChannels2_4; eepromPcdacs.pChannelList= ee->ee_channels11b; eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b; nchan = ee->ee_numTargetPwr_11b; pi = ee->ee_trgtPwr_11b; break; default: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n", __func__, chan->ic_flags); return AH_FALSE; } ar5211SetPowerTable(ah, &eepromPcdacs, freq); rep = AH_NULL; /* Match CTL to EEPROM value */ cfgCtl = ath_hal_getctl(ah, chan); for (i = 0; i < ee->ee_numCtls; i++) if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) { rep = &ee->ee_rdEdgesPower[i * NUM_EDGES]; break; } ar5211SetRateTable(ah, rep, pi, nchan, chan); return AH_TRUE; } /* * Read the transmit power levels from the structures taken * from EEPROM. Interpolate read transmit power values for * this channel. Organize the transmit power values into a * table for writing into the hardware. */ void ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct, uint16_t channel) { static FULL_PCDAC_STRUCT pcdacStruct; static uint16_t pcdacTable[PWR_TABLE_SIZE]; uint16_t i, j; uint16_t *pPcdacValues; int16_t *pScaledUpDbm; int16_t minScaledPwr; int16_t maxScaledPwr; int16_t pwr; uint16_t pcdacMin = 0; uint16_t pcdacMax = 63; uint16_t pcdacTableIndex; uint16_t scaledPcdac; uint32_t addr; uint32_t temp32; OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT)); OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE); pPcdacValues = pcdacStruct.PcdacValues; pScaledUpDbm = pcdacStruct.PwrValues; /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */ for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++) pPcdacValues[j] = i; pcdacStruct.numPcdacValues = j; pcdacStruct.pcdacMin = PCDAC_START; pcdacStruct.pcdacMax = PCDAC_STOP; /* Fill out the power values for this channel */ for (j = 0; j < pcdacStruct.numPcdacValues; j++ ) pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct); /* Now scale the pcdac values to fit in the 64 entry power table */ minScaledPwr = pScaledUpDbm[0]; maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1]; /* find minimum and make monotonic */ for (j = 0; j < pcdacStruct.numPcdacValues; j++) { if (minScaledPwr >= pScaledUpDbm[j]) { minScaledPwr = pScaledUpDbm[j]; pcdacMin = j; } /* * Make the full_hsh monotonically increasing otherwise * interpolation algorithm will get fooled gotta start * working from the top, hence i = 63 - j. */ i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j); if (i == 0) break; if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) { /* * It could be a glitch, so make the power for * this pcdac the same as the power from the * next highest pcdac. */ pScaledUpDbm[i - 1] = pScaledUpDbm[i]; } } for (j = 0; j < pcdacStruct.numPcdacValues; j++) if (maxScaledPwr < pScaledUpDbm[j]) { maxScaledPwr = pScaledUpDbm[j]; pcdacMax = j; } /* Find the first power level with a pcdac */ pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN); /* Write all the first pcdac entries based off the pcdacMin */ pcdacTableIndex = 0; for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) pcdacTable[pcdacTableIndex++] = pcdacMin; i = 0; while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) { pwr += PWR_STEP; /* stop if dbM > max_power_possible */ while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] && (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0) i++; /* scale by 2 and add 1 to enable round up or down as needed */ scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr, pScaledUpDbm[i], pScaledUpDbm[i+1], (uint16_t)(pPcdacValues[i] * 2), (uint16_t)(pPcdacValues[i+1] * 2), 0) + 1); pcdacTable[pcdacTableIndex] = scaledPcdac / 2; if (pcdacTable[pcdacTableIndex] > pcdacMax) pcdacTable[pcdacTableIndex] = pcdacMax; pcdacTableIndex++; } /* Write all the last pcdac entries based off the last valid pcdac */ while (pcdacTableIndex < PWR_TABLE_SIZE) { pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1]; pcdacTableIndex++; } /* Finally, write the power values into the baseband power table */ addr = AR_PHY_BASE + (608 << 2); for (i = 0; i < 32; i++) { temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff); temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff)); OS_REG_WRITE(ah, addr, temp32); addr += 4; } } /* * Set the transmit power in the baseband for the given * operating channel and mode. */ static void ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels, const struct ieee80211_channel *chan) { uint16_t freq = ath_hal_gethwchannel(ah, chan); HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; struct ath_hal_5211 *ahp = AH5211(ah); static uint16_t ratesArray[NUM_RATES]; static const uint16_t tpcScaleReductionTable[5] = { 0, 3, 6, 9, MAX_RATE_POWER }; uint16_t *pRatesPower; uint16_t lowerChannel, lowerIndex=0, lowerPower=0; uint16_t upperChannel, upperIndex=0, upperPower=0; uint16_t twiceMaxEdgePower=63; uint16_t twicePower = 0; uint16_t i, numEdges; uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */ uint16_t twiceMaxRDPower; int16_t scaledPower = 0; /* for gcc -O2 */ uint16_t mask = 0x3f; HAL_BOOL paPreDEnable = 0; int8_t twiceAntennaGain, twiceAntennaReduction = 0; pRatesPower = ratesArray; twiceMaxRDPower = chan->ic_maxregpower * 2; if (IEEE80211_IS_CHAN_5GHZ(chan)) { twiceAntennaGain = ee->ee_antennaGainMax[0]; } else { twiceAntennaGain = ee->ee_antennaGainMax[1]; } twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain); if (pRdEdgesPower) { /* Get the edge power */ for (i = 0; i < NUM_EDGES; i++) { if (pRdEdgesPower[i].rdEdge == 0) break; tempChannelList[i] = pRdEdgesPower[i].rdEdge; } numEdges = i; ar5211GetLowerUpperValues(freq, tempChannelList, numEdges, &lowerChannel, &upperChannel); /* Get the index for this channel */ for (i = 0; i < numEdges; i++) if (lowerChannel == tempChannelList[i]) break; HALASSERT(i != numEdges); if ((lowerChannel == upperChannel && lowerChannel == freq) || pRdEdgesPower[i].flag) { twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower; HALASSERT(twiceMaxEdgePower > 0); } } /* extrapolate the power values for the test Groups */ for (i = 0; i < numChannels; i++) tempChannelList[i] = pPowerInfo[i].testChannel; ar5211GetLowerUpperValues(freq, tempChannelList, numChannels, &lowerChannel, &upperChannel); /* get the index for the channel */ for (i = 0; i < numChannels; i++) { if (lowerChannel == tempChannelList[i]) lowerIndex = i; if (upperChannel == tempChannelList[i]) { upperIndex = i; break; } } for (i = 0; i < NUM_RATES; i++) { if (IEEE80211_IS_CHAN_OFDM(chan)) { /* power for rates 6,9,12,18,24 is all the same */ if (i < 5) { lowerPower = pPowerInfo[lowerIndex].twicePwr6_24; upperPower = pPowerInfo[upperIndex].twicePwr6_24; } else if (i == 5) { lowerPower = pPowerInfo[lowerIndex].twicePwr36; upperPower = pPowerInfo[upperIndex].twicePwr36; } else if (i == 6) { lowerPower = pPowerInfo[lowerIndex].twicePwr48; upperPower = pPowerInfo[upperIndex].twicePwr48; } else if (i == 7) { lowerPower = pPowerInfo[lowerIndex].twicePwr54; upperPower = pPowerInfo[upperIndex].twicePwr54; } } else { switch (i) { case 0: case 1: lowerPower = pPowerInfo[lowerIndex].twicePwr6_24; upperPower = pPowerInfo[upperIndex].twicePwr6_24; break; case 2: case 3: lowerPower = pPowerInfo[lowerIndex].twicePwr36; upperPower = pPowerInfo[upperIndex].twicePwr36; break; case 4: case 5: lowerPower = pPowerInfo[lowerIndex].twicePwr48; upperPower = pPowerInfo[upperIndex].twicePwr48; break; case 6: case 7: lowerPower = pPowerInfo[lowerIndex].twicePwr54; upperPower = pPowerInfo[upperIndex].twicePwr54; break; } } twicePower = ar5211GetInterpolatedValue(freq, lowerChannel, upperChannel, lowerPower, upperPower, 0); /* Reduce power by band edge restrictions */ twicePower = AH_MIN(twicePower, twiceMaxEdgePower); /* * If turbo is set, reduce power to keep power * consumption under 2 Watts. Note that we always do * this unless specially configured. Then we limit * power only for non-AP operation. */ if (IEEE80211_IS_CHAN_TURBO(chan) && AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1 #ifdef AH_ENABLE_AP_SUPPORT && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP #endif ) { twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5); } /* Reduce power by max regulatory domain allowed restrictions */ pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction); /* Use 6 Mb power level for transmit power scaling reduction */ /* We don't want to reduce higher rates if its not needed */ if (i == 0) { scaledPower = pRatesPower[0] - (tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2); if (scaledPower < 1) scaledPower = 1; } pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower); } /* Record txPower at Rate 6 for info gathering */ ahp->ah_tx6PowerInHalfDbm = pRatesPower[0]; #ifdef AH_DEBUG HALDEBUG(ah, HAL_DEBUG_RESET, "%s: final output power setting %d MHz:\n", __func__, chan->ic_freq); HALDEBUG(ah, HAL_DEBUG_RESET, "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n", scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2); HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n", tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2, twiceAntennaReduction / 2); if (IEEE80211_IS_CHAN_TURBO(chan) && AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n", ee->ee_turbo2WMaxPower5); HALDEBUG(ah, HAL_DEBUG_RESET, " %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n", pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2, pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2, pRatesPower[6] / 2, pRatesPower[7] / 2); #endif /* AH_DEBUG */ /* Write the power table into the hardware */ OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) | ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) | ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) | ((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask)); OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) | ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) | ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) | ((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask)); /* set max power to the power value at rate 6 */ ar5211SetTxPowerLimit(ah, pRatesPower[0]); AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0]; } /* * Get or interpolate the pcdac value from the calibrated data */ uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue, const PCDACS_EEPROM *pSrcStruct) { uint16_t powerValue; uint16_t lFreq, rFreq; /* left and right frequency values */ uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */ uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */ uint16_t lPwr, uPwr; /* lower and upper temp pwr values */ uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */ if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) /* value was copied from srcStruct */ return powerValue; ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList, pSrcStruct->numChannels, &lFreq, &rFreq); ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct, &llPcdac, &ulPcdac); ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct, &lrPcdac, &urPcdac); /* get the power index for the pcdac value */ ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr); ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr); lScaledPwr = ar5211GetInterpolatedValue(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr, 0); ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr); ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr); rScaledPwr = ar5211GetInterpolatedValue(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr, 0); return ar5211GetInterpolatedValue(channel, lFreq, rFreq, lScaledPwr, rScaledPwr, 0); } /* * Find the value from the calibrated source data struct */ HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue, const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue) { const DATA_PER_CHANNEL *pChannelData; const uint16_t *pPcdac; uint16_t i, j; pChannelData = pSrcStruct->pDataPerChannel; for (i = 0; i < pSrcStruct->numChannels; i++ ) { if (pChannelData->channelValue == channel) { pPcdac = pChannelData->PcdacValues; for (j = 0; j < pChannelData->numPcdacValues; j++ ) { if (*pPcdac == pcdacValue) { *powerValue = pChannelData->PwrValues[j]; return AH_TRUE; } pPcdac++; } } pChannelData++; } return AH_FALSE; } /* * Returns interpolated or the scaled up interpolated value */ uint16_t ar5211GetInterpolatedValue(uint16_t target, uint16_t srcLeft, uint16_t srcRight, uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp) { uint16_t rv; int16_t lRatio; uint16_t scaleValue = EEP_SCALE; /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */ if ((targetLeft * targetRight) == 0) return 0; if (scaleUp) scaleValue = 1; if (srcRight != srcLeft) { /* * Note the ratio always need to be scaled, * since it will be a fraction. */ lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft); if (lRatio < 0) { /* Return as Left target if value would be negative */ rv = targetLeft * (scaleUp ? EEP_SCALE : 1); } else if (lRatio > EEP_SCALE) { /* Return as Right target if Ratio is greater than 100% (SCALE) */ rv = targetRight * (scaleUp ? EEP_SCALE : 1); } else { rv = (lRatio * targetRight + (EEP_SCALE - lRatio) * targetLeft) / scaleValue; } } else { rv = targetLeft; if (scaleUp) rv *= EEP_SCALE; } return rv; } /* * Look for value being within 0.1 of the search values * however, NDIS can't do float calculations, so multiply everything * up by EEP_SCALE so can do integer arithmatic * * INPUT value -value to search for * INPUT pList -ptr to the list to search * INPUT listSize -number of entries in list * OUTPUT pLowerValue -return the lower value * OUTPUT pUpperValue -return the upper value */ void ar5211GetLowerUpperValues(uint16_t value, const uint16_t *pList, uint16_t listSize, uint16_t *pLowerValue, uint16_t *pUpperValue) { const uint16_t listEndValue = *(pList + listSize - 1); uint32_t target = value * EEP_SCALE; int i; /* * See if value is lower than the first value in the list * if so return first value */ if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) { *pLowerValue = *pList; *pUpperValue = *pList; return; } /* * See if value is greater than last value in list * if so return last value */ if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) { *pLowerValue = listEndValue; *pUpperValue = listEndValue; return; } /* look for value being near or between 2 values in list */ for (i = 0; i < listSize; i++) { /* * If value is close to the current value of the list * then target is not between values, it is one of the values */ if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) { *pLowerValue = pList[i]; *pUpperValue = pList[i]; return; } /* * Look for value being between current value and next value * if so return these 2 values */ if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) { *pLowerValue = pList[i]; *pUpperValue = pList[i + 1]; return; } } } /* * Get the upper and lower pcdac given the channel and the pcdac * used in the search */ void ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel, const PCDACS_EEPROM *pSrcStruct, uint16_t *pLowerPcdac, uint16_t *pUpperPcdac) { const DATA_PER_CHANNEL *pChannelData; int i; /* Find the channel information */ pChannelData = pSrcStruct->pDataPerChannel; for (i = 0; i < pSrcStruct->numChannels; i++) { if (pChannelData->channelValue == channel) break; pChannelData++; } ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues, pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac); } #define DYN_ADJ_UP_MARGIN 15 #define DYN_ADJ_LO_MARGIN 20 static const GAIN_OPTIMIZATION_LADDER gainLadder = { 9, /* numStepsInLadder */ 4, /* defaultStepNum */ { { {4, 1, 1, 1}, 6, "FG8"}, { {4, 0, 1, 1}, 4, "FG7"}, { {3, 1, 1, 1}, 3, "FG6"}, { {4, 0, 0, 1}, 1, "FG5"}, { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */ { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */ { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */ { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */ { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */ } }; /* * Initialize the gain structure to good values */ void ar5211InitializeGainValues(struct ath_hal *ah) { struct ath_hal_5211 *ahp = AH5211(ah); GAIN_VALUES *gv = &ahp->ah_gainValues; /* initialize gain optimization values */ gv->currStepNum = gainLadder.defaultStepNum; gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum]; gv->active = AH_TRUE; gv->loTrig = 20; gv->hiTrig = 35; } static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv) { const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; uint32_t gStep, g; uint32_t L1, L2, L3, L4; if (IEEE80211_IS_CHAN_CCK(chan)) { gStep = 0x18; L1 = 0; L2 = gStep + 4; L3 = 0x40; L4 = L3 + 50; gv->loTrig = L1; gv->hiTrig = L4+5; } else { gStep = 0x3f; L1 = 0; L2 = 50; L3 = L1; L4 = L3 + 50; gv->loTrig = L1 + DYN_ADJ_LO_MARGIN; gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN; } g = gv->currGain; return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4)); } /* * Enable the probe gain check on the next packet */ static void ar5211RequestRfgain(struct ath_hal *ah) { struct ath_hal_5211 *ahp = AH5211(ah); /* Enable the gain readback probe */ OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE, SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX) | AR_PHY_PAPD_PROBE_NEXT_TX); ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED; } /* * Exported call to check for a recent gain reading and return * the current state of the thermal calibration gain engine. */ HAL_RFGAIN ar5211GetRfgain(struct ath_hal *ah) { struct ath_hal_5211 *ahp = AH5211(ah); GAIN_VALUES *gv = &ahp->ah_gainValues; uint32_t rddata; if (!gv->active) return HAL_RFGAIN_INACTIVE; if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) { /* Caller had asked to setup a new reading. Check it. */ rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE); if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) { /* bit got cleared, we have a new reading. */ gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S; /* inactive by default */ ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; if (!ar5211InvalidGainReadback(ah, gv) && ar5211IsGainAdjustNeeded(ah, gv) && ar5211AdjustGain(ah, gv) > 0) { /* * Change needed. Copy ladder info * into eeprom info. */ ar5211SetRfgain(ah, gv); ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE; } } } return ahp->ah_rfgainState; } /* * Check to see if our readback gain level sits within the linear * region of our current variable attenuation window */ static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv) { return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig); } /* * Move the rabbit ears in the correct direction. */ static int32_t ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv) { /* return > 0 for valid adjustments. */ if (!gv->active) return -1; gv->currStep = &gainLadder.optStep[gv->currStepNum]; if (gv->currGain >= gv->hiTrig) { if (gv->currStepNum == 0) { HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: Max gain limit.\n", __func__); return -1; } HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: Adding gain: currG=%d [%s] --> ", __func__, gv->currGain, gv->currStep->stepName); gv->targetGain = gv->currGain; while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) { gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain - gv->currStep->stepGain); gv->currStep = &gainLadder.optStep[gv->currStepNum]; } HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n", gv->targetGain, gv->currStep->stepName); return 1; } if (gv->currGain <= gv->loTrig) { if (gv->currStepNum == gainLadder.numStepsInLadder-1) { HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: Min gain limit.\n", __func__); return -2; } HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: Deducting gain: currG=%d [%s] --> ", __func__, gv->currGain, gv->currStep->stepName); gv->targetGain = gv->currGain; while (gv->targetGain <= gv->loTrig && gv->currStepNum < (gainLadder.numStepsInLadder - 1)) { gv->targetGain -= 2 * (gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain); gv->currStep = &gainLadder.optStep[gv->currStepNum]; } HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n", gv->targetGain, gv->currStep->stepName); return 2; } return 0; /* caller didn't call needAdjGain first */ } /* * Adjust the 5GHz EEPROM information with the desired calibration values. */ static void ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv) { HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; if (!gv->active) return; ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */ ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */ ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */ ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */ } static void ar5211SetOperatingMode(struct ath_hal *ah, int opmode) { struct ath_hal_5211 *ahp = AH5211(ah); uint32_t val; val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff; switch (opmode) { case HAL_M_HOSTAP: OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP | AR_STA_ID1_RTS_USE_DEF | ahp->ah_staId1Defaults); break; case HAL_M_IBSS: OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC | AR_STA_ID1_DESC_ANTENNA | ahp->ah_staId1Defaults); break; case HAL_M_STA: case HAL_M_MONITOR: OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA | ahp->ah_staId1Defaults); break; } } void ar5211SetPCUConfig(struct ath_hal *ah) { ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode); }