Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/iir/@/dev/drm2/i915/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/iir/@/dev/drm2/i915/intel_bios.c |
/* * Copyright © 2006 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * * $FreeBSD: release/9.1.0/sys/dev/drm2/i915/intel_bios.c 235783 2012-05-22 11:07:44Z kib $ */ #include <dev/drm2/drmP.h> #include <dev/drm2/drm.h> #include <dev/drm2/drm_dp_helper.h> #include <dev/drm2/i915/i915_drm.h> #include <dev/drm2/i915/i915_drv.h> #include <dev/drm2/i915/intel_bios.h> #define SLAVE_ADDR1 0x70 #define SLAVE_ADDR2 0x72 static int panel_type; static void * find_section(struct bdb_header *bdb, int section_id) { u8 *base = (u8 *)bdb; int index = 0; u16 total, current_size; u8 current_id; /* skip to first section */ index += bdb->header_size; total = bdb->bdb_size; /* walk the sections looking for section_id */ while (index < total) { current_id = *(base + index); index++; current_size = *((u16 *)(base + index)); index += 2; if (current_id == section_id) return base + index; index += current_size; } return NULL; } static u16 get_blocksize(void *p) { u16 *block_ptr, block_size; block_ptr = (u16 *)((char *)p - 2); block_size = *block_ptr; return block_size; } static void fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, const struct lvds_dvo_timing *dvo_timing) { panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo; panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + dvo_timing->hsync_pulse_width; panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo; panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + dvo_timing->vsync_off; panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + dvo_timing->vsync_pulse_width; panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); panel_fixed_mode->clock = dvo_timing->clock * 10; panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; if (dvo_timing->hsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; if (dvo_timing->vsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; /* Some VBTs have bogus h/vtotal values */ if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; drm_mode_set_name(panel_fixed_mode); } static bool lvds_dvo_timing_equal_size(const struct lvds_dvo_timing *a, const struct lvds_dvo_timing *b) { if (a->hactive_hi != b->hactive_hi || a->hactive_lo != b->hactive_lo) return false; if (a->hsync_off_hi != b->hsync_off_hi || a->hsync_off_lo != b->hsync_off_lo) return false; if (a->hsync_pulse_width != b->hsync_pulse_width) return false; if (a->hblank_hi != b->hblank_hi || a->hblank_lo != b->hblank_lo) return false; if (a->vactive_hi != b->vactive_hi || a->vactive_lo != b->vactive_lo) return false; if (a->vsync_off != b->vsync_off) return false; if (a->vsync_pulse_width != b->vsync_pulse_width) return false; if (a->vblank_hi != b->vblank_hi || a->vblank_lo != b->vblank_lo) return false; return true; } static const struct lvds_dvo_timing * get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data, const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs, int index) { /* * the size of fp_timing varies on the different platform. * So calculate the DVO timing relative offset in LVDS data * entry to get the DVO timing entry */ int lfp_data_size = lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset - lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset; int dvo_timing_offset = lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset - lvds_lfp_data_ptrs->ptr[0].fp_timing_offset; const char *entry = (const char *)lvds_lfp_data->data + lfp_data_size * index; return (const struct lvds_dvo_timing *)(entry + dvo_timing_offset); } /* Try to find integrated panel data */ static void parse_lfp_panel_data(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { const struct bdb_lvds_options *lvds_options; const struct bdb_lvds_lfp_data *lvds_lfp_data; const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs; const struct lvds_dvo_timing *panel_dvo_timing; struct drm_display_mode *panel_fixed_mode; int i, downclock; lvds_options = find_section(bdb, BDB_LVDS_OPTIONS); if (!lvds_options) return; dev_priv->lvds_dither = lvds_options->pixel_dither; if (lvds_options->panel_type == 0xff) return; panel_type = lvds_options->panel_type; lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA); if (!lvds_lfp_data) return; lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS); if (!lvds_lfp_data_ptrs) return; dev_priv->lvds_vbt = 1; panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, lvds_lfp_data_ptrs, lvds_options->panel_type); panel_fixed_mode = malloc(sizeof(*panel_fixed_mode), DRM_MEM_KMS, M_WAITOK | M_ZERO); fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); dev_priv->lfp_lvds_vbt_mode = panel_fixed_mode; DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n"); drm_mode_debug_printmodeline(panel_fixed_mode); /* * Iterate over the LVDS panel timing info to find the lowest clock * for the native resolution. */ downclock = panel_dvo_timing->clock; for (i = 0; i < 16; i++) { const struct lvds_dvo_timing *dvo_timing; dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, lvds_lfp_data_ptrs, i); if (lvds_dvo_timing_equal_size(dvo_timing, panel_dvo_timing) && dvo_timing->clock < downclock) downclock = dvo_timing->clock; } if (downclock < panel_dvo_timing->clock && i915_lvds_downclock) { dev_priv->lvds_downclock_avail = 1; dev_priv->lvds_downclock = downclock * 10; DRM_DEBUG("LVDS downclock is found in VBT. " "Normal Clock %dKHz, downclock %dKHz\n", panel_fixed_mode->clock, 10 * downclock); } } /* Try to find sdvo panel data */ static void parse_sdvo_panel_data(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct lvds_dvo_timing *dvo_timing; struct drm_display_mode *panel_fixed_mode; int index; index = i915_vbt_sdvo_panel_type; if (index == -1) { struct bdb_sdvo_lvds_options *sdvo_lvds_options; sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS); if (!sdvo_lvds_options) return; index = sdvo_lvds_options->panel_type; } dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS); if (!dvo_timing) return; panel_fixed_mode = malloc(sizeof(*panel_fixed_mode), DRM_MEM_KMS, M_WAITOK | M_ZERO); fill_detail_timing_data(panel_fixed_mode, dvo_timing + index); dev_priv->sdvo_lvds_vbt_mode = panel_fixed_mode; DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n"); drm_mode_debug_printmodeline(panel_fixed_mode); } static int intel_bios_ssc_frequency(struct drm_device *dev, bool alternate) { switch (INTEL_INFO(dev)->gen) { case 2: return alternate ? 66 : 48; case 3: case 4: return alternate ? 100 : 96; default: return alternate ? 100 : 120; } } static void parse_general_features(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct drm_device *dev = dev_priv->dev; struct bdb_general_features *general; general = find_section(bdb, BDB_GENERAL_FEATURES); if (general) { dev_priv->int_tv_support = general->int_tv_support; dev_priv->int_crt_support = general->int_crt_support; dev_priv->lvds_use_ssc = general->enable_ssc; dev_priv->lvds_ssc_freq = intel_bios_ssc_frequency(dev, general->ssc_freq); dev_priv->display_clock_mode = general->display_clock_mode; DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d\n", dev_priv->int_tv_support, dev_priv->int_crt_support, dev_priv->lvds_use_ssc, dev_priv->lvds_ssc_freq, dev_priv->display_clock_mode); } } static void parse_general_definitions(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct bdb_general_definitions *general; general = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (general) { u16 block_size = get_blocksize(general); if (block_size >= sizeof(*general)) { int bus_pin = general->crt_ddc_gmbus_pin; DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin); if (bus_pin >= 1 && bus_pin <= 6) dev_priv->crt_ddc_pin = bus_pin; } else { DRM_DEBUG_KMS("BDB_GD too small (%d). Invalid.\n", block_size); } } } static void parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct sdvo_device_mapping *p_mapping; struct bdb_general_definitions *p_defs; struct child_device_config *p_child; int i, child_device_num, count; u16 block_size; p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (!p_defs) { DRM_DEBUG_KMS("No general definition block is found, unable to construct sdvo mapping.\n"); return; } /* judge whether the size of child device meets the requirements. * If the child device size obtained from general definition block * is different with sizeof(struct child_device_config), skip the * parsing of sdvo device info */ if (p_defs->child_dev_size != sizeof(*p_child)) { /* different child dev size . Ignore it */ DRM_DEBUG_KMS("different child size is found. Invalid.\n"); return; } /* get the block size of general definitions */ block_size = get_blocksize(p_defs); /* get the number of child device */ child_device_num = (block_size - sizeof(*p_defs)) / sizeof(*p_child); count = 0; for (i = 0; i < child_device_num; i++) { p_child = &(p_defs->devices[i]); if (!p_child->device_type) { /* skip the device block if device type is invalid */ continue; } if (p_child->slave_addr != SLAVE_ADDR1 && p_child->slave_addr != SLAVE_ADDR2) { /* * If the slave address is neither 0x70 nor 0x72, * it is not a SDVO device. Skip it. */ continue; } if (p_child->dvo_port != DEVICE_PORT_DVOB && p_child->dvo_port != DEVICE_PORT_DVOC) { /* skip the incorrect SDVO port */ DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n"); continue; } DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on" " %s port\n", p_child->slave_addr, (p_child->dvo_port == DEVICE_PORT_DVOB) ? "SDVOB" : "SDVOC"); p_mapping = &(dev_priv->sdvo_mappings[p_child->dvo_port - 1]); if (!p_mapping->initialized) { p_mapping->dvo_port = p_child->dvo_port; p_mapping->slave_addr = p_child->slave_addr; p_mapping->dvo_wiring = p_child->dvo_wiring; p_mapping->ddc_pin = p_child->ddc_pin; p_mapping->i2c_pin = p_child->i2c_pin; p_mapping->initialized = 1; DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", p_mapping->dvo_port, p_mapping->slave_addr, p_mapping->dvo_wiring, p_mapping->ddc_pin, p_mapping->i2c_pin); } else { DRM_DEBUG_KMS("Maybe one SDVO port is shared by " "two SDVO device.\n"); } if (p_child->slave2_addr) { /* Maybe this is a SDVO device with multiple inputs */ /* And the mapping info is not added */ DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this" " is a SDVO device with multiple inputs.\n"); } count++; } if (!count) { /* No SDVO device info is found */ DRM_DEBUG_KMS("No SDVO device info is found in VBT\n"); } return; } static void parse_driver_features(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct drm_device *dev = dev_priv->dev; struct bdb_driver_features *driver; driver = find_section(bdb, BDB_DRIVER_FEATURES); if (!driver) return; if (SUPPORTS_EDP(dev) && driver->lvds_config == BDB_DRIVER_FEATURE_EDP) dev_priv->edp.support = 1; if (driver->dual_frequency) dev_priv->render_reclock_avail = true; } static void parse_edp(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct bdb_edp *edp; struct edp_power_seq *edp_pps; struct edp_link_params *edp_link_params; edp = find_section(bdb, BDB_EDP); if (!edp) { if (SUPPORTS_EDP(dev_priv->dev) && dev_priv->edp.support) { DRM_DEBUG_KMS("No eDP BDB found but eDP panel " "supported, assume %dbpp panel color " "depth.\n", dev_priv->edp.bpp); } return; } switch ((edp->color_depth >> (panel_type * 2)) & 3) { case EDP_18BPP: dev_priv->edp.bpp = 18; break; case EDP_24BPP: dev_priv->edp.bpp = 24; break; case EDP_30BPP: dev_priv->edp.bpp = 30; break; } /* Get the eDP sequencing and link info */ edp_pps = &edp->power_seqs[panel_type]; edp_link_params = &edp->link_params[panel_type]; dev_priv->edp.pps = *edp_pps; dev_priv->edp.rate = edp_link_params->rate ? DP_LINK_BW_2_7 : DP_LINK_BW_1_62; switch (edp_link_params->lanes) { case 0: dev_priv->edp.lanes = 1; break; case 1: dev_priv->edp.lanes = 2; break; case 3: default: dev_priv->edp.lanes = 4; break; } switch (edp_link_params->preemphasis) { case 0: dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_0; break; case 1: dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_3_5; break; case 2: dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_6; break; case 3: dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_9_5; break; } switch (edp_link_params->vswing) { case 0: dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_400; break; case 1: dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_600; break; case 2: dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_800; break; case 3: dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_1200; break; } } static void parse_device_mapping(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct bdb_general_definitions *p_defs; struct child_device_config *p_child, *child_dev_ptr; int i, child_device_num, count; u16 block_size; p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (!p_defs) { DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n"); return; } /* judge whether the size of child device meets the requirements. * If the child device size obtained from general definition block * is different with sizeof(struct child_device_config), skip the * parsing of sdvo device info */ if (p_defs->child_dev_size != sizeof(*p_child)) { /* different child dev size . Ignore it */ DRM_DEBUG_KMS("different child size is found. Invalid.\n"); return; } /* get the block size of general definitions */ block_size = get_blocksize(p_defs); /* get the number of child device */ child_device_num = (block_size - sizeof(*p_defs)) / sizeof(*p_child); count = 0; /* get the number of child device that is present */ for (i = 0; i < child_device_num; i++) { p_child = &(p_defs->devices[i]); if (!p_child->device_type) { /* skip the device block if device type is invalid */ continue; } count++; } if (!count) { DRM_DEBUG_KMS("no child dev is parsed from VBT\n"); return; } dev_priv->child_dev = malloc(sizeof(*p_child) * count, DRM_MEM_KMS, M_WAITOK | M_ZERO); dev_priv->child_dev_num = count; count = 0; for (i = 0; i < child_device_num; i++) { p_child = &(p_defs->devices[i]); if (!p_child->device_type) { /* skip the device block if device type is invalid */ continue; } child_dev_ptr = dev_priv->child_dev + count; count++; memcpy((void *)child_dev_ptr, (void *)p_child, sizeof(*p_child)); } return; } static void init_vbt_defaults(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; dev_priv->crt_ddc_pin = GMBUS_PORT_VGADDC; /* LFP panel data */ dev_priv->lvds_dither = 1; dev_priv->lvds_vbt = 0; /* SDVO panel data */ dev_priv->sdvo_lvds_vbt_mode = NULL; /* general features */ dev_priv->int_tv_support = 1; dev_priv->int_crt_support = 1; /* Default to using SSC */ dev_priv->lvds_use_ssc = 1; dev_priv->lvds_ssc_freq = intel_bios_ssc_frequency(dev, 1); DRM_DEBUG_KMS("Set default to SSC at %dMHz\n", dev_priv->lvds_ssc_freq); /* eDP data */ dev_priv->edp.bpp = 18; } static int intel_no_opregion_vbt_callback(const struct dmi_system_id *id) { DRM_DEBUG_KMS("Falling back to manually reading VBT from " "VBIOS ROM for %s\n", id->ident); return 1; } static const struct dmi_system_id intel_no_opregion_vbt[] = { { .callback = intel_no_opregion_vbt_callback, .ident = "ThinkCentre A57", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "97027RG"), }, }, { } }; /** * intel_parse_bios - find VBT and initialize settings from the BIOS * @dev: DRM device * * Loads the Video BIOS and checks that the VBT exists. Sets scratch registers * to appropriate values. * * Returns 0 on success, nonzero on failure. */ bool intel_parse_bios(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct bdb_header *bdb = NULL; u8 *bios; init_vbt_defaults(dev_priv); /* XXX Should this validation be moved to intel_opregion.c? */ if (!dmi_check_system(intel_no_opregion_vbt) && dev_priv->opregion.vbt) { struct vbt_header *vbt = dev_priv->opregion.vbt; if (memcmp(vbt->signature, "$VBT", 4) == 0) { DRM_DEBUG_KMS("Using VBT from OpRegion: %20s\n", vbt->signature); bdb = (struct bdb_header *)((char *)vbt + vbt->bdb_offset); } else dev_priv->opregion.vbt = NULL; } bios = NULL; #if 1 if (bdb == NULL) { KIB_NOTYET(); return (-1); } #else if (bdb == NULL) { struct vbt_header *vbt = NULL; size_t size; int i; bios = pci_map_rom(pdev, &size); if (!bios) return -1; /* Scour memory looking for the VBT signature */ for (i = 0; i + 4 < size; i++) { if (!memcmp(bios + i, "$VBT", 4)) { vbt = (struct vbt_header *)(bios + i); break; } } if (!vbt) { DRM_DEBUG_DRIVER("VBT signature missing\n"); pci_unmap_rom(pdev, bios); return -1; } bdb = (struct bdb_header *)(bios + i + vbt->bdb_offset); } #endif /* Grab useful general definitions */ parse_general_features(dev_priv, bdb); parse_general_definitions(dev_priv, bdb); parse_lfp_panel_data(dev_priv, bdb); parse_sdvo_panel_data(dev_priv, bdb); parse_sdvo_device_mapping(dev_priv, bdb); parse_device_mapping(dev_priv, bdb); parse_driver_features(dev_priv, bdb); parse_edp(dev_priv, bdb); #if 0 if (bios) pci_unmap_rom(pdev, bios); #endif return 0; } /* Ensure that vital registers have been initialised, even if the BIOS * is absent or just failing to do its job. */ void intel_setup_bios(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* Set the Panel Power On/Off timings if uninitialized. */ if ((I915_READ(PP_ON_DELAYS) == 0) && (I915_READ(PP_OFF_DELAYS) == 0)) { /* Set T2 to 40ms and T5 to 200ms */ I915_WRITE(PP_ON_DELAYS, 0x019007d0); /* Set T3 to 35ms and Tx to 200ms */ I915_WRITE(PP_OFF_DELAYS, 0x015e07d0); } }