Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_tun/@/mips/rt305x/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/if_tun/@/mips/rt305x/uart_dev_rt305x.c |
/* $NetBSD: uart.c,v 1.2 2007/03/23 20:05:47 dogcow Exp $ */ /*- * Copyright (c) 2010 Aleksandr Rybalko. * Copyright (c) 2007 Ruslan Ermilov and Vsevolod Lobko. * Copyright (c) 2007 Oleksandr Tymoshenko. * All rights reserved. * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/mips/rt305x/uart_dev_rt305x.c 220297 2011-04-03 14:39:55Z adrian $"); #include "opt_ddb.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/bus.h> #include <sys/conf.h> #include <sys/kdb.h> #include <sys/reboot.h> #include <sys/sysctl.h> #include <sys/kernel.h> #include <machine/bus.h> #include <dev/uart/uart.h> #include <dev/uart/uart_cpu.h> #include <dev/uart/uart_bus.h> #include <mips/rt305x/uart_dev_rt305x.h> #include <mips/rt305x/rt305xreg.h> #include "uart_if.h" /* * Low-level UART interface. */ static int rt305x_uart_probe(struct uart_bas *bas); static void rt305x_uart_init(struct uart_bas *bas, int, int, int, int); static void rt305x_uart_term(struct uart_bas *bas); static void rt305x_uart_putc(struct uart_bas *bas, int); static int rt305x_uart_rxready(struct uart_bas *bas); static int rt305x_uart_getc(struct uart_bas *bas, struct mtx *); static struct uart_ops uart_rt305x_uart_ops = { .probe = rt305x_uart_probe, .init = rt305x_uart_init, .term = rt305x_uart_term, .putc = rt305x_uart_putc, .rxready = rt305x_uart_rxready, .getc = rt305x_uart_getc, }; static int uart_output = 1; TUNABLE_INT("kern.uart_output", &uart_output); SYSCTL_INT(_kern, OID_AUTO, uart_output, CTLFLAG_RW, &uart_output, 0, "UART output enabled."); static int rt305x_uart_probe(struct uart_bas *bas) { return (0); } static void rt305x_uart_init(struct uart_bas *bas, int baudrate, int databits, int stopbits, int parity) { #ifdef notyet /* CLKDIV = 384000000/ 3/ 16/ br */ /* for 384MHz CLKDIV = 8000000 / baudrate; */ switch (databits) { case 5: databits = UART_LCR_5B; break; case 6: databits = UART_LCR_6B; break; case 7: databits = UART_LCR_7B; break; case 8: databits = UART_LCR_8B; break; default: /* Unsupported */ return; } switch (parity) { case UART_PARITY_EVEN: parity = (UART_LCR_PEN|UART_LCR_EVEN); break; case UART_PARITY_NONE: parity = (UART_LCR_PEN); break; case UART_PARITY_ODD: parity = 0; break; /* Unsupported */ default: return; } uart_setreg(bas, UART_CDDL_REG, 8000000/baudrate); uart_barrier(bas); uart_setreg(bas, UART_LCR_REG, databits | (stopbits==1?0:4) | parity); uart_barrier(bas); #endif } static void rt305x_uart_term(struct uart_bas *bas) { uart_setreg(bas, UART_MCR_REG, 0); uart_barrier(bas); } static void rt305x_uart_putc(struct uart_bas *bas, int c) { char chr; if (!uart_output) return; chr = c; while (!(uart_getreg(bas, UART_LSR_REG) & UART_LSR_THRE)); uart_setreg(bas, UART_TX_REG, c); uart_barrier(bas); while (!(uart_getreg(bas, UART_LSR_REG) & UART_LSR_THRE)); } static int rt305x_uart_rxready(struct uart_bas *bas) { #ifdef notyet if (uart_getreg(bas, UART_LSR_REG) & UART_LSR_DR) return (1); return (0); #else return (1); #endif } static int rt305x_uart_getc(struct uart_bas *bas, struct mtx *hwmtx) { int c; uart_lock(hwmtx); while (!(uart_getreg(bas, UART_LSR_REG) & UART_LSR_DR)) { uart_unlock(hwmtx); DELAY(10); uart_lock(hwmtx); } c = uart_getreg(bas, UART_RX_REG); uart_unlock(hwmtx); return (c); } /* * High-level UART interface. */ struct rt305x_uart_softc { struct uart_softc base; }; static int rt305x_uart_bus_attach(struct uart_softc *); static int rt305x_uart_bus_detach(struct uart_softc *); static int rt305x_uart_bus_flush(struct uart_softc *, int); static int rt305x_uart_bus_getsig(struct uart_softc *); static int rt305x_uart_bus_ioctl(struct uart_softc *, int, intptr_t); static int rt305x_uart_bus_ipend(struct uart_softc *); static int rt305x_uart_bus_param(struct uart_softc *, int, int, int, int); static int rt305x_uart_bus_probe(struct uart_softc *); static int rt305x_uart_bus_receive(struct uart_softc *); static int rt305x_uart_bus_setsig(struct uart_softc *, int); static int rt305x_uart_bus_transmit(struct uart_softc *); static kobj_method_t rt305x_uart_methods[] = { KOBJMETHOD(uart_attach, rt305x_uart_bus_attach), KOBJMETHOD(uart_detach, rt305x_uart_bus_detach), KOBJMETHOD(uart_flush, rt305x_uart_bus_flush), KOBJMETHOD(uart_getsig, rt305x_uart_bus_getsig), KOBJMETHOD(uart_ioctl, rt305x_uart_bus_ioctl), KOBJMETHOD(uart_ipend, rt305x_uart_bus_ipend), KOBJMETHOD(uart_param, rt305x_uart_bus_param), KOBJMETHOD(uart_probe, rt305x_uart_bus_probe), KOBJMETHOD(uart_receive, rt305x_uart_bus_receive), KOBJMETHOD(uart_setsig, rt305x_uart_bus_setsig), KOBJMETHOD(uart_transmit, rt305x_uart_bus_transmit), { 0, 0 } }; struct uart_class uart_rt305x_uart_class = { "rt305x", rt305x_uart_methods, sizeof(struct rt305x_uart_softc), .uc_ops = &uart_rt305x_uart_ops, .uc_range = 1, /* use hinted range */ .uc_rclk = SYSTEM_CLOCK }; #define SIGCHG(c, i, s, d) \ if (c) { \ i |= (i & s) ? s : s | d; \ } else { \ i = (i & s) ? (i & ~s) | d : i; \ } /* * Disable TX interrupt. uart should be locked */ static __inline void rt305x_uart_disable_txintr(struct uart_softc *sc) { struct uart_bas *bas = &sc->sc_bas; uint8_t cr; cr = uart_getreg(bas, UART_IER_REG); cr &= ~UART_IER_ETBEI; uart_setreg(bas, UART_IER_REG, cr); uart_barrier(bas); } /* * Enable TX interrupt. uart should be locked */ static __inline void rt305x_uart_enable_txintr(struct uart_softc *sc) { struct uart_bas *bas = &sc->sc_bas; uint8_t cr; cr = uart_getreg(bas, UART_IER_REG); cr |= UART_IER_ETBEI; uart_setreg(bas, UART_IER_REG, cr); uart_barrier(bas); } static int rt305x_uart_bus_attach(struct uart_softc *sc) { struct uart_bas *bas; struct uart_devinfo *di; bas = &sc->sc_bas; if (sc->sc_sysdev != NULL) { di = sc->sc_sysdev; rt305x_uart_init(bas, di->baudrate, di->databits, di->stopbits, di->parity); } else { rt305x_uart_init(bas, 115200, 8, 1, 0); } sc->sc_rxfifosz = 16; sc->sc_txfifosz = 16; (void)rt305x_uart_bus_getsig(sc); /* Enable FIFO */ uart_setreg(bas, UART_FCR_REG, uart_getreg(bas, UART_FCR_REG) | UART_FCR_FIFOEN | UART_FCR_TXTGR_1 | UART_FCR_RXTGR_1); uart_barrier(bas); /* Enable interrupts */ uart_setreg(bas, UART_IER_REG, UART_IER_EDSSI | UART_IER_ELSI | UART_IER_ERBFI); uart_barrier(bas); return (0); } static int rt305x_uart_bus_detach(struct uart_softc *sc) { return (0); } static int rt305x_uart_bus_flush(struct uart_softc *sc, int what) { struct uart_bas *bas = &sc->sc_bas; uint32_t fcr = uart_getreg(bas, UART_FCR_REG); if (what & UART_FLUSH_TRANSMITTER) { uart_setreg(bas, UART_FCR_REG, fcr|UART_FCR_TXRST); uart_barrier(bas); } if (what & UART_FLUSH_RECEIVER) { uart_setreg(bas, UART_FCR_REG, fcr|UART_FCR_RXRST); uart_barrier(bas); } uart_setreg(bas, UART_FCR_REG, fcr); uart_barrier(bas); return (0); } static int rt305x_uart_bus_getsig(struct uart_softc *sc) { uint32_t new, old, sig; uint8_t bes; do { old = sc->sc_hwsig; sig = old; uart_lock(sc->sc_hwmtx); bes = uart_getreg(&sc->sc_bas, UART_MSR_REG); uart_unlock(sc->sc_hwmtx); /* XXX: chip can show delta */ SIGCHG(bes & UART_MSR_CTS, sig, SER_CTS, SER_DCTS); SIGCHG(bes & UART_MSR_DCD, sig, SER_DCD, SER_DDCD); SIGCHG(bes & UART_MSR_DSR, sig, SER_DSR, SER_DDSR); new = sig & ~SER_MASK_DELTA; } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); return (sig); } static int rt305x_uart_bus_ioctl(struct uart_softc *sc, int request, intptr_t data) { struct uart_bas *bas; int baudrate, divisor, error; bas = &sc->sc_bas; error = 0; uart_lock(sc->sc_hwmtx); switch (request) { case UART_IOCTL_BREAK: /* TODO: Send BREAK */ break; case UART_IOCTL_BAUD: divisor = uart_getreg(bas, UART_CDDL_REG); baudrate = bas->rclk / (divisor * 16); *(int*)data = baudrate; break; default: error = EINVAL; break; } uart_unlock(sc->sc_hwmtx); return (error); } static int rt305x_uart_bus_ipend(struct uart_softc *sc) { struct uart_bas *bas; int ipend; uint8_t iir, lsr, msr; bas = &sc->sc_bas; ipend = 0; uart_lock(sc->sc_hwmtx); iir = uart_getreg(&sc->sc_bas, UART_IIR_REG); lsr = uart_getreg(&sc->sc_bas, UART_LSR_REG); uart_setreg(&sc->sc_bas, UART_LSR_REG, lsr); msr = uart_getreg(&sc->sc_bas, UART_MSR_REG); uart_setreg(&sc->sc_bas, UART_MSR_REG, msr); if (iir & UART_IIR_INTP) { uart_unlock(sc->sc_hwmtx); return (0); } switch ((iir >> 1) & 0x07) { case UART_IIR_ID_THRE: ipend |= SER_INT_TXIDLE; break; case UART_IIR_ID_DR2: rt305x_uart_bus_flush(sc, UART_FLUSH_RECEIVER); /* passthrough */ case UART_IIR_ID_DR: ipend |= SER_INT_RXREADY; break; case UART_IIR_ID_MST: case UART_IIR_ID_LINESTATUS: ipend |= SER_INT_SIGCHG; if (lsr & UART_LSR_BI) { ipend |= SER_INT_BREAK; #ifdef KDB breakpoint(); #endif } if (lsr & UART_LSR_OE) ipend |= SER_INT_OVERRUN; break; default: /* XXX: maybe return error here */ break; } uart_unlock(sc->sc_hwmtx); return (ipend); } static int rt305x_uart_bus_param(struct uart_softc *sc, int baudrate, int databits, int stopbits, int parity) { uart_lock(sc->sc_hwmtx); rt305x_uart_init(&sc->sc_bas, baudrate, databits, stopbits, parity); uart_unlock(sc->sc_hwmtx); return (0); } static int rt305x_uart_bus_probe(struct uart_softc *sc) { char buf[80]; int error; error = rt305x_uart_probe(&sc->sc_bas); if (error) return (error); snprintf(buf, sizeof(buf), "rt305x_uart"); device_set_desc_copy(sc->sc_dev, buf); return (0); } static int rt305x_uart_bus_receive(struct uart_softc *sc) { struct uart_bas *bas; int xc; uint8_t lsr; bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); lsr = uart_getreg(bas, UART_LSR_REG); while ((lsr & UART_LSR_DR)) { if (uart_rx_full(sc)) { sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; break; } xc = 0; xc = uart_getreg(bas, UART_RX_REG); if (lsr & UART_LSR_FE) xc |= UART_STAT_FRAMERR; if (lsr & UART_LSR_PE) xc |= UART_STAT_PARERR; if (lsr & UART_LSR_OE) xc |= UART_STAT_OVERRUN; uart_barrier(bas); uart_rx_put(sc, xc); lsr = uart_getreg(bas, UART_LSR_REG); } uart_unlock(sc->sc_hwmtx); return (0); } static int rt305x_uart_bus_setsig(struct uart_softc *sc, int sig) { /* TODO: implement (?) */ return (0); } static int rt305x_uart_bus_transmit(struct uart_softc *sc) { struct uart_bas *bas = &sc->sc_bas; int i; if (!uart_output) return (0); bas = &sc->sc_bas; uart_lock(sc->sc_hwmtx); while ((uart_getreg(bas, UART_LSR_REG) & UART_LSR_THRE) == 0) ; rt305x_uart_enable_txintr(sc); for (i = 0; i < sc->sc_txdatasz; i++) { uart_setreg(bas, UART_TX_REG, sc->sc_txbuf[i]); uart_barrier(bas); } sc->sc_txbusy = 1; uart_unlock(sc->sc_hwmtx); return (0); }