Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/iir/@/dev/ubsec/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/iir/@/dev/ubsec/ubsec.c |
/* $OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $ */ /*- * Copyright (c) 2000 Jason L. Wright (jason@thought.net) * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org) * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com) * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Jason L. Wright * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/ubsec/ubsec.c 233024 2012-03-16 08:46:58Z scottl $"); /* * uBsec 5[56]01, 58xx hardware crypto accelerator */ #include "opt_ubsec.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/proc.h> #include <sys/errno.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/module.h> #include <sys/mbuf.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/sysctl.h> #include <sys/endian.h> #include <vm/vm.h> #include <vm/pmap.h> #include <machine/bus.h> #include <machine/resource.h> #include <sys/bus.h> #include <sys/rman.h> #include <crypto/sha1.h> #include <opencrypto/cryptodev.h> #include <opencrypto/cryptosoft.h> #include <sys/md5.h> #include <sys/random.h> #include <sys/kobj.h> #include "cryptodev_if.h" #include <dev/pci/pcivar.h> #include <dev/pci/pcireg.h> /* grr, #defines for gratuitous incompatibility in queue.h */ #define SIMPLEQ_HEAD STAILQ_HEAD #define SIMPLEQ_ENTRY STAILQ_ENTRY #define SIMPLEQ_INIT STAILQ_INIT #define SIMPLEQ_INSERT_TAIL STAILQ_INSERT_TAIL #define SIMPLEQ_EMPTY STAILQ_EMPTY #define SIMPLEQ_FIRST STAILQ_FIRST #define SIMPLEQ_REMOVE_HEAD STAILQ_REMOVE_HEAD #define SIMPLEQ_FOREACH STAILQ_FOREACH /* ditto for endian.h */ #define letoh16(x) le16toh(x) #define letoh32(x) le32toh(x) #ifdef UBSEC_RNDTEST #include <dev/rndtest/rndtest.h> #endif #include <dev/ubsec/ubsecreg.h> #include <dev/ubsec/ubsecvar.h> /* * Prototypes and count for the pci_device structure */ static int ubsec_probe(device_t); static int ubsec_attach(device_t); static int ubsec_detach(device_t); static int ubsec_suspend(device_t); static int ubsec_resume(device_t); static int ubsec_shutdown(device_t); static int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *); static int ubsec_freesession(device_t, u_int64_t); static int ubsec_process(device_t, struct cryptop *, int); static int ubsec_kprocess(device_t, struct cryptkop *, int); static device_method_t ubsec_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ubsec_probe), DEVMETHOD(device_attach, ubsec_attach), DEVMETHOD(device_detach, ubsec_detach), DEVMETHOD(device_suspend, ubsec_suspend), DEVMETHOD(device_resume, ubsec_resume), DEVMETHOD(device_shutdown, ubsec_shutdown), /* crypto device methods */ DEVMETHOD(cryptodev_newsession, ubsec_newsession), DEVMETHOD(cryptodev_freesession,ubsec_freesession), DEVMETHOD(cryptodev_process, ubsec_process), DEVMETHOD(cryptodev_kprocess, ubsec_kprocess), DEVMETHOD_END }; static driver_t ubsec_driver = { "ubsec", ubsec_methods, sizeof (struct ubsec_softc) }; static devclass_t ubsec_devclass; DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0); MODULE_DEPEND(ubsec, crypto, 1, 1, 1); #ifdef UBSEC_RNDTEST MODULE_DEPEND(ubsec, rndtest, 1, 1, 1); #endif static void ubsec_intr(void *); static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *); static void ubsec_feed(struct ubsec_softc *); static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int); static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *); static int ubsec_feed2(struct ubsec_softc *); static void ubsec_rng(void *); static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t, struct ubsec_dma_alloc *, int); #define ubsec_dma_sync(_dma, _flags) \ bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags)) static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *); static int ubsec_dmamap_aligned(struct ubsec_operand *op); static void ubsec_reset_board(struct ubsec_softc *sc); static void ubsec_init_board(struct ubsec_softc *sc); static void ubsec_init_pciregs(device_t dev); static void ubsec_totalreset(struct ubsec_softc *sc); static int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q); static int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int); static int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int); static int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int); static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *); static int ubsec_ksigbits(struct crparam *); static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int); static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int); SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0, "Broadcom driver parameters"); #ifdef UBSEC_DEBUG static void ubsec_dump_pb(volatile struct ubsec_pktbuf *); static void ubsec_dump_mcr(struct ubsec_mcr *); static void ubsec_dump_ctx2(struct ubsec_ctx_keyop *); static int ubsec_debug = 0; SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug, 0, "control debugging msgs"); #endif #define READ_REG(sc,r) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r)) #define WRITE_REG(sc,reg,val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val) #define SWAP32(x) (x) = htole32(ntohl((x))) #define HTOLE32(x) (x) = htole32(x) struct ubsec_stats ubsecstats; SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats, ubsec_stats, "driver statistics"); static int ubsec_probe(device_t dev) { if (pci_get_vendor(dev) == PCI_VENDOR_SUN && (pci_get_device(dev) == PCI_PRODUCT_SUN_5821 || pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K)) return (BUS_PROBE_DEFAULT); if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL && (pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 || pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)) return (BUS_PROBE_DEFAULT); if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM && (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825 )) return (BUS_PROBE_DEFAULT); return (ENXIO); } static const char* ubsec_partname(struct ubsec_softc *sc) { /* XXX sprintf numbers when not decoded */ switch (pci_get_vendor(sc->sc_dev)) { case PCI_VENDOR_BROADCOM: switch (pci_get_device(sc->sc_dev)) { case PCI_PRODUCT_BROADCOM_5801: return "Broadcom 5801"; case PCI_PRODUCT_BROADCOM_5802: return "Broadcom 5802"; case PCI_PRODUCT_BROADCOM_5805: return "Broadcom 5805"; case PCI_PRODUCT_BROADCOM_5820: return "Broadcom 5820"; case PCI_PRODUCT_BROADCOM_5821: return "Broadcom 5821"; case PCI_PRODUCT_BROADCOM_5822: return "Broadcom 5822"; case PCI_PRODUCT_BROADCOM_5823: return "Broadcom 5823"; case PCI_PRODUCT_BROADCOM_5825: return "Broadcom 5825"; } return "Broadcom unknown-part"; case PCI_VENDOR_BLUESTEEL: switch (pci_get_device(sc->sc_dev)) { case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601"; } return "Bluesteel unknown-part"; case PCI_VENDOR_SUN: switch (pci_get_device(sc->sc_dev)) { case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821"; case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K"; } return "Sun unknown-part"; } return "Unknown-vendor unknown-part"; } static void default_harvest(struct rndtest_state *rsp, void *buf, u_int count) { random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE); } static int ubsec_attach(device_t dev) { struct ubsec_softc *sc = device_get_softc(dev); struct ubsec_dma *dmap; u_int32_t cmd, i; int rid; bzero(sc, sizeof (*sc)); sc->sc_dev = dev; SIMPLEQ_INIT(&sc->sc_queue); SIMPLEQ_INIT(&sc->sc_qchip); SIMPLEQ_INIT(&sc->sc_queue2); SIMPLEQ_INIT(&sc->sc_qchip2); SIMPLEQ_INIT(&sc->sc_q2free); /* XXX handle power management */ sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR; if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL && pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601) sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG; if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM && (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805)) sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG; if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM && pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820) sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY; if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM && (pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 || pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825)) || (pci_get_vendor(dev) == PCI_VENDOR_SUN && (pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K || pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) { /* NB: the 5821/5822 defines some additional status bits */ sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY; sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY; } cmd = pci_read_config(dev, PCIR_COMMAND, 4); cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN; pci_write_config(dev, PCIR_COMMAND, cmd, 4); cmd = pci_read_config(dev, PCIR_COMMAND, 4); if (!(cmd & PCIM_CMD_MEMEN)) { device_printf(dev, "failed to enable memory mapping\n"); goto bad; } if (!(cmd & PCIM_CMD_BUSMASTEREN)) { device_printf(dev, "failed to enable bus mastering\n"); goto bad; } /* * Setup memory-mapping of PCI registers. */ rid = BS_BAR; sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->sc_sr == NULL) { device_printf(dev, "cannot map register space\n"); goto bad; } sc->sc_st = rman_get_bustag(sc->sc_sr); sc->sc_sh = rman_get_bushandle(sc->sc_sr); /* * Arrange interrupt line. */ rid = 0; sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE|RF_ACTIVE); if (sc->sc_irq == NULL) { device_printf(dev, "could not map interrupt\n"); goto bad1; } /* * NB: Network code assumes we are blocked with splimp() * so make sure the IRQ is mapped appropriately. */ if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, ubsec_intr, sc, &sc->sc_ih)) { device_printf(dev, "could not establish interrupt\n"); goto bad2; } sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE); if (sc->sc_cid < 0) { device_printf(dev, "could not get crypto driver id\n"); goto bad3; } /* * Setup DMA descriptor area. */ if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ 0x3ffff, /* maxsize */ UBS_MAX_SCATTER, /* nsegments */ 0xffff, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->sc_dmat)) { device_printf(dev, "cannot allocate DMA tag\n"); goto bad4; } SIMPLEQ_INIT(&sc->sc_freequeue); dmap = sc->sc_dmaa; for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) { struct ubsec_q *q; q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q), M_DEVBUF, M_NOWAIT); if (q == NULL) { device_printf(dev, "cannot allocate queue buffers\n"); break; } if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk), &dmap->d_alloc, 0)) { device_printf(dev, "cannot allocate dma buffers\n"); free(q, M_DEVBUF); break; } dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr; q->q_dma = dmap; sc->sc_queuea[i] = q; SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); } mtx_init(&sc->sc_mcr1lock, device_get_nameunit(dev), "mcr1 operations", MTX_DEF); mtx_init(&sc->sc_freeqlock, device_get_nameunit(dev), "mcr1 free q", MTX_DEF); device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc)); crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0); crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0); crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0); crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0); /* * Reset Broadcom chip */ ubsec_reset_board(sc); /* * Init Broadcom specific PCI settings */ ubsec_init_pciregs(dev); /* * Init Broadcom chip */ ubsec_init_board(sc); #ifndef UBSEC_NO_RNG if (sc->sc_flags & UBS_FLAGS_RNG) { sc->sc_statmask |= BS_STAT_MCR2_DONE; #ifdef UBSEC_RNDTEST sc->sc_rndtest = rndtest_attach(dev); if (sc->sc_rndtest) sc->sc_harvest = rndtest_harvest; else sc->sc_harvest = default_harvest; #else sc->sc_harvest = default_harvest; #endif if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &sc->sc_rng.rng_q.q_mcr, 0)) goto skip_rng; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass), &sc->sc_rng.rng_q.q_ctx, 0)) { ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); goto skip_rng; } if (ubsec_dma_malloc(sc, sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) { ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx); ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); goto skip_rng; } if (hz >= 100) sc->sc_rnghz = hz / 100; else sc->sc_rnghz = 1; callout_init(&sc->sc_rngto, CALLOUT_MPSAFE); callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc); skip_rng: ; } #endif /* UBSEC_NO_RNG */ mtx_init(&sc->sc_mcr2lock, device_get_nameunit(dev), "mcr2 operations", MTX_DEF); if (sc->sc_flags & UBS_FLAGS_KEY) { sc->sc_statmask |= BS_STAT_MCR2_DONE; crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0); #if 0 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0); #endif } return (0); bad4: crypto_unregister_all(sc->sc_cid); bad3: bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); bad2: bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq); bad1: bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr); bad: return (ENXIO); } /* * Detach a device that successfully probed. */ static int ubsec_detach(device_t dev) { struct ubsec_softc *sc = device_get_softc(dev); /* XXX wait/abort active ops */ /* disable interrupts */ WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~ (BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR)); callout_stop(&sc->sc_rngto); crypto_unregister_all(sc->sc_cid); #ifdef UBSEC_RNDTEST if (sc->sc_rndtest) rndtest_detach(sc->sc_rndtest); #endif while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) { struct ubsec_q *q; q = SIMPLEQ_FIRST(&sc->sc_freequeue); SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next); ubsec_dma_free(sc, &q->q_dma->d_alloc); free(q, M_DEVBUF); } mtx_destroy(&sc->sc_mcr1lock); mtx_destroy(&sc->sc_freeqlock); #ifndef UBSEC_NO_RNG if (sc->sc_flags & UBS_FLAGS_RNG) { ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr); ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx); ubsec_dma_free(sc, &sc->sc_rng.rng_buf); } #endif /* UBSEC_NO_RNG */ mtx_destroy(&sc->sc_mcr2lock); bus_generic_detach(dev); bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq); bus_dma_tag_destroy(sc->sc_dmat); bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr); return (0); } /* * Stop all chip i/o so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static int ubsec_shutdown(device_t dev) { #ifdef notyet ubsec_stop(device_get_softc(dev)); #endif return (0); } /* * Device suspend routine. */ static int ubsec_suspend(device_t dev) { struct ubsec_softc *sc = device_get_softc(dev); #ifdef notyet /* XXX stop the device and save PCI settings */ #endif sc->sc_suspended = 1; return (0); } static int ubsec_resume(device_t dev) { struct ubsec_softc *sc = device_get_softc(dev); #ifdef notyet /* XXX retore PCI settings and start the device */ #endif sc->sc_suspended = 0; return (0); } /* * UBSEC Interrupt routine */ static void ubsec_intr(void *arg) { struct ubsec_softc *sc = arg; volatile u_int32_t stat; struct ubsec_q *q; struct ubsec_dma *dmap; int npkts = 0, i; stat = READ_REG(sc, BS_STAT); stat &= sc->sc_statmask; if (stat == 0) return; WRITE_REG(sc, BS_STAT, stat); /* IACK */ /* * Check to see if we have any packets waiting for us */ if ((stat & BS_STAT_MCR1_DONE)) { mtx_lock(&sc->sc_mcr1lock); while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { q = SIMPLEQ_FIRST(&sc->sc_qchip); dmap = q->q_dma; if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0) break; SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next); npkts = q->q_nstacked_mcrs; sc->sc_nqchip -= 1+npkts; /* * search for further sc_qchip ubsec_q's that share * the same MCR, and complete them too, they must be * at the top. */ for (i = 0; i < npkts; i++) { if(q->q_stacked_mcr[i]) { ubsec_callback(sc, q->q_stacked_mcr[i]); } else { break; } } ubsec_callback(sc, q); } /* * Don't send any more packet to chip if there has been * a DMAERR. */ if (!(stat & BS_STAT_DMAERR)) ubsec_feed(sc); mtx_unlock(&sc->sc_mcr1lock); } /* * Check to see if we have any key setups/rng's waiting for us */ if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) && (stat & BS_STAT_MCR2_DONE)) { struct ubsec_q2 *q2; struct ubsec_mcr *mcr; mtx_lock(&sc->sc_mcr2lock); while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) { q2 = SIMPLEQ_FIRST(&sc->sc_qchip2); ubsec_dma_sync(&q2->q_mcr, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr; if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) { ubsec_dma_sync(&q2->q_mcr, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); break; } SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next); ubsec_callback2(sc, q2); /* * Don't send any more packet to chip if there has been * a DMAERR. */ if (!(stat & BS_STAT_DMAERR)) ubsec_feed2(sc); } mtx_unlock(&sc->sc_mcr2lock); } /* * Check to see if we got any DMA Error */ if (stat & BS_STAT_DMAERR) { #ifdef UBSEC_DEBUG if (ubsec_debug) { volatile u_int32_t a = READ_REG(sc, BS_ERR); printf("dmaerr %s@%08x\n", (a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR); } #endif /* UBSEC_DEBUG */ ubsecstats.hst_dmaerr++; mtx_lock(&sc->sc_mcr1lock); ubsec_totalreset(sc); ubsec_feed(sc); mtx_unlock(&sc->sc_mcr1lock); } if (sc->sc_needwakeup) { /* XXX check high watermark */ int wakeup; mtx_lock(&sc->sc_freeqlock); wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ); #ifdef UBSEC_DEBUG if (ubsec_debug) device_printf(sc->sc_dev, "wakeup crypto (%x)\n", sc->sc_needwakeup); #endif /* UBSEC_DEBUG */ sc->sc_needwakeup &= ~wakeup; mtx_unlock(&sc->sc_freeqlock); crypto_unblock(sc->sc_cid, wakeup); } } /* * ubsec_feed() - aggregate and post requests to chip */ static void ubsec_feed(struct ubsec_softc *sc) { struct ubsec_q *q, *q2; int npkts, i; void *v; u_int32_t stat; /* * Decide how many ops to combine in a single MCR. We cannot * aggregate more than UBS_MAX_AGGR because this is the number * of slots defined in the data structure. Note that * aggregation only happens if ops are marked batch'able. * Aggregating ops reduces the number of interrupts to the host * but also (potentially) increases the latency for processing * completed ops as we only get an interrupt when all aggregated * ops have completed. */ if (sc->sc_nqueue == 0) return; if (sc->sc_nqueue > 1) { npkts = 0; SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) { npkts++; if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0) break; } } else npkts = 1; /* * Check device status before going any further. */ if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) { if (stat & BS_STAT_DMAERR) { ubsec_totalreset(sc); ubsecstats.hst_dmaerr++; } else ubsecstats.hst_mcr1full++; return; } if (sc->sc_nqueue > ubsecstats.hst_maxqueue) ubsecstats.hst_maxqueue = sc->sc_nqueue; if (npkts > UBS_MAX_AGGR) npkts = UBS_MAX_AGGR; if (npkts < 2) /* special case 1 op */ goto feed1; ubsecstats.hst_totbatch += npkts-1; #ifdef UBSEC_DEBUG if (ubsec_debug) printf("merging %d records\n", npkts); #endif /* UBSEC_DEBUG */ q = SIMPLEQ_FIRST(&sc->sc_queue); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next); --sc->sc_nqueue; bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE); if (q->q_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD); q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */ for (i = 0; i < q->q_nstacked_mcrs; i++) { q2 = SIMPLEQ_FIRST(&sc->sc_queue); bus_dmamap_sync(sc->sc_dmat, q2->q_src_map, BUS_DMASYNC_PREWRITE); if (q2->q_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map, BUS_DMASYNC_PREREAD); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next); --sc->sc_nqueue; v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) - sizeof(struct ubsec_mcr_add)); bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add)); q->q_stacked_mcr[i] = q2; } q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts); SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); sc->sc_nqchip += npkts; if (sc->sc_nqchip > ubsecstats.hst_maxqchip) ubsecstats.hst_maxqchip = sc->sc_nqchip; ubsec_dma_sync(&q->q_dma->d_alloc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_mcr)); return; feed1: q = SIMPLEQ_FIRST(&sc->sc_queue); bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE); if (q->q_dst_map != NULL) bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD); ubsec_dma_sync(&q->q_dma->d_alloc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_mcr)); #ifdef UBSEC_DEBUG if (ubsec_debug) printf("feed1: q->chip %p %08x stat %08x\n", q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr), stat); #endif /* UBSEC_DEBUG */ SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next); --sc->sc_nqueue; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next); sc->sc_nqchip++; if (sc->sc_nqchip > ubsecstats.hst_maxqchip) ubsecstats.hst_maxqchip = sc->sc_nqchip; return; } static void ubsec_setup_enckey(struct ubsec_session *ses, int algo, caddr_t key) { /* Go ahead and compute key in ubsec's byte order */ if (algo == CRYPTO_DES_CBC) { bcopy(key, &ses->ses_deskey[0], 8); bcopy(key, &ses->ses_deskey[2], 8); bcopy(key, &ses->ses_deskey[4], 8); } else bcopy(key, ses->ses_deskey, 24); SWAP32(ses->ses_deskey[0]); SWAP32(ses->ses_deskey[1]); SWAP32(ses->ses_deskey[2]); SWAP32(ses->ses_deskey[3]); SWAP32(ses->ses_deskey[4]); SWAP32(ses->ses_deskey[5]); } static void ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen) { MD5_CTX md5ctx; SHA1_CTX sha1ctx; int i; for (i = 0; i < klen; i++) key[i] ^= HMAC_IPAD_VAL; if (algo == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, key, klen); MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen); bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, key, klen); SHA1Update(&sha1ctx, hmac_ipad_buffer, SHA1_HMAC_BLOCK_LEN - klen); bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32)); } for (i = 0; i < klen; i++) key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); if (algo == CRYPTO_MD5_HMAC) { MD5Init(&md5ctx); MD5Update(&md5ctx, key, klen); MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen); bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state)); } else { SHA1Init(&sha1ctx); SHA1Update(&sha1ctx, key, klen); SHA1Update(&sha1ctx, hmac_opad_buffer, SHA1_HMAC_BLOCK_LEN - klen); bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32)); } for (i = 0; i < klen; i++) key[i] ^= HMAC_OPAD_VAL; } /* * Allocate a new 'session' and return an encoded session id. 'sidp' * contains our registration id, and should contain an encoded session * id on successful allocation. */ static int ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri) { struct ubsec_softc *sc = device_get_softc(dev); struct cryptoini *c, *encini = NULL, *macini = NULL; struct ubsec_session *ses = NULL; int sesn; if (sidp == NULL || cri == NULL || sc == NULL) return (EINVAL); for (c = cri; c != NULL; c = c->cri_next) { if (c->cri_alg == CRYPTO_MD5_HMAC || c->cri_alg == CRYPTO_SHA1_HMAC) { if (macini) return (EINVAL); macini = c; } else if (c->cri_alg == CRYPTO_DES_CBC || c->cri_alg == CRYPTO_3DES_CBC) { if (encini) return (EINVAL); encini = c; } else return (EINVAL); } if (encini == NULL && macini == NULL) return (EINVAL); if (sc->sc_sessions == NULL) { ses = sc->sc_sessions = (struct ubsec_session *)malloc( sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); sesn = 0; sc->sc_nsessions = 1; } else { for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { if (sc->sc_sessions[sesn].ses_used == 0) { ses = &sc->sc_sessions[sesn]; break; } } if (ses == NULL) { sesn = sc->sc_nsessions; ses = (struct ubsec_session *)malloc((sesn + 1) * sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT); if (ses == NULL) return (ENOMEM); bcopy(sc->sc_sessions, ses, sesn * sizeof(struct ubsec_session)); bzero(sc->sc_sessions, sesn * sizeof(struct ubsec_session)); free(sc->sc_sessions, M_DEVBUF); sc->sc_sessions = ses; ses = &sc->sc_sessions[sesn]; sc->sc_nsessions++; } } bzero(ses, sizeof(struct ubsec_session)); ses->ses_used = 1; if (encini) { /* get an IV, network byte order */ /* XXX may read fewer than requested */ read_random(ses->ses_iv, sizeof(ses->ses_iv)); if (encini->cri_key != NULL) { ubsec_setup_enckey(ses, encini->cri_alg, encini->cri_key); } } if (macini) { ses->ses_mlen = macini->cri_mlen; if (ses->ses_mlen == 0) { if (macini->cri_alg == CRYPTO_MD5_HMAC) ses->ses_mlen = MD5_HASH_LEN; else ses->ses_mlen = SHA1_HASH_LEN; } if (macini->cri_key != NULL) { ubsec_setup_mackey(ses, macini->cri_alg, macini->cri_key, macini->cri_klen / 8); } } *sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn); return (0); } /* * Deallocate a session. */ static int ubsec_freesession(device_t dev, u_int64_t tid) { struct ubsec_softc *sc = device_get_softc(dev); int session, ret; u_int32_t sid = CRYPTO_SESID2LID(tid); if (sc == NULL) return (EINVAL); session = UBSEC_SESSION(sid); if (session < sc->sc_nsessions) { bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session])); ret = 0; } else ret = EINVAL; return (ret); } static void ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error) { struct ubsec_operand *op = arg; KASSERT(nsegs <= UBS_MAX_SCATTER, ("Too many DMA segments returned when mapping operand")); #ifdef UBSEC_DEBUG if (ubsec_debug) printf("ubsec_op_cb: mapsize %u nsegs %d error %d\n", (u_int) mapsize, nsegs, error); #endif if (error != 0) return; op->mapsize = mapsize; op->nsegs = nsegs; bcopy(seg, op->segs, nsegs * sizeof (seg[0])); } static int ubsec_process(device_t dev, struct cryptop *crp, int hint) { struct ubsec_softc *sc = device_get_softc(dev); struct ubsec_q *q = NULL; int err = 0, i, j, nicealign; struct cryptodesc *crd1, *crd2, *maccrd, *enccrd; int encoffset = 0, macoffset = 0, cpskip, cpoffset; int sskip, dskip, stheend, dtheend; int16_t coffset; struct ubsec_session *ses; struct ubsec_pktctx ctx; struct ubsec_dma *dmap = NULL; if (crp == NULL || crp->crp_callback == NULL || sc == NULL) { ubsecstats.hst_invalid++; return (EINVAL); } if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) { ubsecstats.hst_badsession++; return (EINVAL); } mtx_lock(&sc->sc_freeqlock); if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) { ubsecstats.hst_queuefull++; sc->sc_needwakeup |= CRYPTO_SYMQ; mtx_unlock(&sc->sc_freeqlock); return (ERESTART); } q = SIMPLEQ_FIRST(&sc->sc_freequeue); SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next); mtx_unlock(&sc->sc_freeqlock); dmap = q->q_dma; /* Save dma pointer */ bzero(q, sizeof(struct ubsec_q)); bzero(&ctx, sizeof(ctx)); q->q_sesn = UBSEC_SESSION(crp->crp_sid); q->q_dma = dmap; ses = &sc->sc_sessions[q->q_sesn]; if (crp->crp_flags & CRYPTO_F_IMBUF) { q->q_src_m = (struct mbuf *)crp->crp_buf; q->q_dst_m = (struct mbuf *)crp->crp_buf; } else if (crp->crp_flags & CRYPTO_F_IOV) { q->q_src_io = (struct uio *)crp->crp_buf; q->q_dst_io = (struct uio *)crp->crp_buf; } else { ubsecstats.hst_badflags++; err = EINVAL; goto errout; /* XXX we don't handle contiguous blocks! */ } bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr)); dmap->d_dma->d_mcr.mcr_pkts = htole16(1); dmap->d_dma->d_mcr.mcr_flags = 0; q->q_crp = crp; crd1 = crp->crp_desc; if (crd1 == NULL) { ubsecstats.hst_nodesc++; err = EINVAL; goto errout; } crd2 = crd1->crd_next; if (crd2 == NULL) { if (crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC) { maccrd = crd1; enccrd = NULL; } else if (crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC) { maccrd = NULL; enccrd = crd1; } else { ubsecstats.hst_badalg++; err = EINVAL; goto errout; } } else { if ((crd1->crd_alg == CRYPTO_MD5_HMAC || crd1->crd_alg == CRYPTO_SHA1_HMAC) && (crd2->crd_alg == CRYPTO_DES_CBC || crd2->crd_alg == CRYPTO_3DES_CBC) && ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) { maccrd = crd1; enccrd = crd2; } else if ((crd1->crd_alg == CRYPTO_DES_CBC || crd1->crd_alg == CRYPTO_3DES_CBC) && (crd2->crd_alg == CRYPTO_MD5_HMAC || crd2->crd_alg == CRYPTO_SHA1_HMAC) && (crd1->crd_flags & CRD_F_ENCRYPT)) { enccrd = crd1; maccrd = crd2; } else { /* * We cannot order the ubsec as requested */ ubsecstats.hst_badalg++; err = EINVAL; goto errout; } } if (enccrd) { if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) { ubsec_setup_enckey(ses, enccrd->crd_alg, enccrd->crd_key); } encoffset = enccrd->crd_skip; ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES); if (enccrd->crd_flags & CRD_F_ENCRYPT) { q->q_flags |= UBSEC_QFLAGS_COPYOUTIV; if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, ctx.pc_iv, 8); else { ctx.pc_iv[0] = ses->ses_iv[0]; ctx.pc_iv[1] = ses->ses_iv[1]; } if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) { crypto_copyback(crp->crp_flags, crp->crp_buf, enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv); } } else { ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND); if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(enccrd->crd_iv, ctx.pc_iv, 8); else { crypto_copydata(crp->crp_flags, crp->crp_buf, enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv); } } ctx.pc_deskey[0] = ses->ses_deskey[0]; ctx.pc_deskey[1] = ses->ses_deskey[1]; ctx.pc_deskey[2] = ses->ses_deskey[2]; ctx.pc_deskey[3] = ses->ses_deskey[3]; ctx.pc_deskey[4] = ses->ses_deskey[4]; ctx.pc_deskey[5] = ses->ses_deskey[5]; SWAP32(ctx.pc_iv[0]); SWAP32(ctx.pc_iv[1]); } if (maccrd) { if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) { ubsec_setup_mackey(ses, maccrd->crd_alg, maccrd->crd_key, maccrd->crd_klen / 8); } macoffset = maccrd->crd_skip; if (maccrd->crd_alg == CRYPTO_MD5_HMAC) ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5); else ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1); for (i = 0; i < 5; i++) { ctx.pc_hminner[i] = ses->ses_hminner[i]; ctx.pc_hmouter[i] = ses->ses_hmouter[i]; HTOLE32(ctx.pc_hminner[i]); HTOLE32(ctx.pc_hmouter[i]); } } if (enccrd && maccrd) { /* * ubsec cannot handle packets where the end of encryption * and authentication are not the same, or where the * encrypted part begins before the authenticated part. */ if ((encoffset + enccrd->crd_len) != (macoffset + maccrd->crd_len)) { ubsecstats.hst_lenmismatch++; err = EINVAL; goto errout; } if (enccrd->crd_skip < maccrd->crd_skip) { ubsecstats.hst_skipmismatch++; err = EINVAL; goto errout; } sskip = maccrd->crd_skip; cpskip = dskip = enccrd->crd_skip; stheend = maccrd->crd_len; dtheend = enccrd->crd_len; coffset = enccrd->crd_skip - maccrd->crd_skip; cpoffset = cpskip + dtheend; #ifdef UBSEC_DEBUG if (ubsec_debug) { printf("mac: skip %d, len %d, inject %d\n", maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject); printf("enc: skip %d, len %d, inject %d\n", enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject); printf("src: skip %d, len %d\n", sskip, stheend); printf("dst: skip %d, len %d\n", dskip, dtheend); printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n", coffset, stheend, cpskip, cpoffset); } #endif } else { cpskip = dskip = sskip = macoffset + encoffset; dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len; cpoffset = cpskip + dtheend; coffset = 0; } ctx.pc_offset = htole16(coffset >> 2); if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) { ubsecstats.hst_nomap++; err = ENOMEM; goto errout; } if (crp->crp_flags & CRYPTO_F_IMBUF) { if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map, q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); q->q_src_map = NULL; ubsecstats.hst_noload++; err = ENOMEM; goto errout; } } else if (crp->crp_flags & CRYPTO_F_IOV) { if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map, q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); q->q_src_map = NULL; ubsecstats.hst_noload++; err = ENOMEM; goto errout; } } nicealign = ubsec_dmamap_aligned(&q->q_src); dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend); #ifdef UBSEC_DEBUG if (ubsec_debug) printf("src skip: %d nicealign: %u\n", sskip, nicealign); #endif for (i = j = 0; i < q->q_src_nsegs; i++) { struct ubsec_pktbuf *pb; bus_size_t packl = q->q_src_segs[i].ds_len; bus_addr_t packp = q->q_src_segs[i].ds_addr; if (sskip >= packl) { sskip -= packl; continue; } packl -= sskip; packp += sskip; sskip = 0; if (packl > 0xfffc) { err = EIO; goto errout; } if (j == 0) pb = &dmap->d_dma->d_mcr.mcr_ipktbuf; else pb = &dmap->d_dma->d_sbuf[j - 1]; pb->pb_addr = htole32(packp); if (stheend) { if (packl > stheend) { pb->pb_len = htole32(stheend); stheend = 0; } else { pb->pb_len = htole32(packl); stheend -= packl; } } else pb->pb_len = htole32(packl); if ((i + 1) == q->q_src_nsegs) pb->pb_next = 0; else pb->pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_sbuf[j])); j++; } if (enccrd == NULL && maccrd != NULL) { dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0; dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0; dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_macbuf[0])); #ifdef UBSEC_DEBUG if (ubsec_debug) printf("opkt: %x %x %x\n", dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr, dmap->d_dma->d_mcr.mcr_opktbuf.pb_len, dmap->d_dma->d_mcr.mcr_opktbuf.pb_next); #endif } else { if (crp->crp_flags & CRYPTO_F_IOV) { if (!nicealign) { ubsecstats.hst_iovmisaligned++; err = EINVAL; goto errout; } if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_dst_map)) { ubsecstats.hst_nomap++; err = ENOMEM; goto errout; } if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map, q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); q->q_dst_map = NULL; ubsecstats.hst_noload++; err = ENOMEM; goto errout; } } else if (crp->crp_flags & CRYPTO_F_IMBUF) { if (nicealign) { q->q_dst = q->q_src; } else { int totlen, len; struct mbuf *m, *top, **mp; ubsecstats.hst_unaligned++; totlen = q->q_src_mapsize; if (totlen >= MINCLSIZE) { m = m_getcl(M_DONTWAIT, MT_DATA, q->q_src_m->m_flags & M_PKTHDR); len = MCLBYTES; } else if (q->q_src_m->m_flags & M_PKTHDR) { m = m_gethdr(M_DONTWAIT, MT_DATA); len = MHLEN; } else { m = m_get(M_DONTWAIT, MT_DATA); len = MLEN; } if (m && q->q_src_m->m_flags & M_PKTHDR && !m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)) { m_free(m); m = NULL; } if (m == NULL) { ubsecstats.hst_nombuf++; err = sc->sc_nqueue ? ERESTART : ENOMEM; goto errout; } m->m_len = len = min(totlen, len); totlen -= len; top = m; mp = ⊤ while (totlen > 0) { if (totlen >= MINCLSIZE) { m = m_getcl(M_DONTWAIT, MT_DATA, 0); len = MCLBYTES; } else { m = m_get(M_DONTWAIT, MT_DATA); len = MLEN; } if (m == NULL) { m_freem(top); ubsecstats.hst_nombuf++; err = sc->sc_nqueue ? ERESTART : ENOMEM; goto errout; } m->m_len = len = min(totlen, len); totlen -= len; *mp = m; mp = &m->m_next; } q->q_dst_m = top; ubsec_mcopy(q->q_src_m, q->q_dst_m, cpskip, cpoffset); if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_dst_map) != 0) { ubsecstats.hst_nomap++; err = ENOMEM; goto errout; } if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_dst_map, q->q_dst_m, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) { bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); q->q_dst_map = NULL; ubsecstats.hst_noload++; err = ENOMEM; goto errout; } } } else { ubsecstats.hst_badflags++; err = EINVAL; goto errout; } #ifdef UBSEC_DEBUG if (ubsec_debug) printf("dst skip: %d\n", dskip); #endif for (i = j = 0; i < q->q_dst_nsegs; i++) { struct ubsec_pktbuf *pb; bus_size_t packl = q->q_dst_segs[i].ds_len; bus_addr_t packp = q->q_dst_segs[i].ds_addr; if (dskip >= packl) { dskip -= packl; continue; } packl -= dskip; packp += dskip; dskip = 0; if (packl > 0xfffc) { err = EIO; goto errout; } if (j == 0) pb = &dmap->d_dma->d_mcr.mcr_opktbuf; else pb = &dmap->d_dma->d_dbuf[j - 1]; pb->pb_addr = htole32(packp); if (dtheend) { if (packl > dtheend) { pb->pb_len = htole32(dtheend); dtheend = 0; } else { pb->pb_len = htole32(packl); dtheend -= packl; } } else pb->pb_len = htole32(packl); if ((i + 1) == q->q_dst_nsegs) { if (maccrd) pb->pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_macbuf[0])); else pb->pb_next = 0; } else pb->pb_next = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_dbuf[j])); j++; } } dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr + offsetof(struct ubsec_dmachunk, d_ctx)); if (sc->sc_flags & UBS_FLAGS_LONGCTX) { struct ubsec_pktctx_long *ctxl; ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr + offsetof(struct ubsec_dmachunk, d_ctx)); /* transform small context into long context */ ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long)); ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC); ctxl->pc_flags = ctx.pc_flags; ctxl->pc_offset = ctx.pc_offset; for (i = 0; i < 6; i++) ctxl->pc_deskey[i] = ctx.pc_deskey[i]; for (i = 0; i < 5; i++) ctxl->pc_hminner[i] = ctx.pc_hminner[i]; for (i = 0; i < 5; i++) ctxl->pc_hmouter[i] = ctx.pc_hmouter[i]; ctxl->pc_iv[0] = ctx.pc_iv[0]; ctxl->pc_iv[1] = ctx.pc_iv[1]; } else bcopy(&ctx, dmap->d_alloc.dma_vaddr + offsetof(struct ubsec_dmachunk, d_ctx), sizeof(struct ubsec_pktctx)); mtx_lock(&sc->sc_mcr1lock); SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next); sc->sc_nqueue++; ubsecstats.hst_ipackets++; ubsecstats.hst_ibytes += dmap->d_alloc.dma_size; if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR) ubsec_feed(sc); mtx_unlock(&sc->sc_mcr1lock); return (0); errout: if (q != NULL) { if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) m_freem(q->q_dst_m); if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); } if (q->q_src_map != NULL) { bus_dmamap_unload(sc->sc_dmat, q->q_src_map); bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); } } if (q != NULL || err == ERESTART) { mtx_lock(&sc->sc_freeqlock); if (q != NULL) SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); if (err == ERESTART) sc->sc_needwakeup |= CRYPTO_SYMQ; mtx_unlock(&sc->sc_freeqlock); } if (err != ERESTART) { crp->crp_etype = err; crypto_done(crp); } return (err); } static void ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q) { struct cryptop *crp = (struct cryptop *)q->q_crp; struct cryptodesc *crd; struct ubsec_dma *dmap = q->q_dma; ubsecstats.hst_opackets++; ubsecstats.hst_obytes += dmap->d_alloc.dma_size; ubsec_dma_sync(&dmap->d_alloc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) { bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, q->q_dst_map); bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map); } bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, q->q_src_map); bus_dmamap_destroy(sc->sc_dmat, q->q_src_map); if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) { m_freem(q->q_src_m); crp->crp_buf = (caddr_t)q->q_dst_m; } /* copy out IV for future use */ if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) { for (crd = crp->crp_desc; crd; crd = crd->crd_next) { if (crd->crd_alg != CRYPTO_DES_CBC && crd->crd_alg != CRYPTO_3DES_CBC) continue; crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip + crd->crd_len - 8, 8, (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv); break; } } for (crd = crp->crp_desc; crd; crd = crd->crd_next) { if (crd->crd_alg != CRYPTO_MD5_HMAC && crd->crd_alg != CRYPTO_SHA1_HMAC) continue; crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, sc->sc_sessions[q->q_sesn].ses_mlen, (caddr_t)dmap->d_dma->d_macbuf); break; } mtx_lock(&sc->sc_freeqlock); SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); mtx_unlock(&sc->sc_freeqlock); crypto_done(crp); } static void ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset) { int i, j, dlen, slen; caddr_t dptr, sptr; j = 0; sptr = srcm->m_data; slen = srcm->m_len; dptr = dstm->m_data; dlen = dstm->m_len; while (1) { for (i = 0; i < min(slen, dlen); i++) { if (j < hoffset || j >= toffset) *dptr++ = *sptr++; slen--; dlen--; j++; } if (slen == 0) { srcm = srcm->m_next; if (srcm == NULL) return; sptr = srcm->m_data; slen = srcm->m_len; } if (dlen == 0) { dstm = dstm->m_next; if (dstm == NULL) return; dptr = dstm->m_data; dlen = dstm->m_len; } } } /* * feed the key generator, must be called at splimp() or higher. */ static int ubsec_feed2(struct ubsec_softc *sc) { struct ubsec_q2 *q; while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) { if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL) break; q = SIMPLEQ_FIRST(&sc->sc_queue2); ubsec_dma_sync(&q->q_mcr, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE); WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr); SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next); --sc->sc_nqueue2; SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next); } return (0); } /* * Callback for handling random numbers */ static void ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q) { struct cryptkop *krp; struct ubsec_ctx_keyop *ctx; ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr; ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE); switch (q->q_type) { #ifndef UBSEC_NO_RNG case UBS_CTXOP_RNGBYPASS: { struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q; ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD); (*sc->sc_harvest)(sc->sc_rndtest, rng->rng_buf.dma_vaddr, UBSEC_RNG_BUFSIZ*sizeof (u_int32_t)); rng->rng_used = 0; callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc); break; } #endif case UBS_CTXOP_MODEXP: { struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q; u_int rlen, clen; krp = me->me_krp; rlen = (me->me_modbits + 7) / 8; clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8; ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE); ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE); ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD); ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE); if (clen < rlen) krp->krp_status = E2BIG; else { if (sc->sc_flags & UBS_FLAGS_HWNORM) { bzero(krp->krp_param[krp->krp_iparams].crp_p, (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8); bcopy(me->me_C.dma_vaddr, krp->krp_param[krp->krp_iparams].crp_p, (me->me_modbits + 7) / 8); } else ubsec_kshift_l(me->me_shiftbits, me->me_C.dma_vaddr, me->me_normbits, krp->krp_param[krp->krp_iparams].crp_p, krp->krp_param[krp->krp_iparams].crp_nbits); } crypto_kdone(krp); /* bzero all potentially sensitive data */ bzero(me->me_E.dma_vaddr, me->me_E.dma_size); bzero(me->me_M.dma_vaddr, me->me_M.dma_size); bzero(me->me_C.dma_vaddr, me->me_C.dma_size); bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size); /* Can't free here, so put us on the free list. */ SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next); break; } case UBS_CTXOP_RSAPRIV: { struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q; u_int len; krp = rp->rpr_krp; ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE); ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD); len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8; bcopy(rp->rpr_msgout.dma_vaddr, krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len); crypto_kdone(krp); bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size); bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size); bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size); /* Can't free here, so put us on the free list. */ SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next); break; } default: device_printf(sc->sc_dev, "unknown ctx op: %x\n", letoh16(ctx->ctx_op)); break; } } #ifndef UBSEC_NO_RNG static void ubsec_rng(void *vsc) { struct ubsec_softc *sc = vsc; struct ubsec_q2_rng *rng = &sc->sc_rng; struct ubsec_mcr *mcr; struct ubsec_ctx_rngbypass *ctx; mtx_lock(&sc->sc_mcr2lock); if (rng->rng_used) { mtx_unlock(&sc->sc_mcr2lock); return; } sc->sc_nqueue2++; if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE) goto out; mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr; ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr; mcr->mcr_pkts = htole16(1); mcr->mcr_flags = 0; mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr); mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0; mcr->mcr_ipktbuf.pb_len = 0; mcr->mcr_reserved = mcr->mcr_pktlen = 0; mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr); mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) & UBS_PKTBUF_LEN); mcr->mcr_opktbuf.pb_next = 0; ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass)); ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS); rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS; ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD); SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next); rng->rng_used = 1; ubsec_feed2(sc); ubsecstats.hst_rng++; mtx_unlock(&sc->sc_mcr2lock); return; out: /* * Something weird happened, generate our own call back. */ sc->sc_nqueue2--; mtx_unlock(&sc->sc_mcr2lock); callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc); } #endif /* UBSEC_NO_RNG */ static void ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *paddr = (bus_addr_t*) arg; *paddr = segs->ds_addr; } static int ubsec_dma_malloc( struct ubsec_softc *sc, bus_size_t size, struct ubsec_dma_alloc *dma, int mapflags ) { int r; /* XXX could specify sc_dmat as parent but that just adds overhead */ r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ size, /* maxsize */ 1, /* nsegments */ size, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &dma->dma_tag); if (r != 0) { device_printf(sc->sc_dev, "ubsec_dma_malloc: " "bus_dma_tag_create failed; error %u\n", r); goto fail_0; } r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map); if (r != 0) { device_printf(sc->sc_dev, "ubsec_dma_malloc: " "bus_dmamap_create failed; error %u\n", r); goto fail_1; } r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr, BUS_DMA_NOWAIT, &dma->dma_map); if (r != 0) { device_printf(sc->sc_dev, "ubsec_dma_malloc: " "bus_dmammem_alloc failed; size %ju, error %u\n", (intmax_t)size, r); goto fail_2; } r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size, ubsec_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT); if (r != 0) { device_printf(sc->sc_dev, "ubsec_dma_malloc: " "bus_dmamap_load failed; error %u\n", r); goto fail_3; } dma->dma_size = size; return (0); fail_3: bus_dmamap_unload(dma->dma_tag, dma->dma_map); fail_2: bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); fail_1: bus_dmamap_destroy(dma->dma_tag, dma->dma_map); bus_dma_tag_destroy(dma->dma_tag); fail_0: dma->dma_map = NULL; dma->dma_tag = NULL; return (r); } static void ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma) { bus_dmamap_unload(dma->dma_tag, dma->dma_map); bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); bus_dmamap_destroy(dma->dma_tag, dma->dma_map); bus_dma_tag_destroy(dma->dma_tag); } /* * Resets the board. Values in the regesters are left as is * from the reset (i.e. initial values are assigned elsewhere). */ static void ubsec_reset_board(struct ubsec_softc *sc) { volatile u_int32_t ctrl; ctrl = READ_REG(sc, BS_CTRL); ctrl |= BS_CTRL_RESET; WRITE_REG(sc, BS_CTRL, ctrl); /* * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us */ DELAY(10); } /* * Init Broadcom registers */ static void ubsec_init_board(struct ubsec_softc *sc) { u_int32_t ctrl; ctrl = READ_REG(sc, BS_CTRL); ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64); ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT; if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) ctrl |= BS_CTRL_MCR2INT; else ctrl &= ~BS_CTRL_MCR2INT; if (sc->sc_flags & UBS_FLAGS_HWNORM) ctrl &= ~BS_CTRL_SWNORM; WRITE_REG(sc, BS_CTRL, ctrl); } /* * Init Broadcom PCI registers */ static void ubsec_init_pciregs(device_t dev) { #if 0 u_int32_t misc; misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT); misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT)) | ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT); misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT)) | ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT); pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc); #endif /* * This will set the cache line size to 1, this will * force the BCM58xx chip just to do burst read/writes. * Cache line read/writes are to slow */ pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1); } /* * Clean up after a chip crash. * It is assumed that the caller in splimp() */ static void ubsec_cleanchip(struct ubsec_softc *sc) { struct ubsec_q *q; while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) { q = SIMPLEQ_FIRST(&sc->sc_qchip); SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next); ubsec_free_q(sc, q); } sc->sc_nqchip = 0; } /* * free a ubsec_q * It is assumed that the caller is within splimp(). */ static int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q) { struct ubsec_q *q2; struct cryptop *crp; int npkts; int i; npkts = q->q_nstacked_mcrs; for (i = 0; i < npkts; i++) { if(q->q_stacked_mcr[i]) { q2 = q->q_stacked_mcr[i]; if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m)) m_freem(q2->q_dst_m); crp = (struct cryptop *)q2->q_crp; SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next); crp->crp_etype = EFAULT; crypto_done(crp); } else { break; } } /* * Free header MCR */ if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m)) m_freem(q->q_dst_m); crp = (struct cryptop *)q->q_crp; SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next); crp->crp_etype = EFAULT; crypto_done(crp); return(0); } /* * Routine to reset the chip and clean up. * It is assumed that the caller is in splimp() */ static void ubsec_totalreset(struct ubsec_softc *sc) { ubsec_reset_board(sc); ubsec_init_board(sc); ubsec_cleanchip(sc); } static int ubsec_dmamap_aligned(struct ubsec_operand *op) { int i; for (i = 0; i < op->nsegs; i++) { if (op->segs[i].ds_addr & 3) return (0); if ((i != (op->nsegs - 1)) && (op->segs[i].ds_len & 3)) return (0); } return (1); } static void ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q) { switch (q->q_type) { case UBS_CTXOP_MODEXP: { struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q; ubsec_dma_free(sc, &me->me_q.q_mcr); ubsec_dma_free(sc, &me->me_q.q_ctx); ubsec_dma_free(sc, &me->me_M); ubsec_dma_free(sc, &me->me_E); ubsec_dma_free(sc, &me->me_C); ubsec_dma_free(sc, &me->me_epb); free(me, M_DEVBUF); break; } case UBS_CTXOP_RSAPRIV: { struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q; ubsec_dma_free(sc, &rp->rpr_q.q_mcr); ubsec_dma_free(sc, &rp->rpr_q.q_ctx); ubsec_dma_free(sc, &rp->rpr_msgin); ubsec_dma_free(sc, &rp->rpr_msgout); free(rp, M_DEVBUF); break; } default: device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type); break; } } static int ubsec_kprocess(device_t dev, struct cryptkop *krp, int hint) { struct ubsec_softc *sc = device_get_softc(dev); int r; if (krp == NULL || krp->krp_callback == NULL) return (EINVAL); while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) { struct ubsec_q2 *q; q = SIMPLEQ_FIRST(&sc->sc_q2free); SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next); ubsec_kfree(sc, q); } switch (krp->krp_op) { case CRK_MOD_EXP: if (sc->sc_flags & UBS_FLAGS_HWNORM) r = ubsec_kprocess_modexp_hw(sc, krp, hint); else r = ubsec_kprocess_modexp_sw(sc, krp, hint); break; case CRK_MOD_EXP_CRT: return (ubsec_kprocess_rsapriv(sc, krp, hint)); default: device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n", krp->krp_op); krp->krp_status = EOPNOTSUPP; crypto_kdone(krp); return (0); } return (0); /* silence compiler */ } /* * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization) */ static int ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint) { struct ubsec_q2_modexp *me; struct ubsec_mcr *mcr; struct ubsec_ctx_modexp *ctx; struct ubsec_pktbuf *epb; int err = 0; u_int nbits, normbits, mbits, shiftbits, ebits; me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT); if (me == NULL) { err = ENOMEM; goto errout; } bzero(me, sizeof *me); me->me_krp = krp; me->me_q.q_type = UBS_CTXOP_MODEXP; nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]); if (nbits <= 512) normbits = 512; else if (nbits <= 768) normbits = 768; else if (nbits <= 1024) normbits = 1024; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536) normbits = 1536; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048) normbits = 2048; else { err = E2BIG; goto errout; } shiftbits = normbits - nbits; me->me_modbits = nbits; me->me_shiftbits = shiftbits; me->me_normbits = normbits; /* Sanity check: result bits must be >= true modulus bits. */ if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) { err = ERANGE; goto errout; } if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &me->me_q.q_mcr, 0)) { err = ENOMEM; goto errout; } mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp), &me->me_q.q_ctx, 0)) { err = ENOMEM; goto errout; } mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]); if (mbits > nbits) { err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) { err = ENOMEM; goto errout; } ubsec_kshift_r(shiftbits, krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits, me->me_M.dma_vaddr, normbits); if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) { err = ENOMEM; goto errout; } bzero(me->me_C.dma_vaddr, me->me_C.dma_size); ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]); if (ebits > nbits) { err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) { err = ENOMEM; goto errout; } ubsec_kshift_r(shiftbits, krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits, me->me_E.dma_vaddr, normbits); if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf), &me->me_epb, 0)) { err = ENOMEM; goto errout; } epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr; epb->pb_addr = htole32(me->me_E.dma_paddr); epb->pb_next = 0; epb->pb_len = htole32(normbits / 8); #ifdef UBSEC_DEBUG if (ubsec_debug) { printf("Epb "); ubsec_dump_pb(epb); } #endif mcr->mcr_pkts = htole16(1); mcr->mcr_flags = 0; mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr); mcr->mcr_reserved = 0; mcr->mcr_pktlen = 0; mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr); mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8); mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr); mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr); mcr->mcr_opktbuf.pb_next = 0; mcr->mcr_opktbuf.pb_len = htole32(normbits / 8); #ifdef DIAGNOSTIC /* Misaligned output buffer will hang the chip. */ if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0) panic("%s: modexp invalid addr 0x%x\n", device_get_nameunit(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr)); if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0) panic("%s: modexp invalid len 0x%x\n", device_get_nameunit(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len)); #endif ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr; bzero(ctx, sizeof(*ctx)); ubsec_kshift_r(shiftbits, krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits, ctx->me_N, normbits); ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t))); ctx->me_op = htole16(UBS_CTXOP_MODEXP); ctx->me_E_len = htole16(nbits); ctx->me_N_len = htole16(nbits); #ifdef UBSEC_DEBUG if (ubsec_debug) { ubsec_dump_mcr(mcr); ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx); } #endif /* * ubsec_feed2 will sync mcr and ctx, we just need to sync * everything else. */ ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE); ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE); ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD); ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE); /* Enqueue and we're done... */ mtx_lock(&sc->sc_mcr2lock); SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next); ubsec_feed2(sc); ubsecstats.hst_modexp++; mtx_unlock(&sc->sc_mcr2lock); return (0); errout: if (me != NULL) { if (me->me_q.q_mcr.dma_map != NULL) ubsec_dma_free(sc, &me->me_q.q_mcr); if (me->me_q.q_ctx.dma_map != NULL) { bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size); ubsec_dma_free(sc, &me->me_q.q_ctx); } if (me->me_M.dma_map != NULL) { bzero(me->me_M.dma_vaddr, me->me_M.dma_size); ubsec_dma_free(sc, &me->me_M); } if (me->me_E.dma_map != NULL) { bzero(me->me_E.dma_vaddr, me->me_E.dma_size); ubsec_dma_free(sc, &me->me_E); } if (me->me_C.dma_map != NULL) { bzero(me->me_C.dma_vaddr, me->me_C.dma_size); ubsec_dma_free(sc, &me->me_C); } if (me->me_epb.dma_map != NULL) ubsec_dma_free(sc, &me->me_epb); free(me, M_DEVBUF); } krp->krp_status = err; crypto_kdone(krp); return (0); } /* * Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization) */ static int ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint) { struct ubsec_q2_modexp *me; struct ubsec_mcr *mcr; struct ubsec_ctx_modexp *ctx; struct ubsec_pktbuf *epb; int err = 0; u_int nbits, normbits, mbits, shiftbits, ebits; me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT); if (me == NULL) { err = ENOMEM; goto errout; } bzero(me, sizeof *me); me->me_krp = krp; me->me_q.q_type = UBS_CTXOP_MODEXP; nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]); if (nbits <= 512) normbits = 512; else if (nbits <= 768) normbits = 768; else if (nbits <= 1024) normbits = 1024; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536) normbits = 1536; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048) normbits = 2048; else { err = E2BIG; goto errout; } shiftbits = normbits - nbits; /* XXX ??? */ me->me_modbits = nbits; me->me_shiftbits = shiftbits; me->me_normbits = normbits; /* Sanity check: result bits must be >= true modulus bits. */ if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) { err = ERANGE; goto errout; } if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &me->me_q.q_mcr, 0)) { err = ENOMEM; goto errout; } mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp), &me->me_q.q_ctx, 0)) { err = ENOMEM; goto errout; } mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]); if (mbits > nbits) { err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) { err = ENOMEM; goto errout; } bzero(me->me_M.dma_vaddr, normbits / 8); bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p, me->me_M.dma_vaddr, (mbits + 7) / 8); if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) { err = ENOMEM; goto errout; } bzero(me->me_C.dma_vaddr, me->me_C.dma_size); ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]); if (ebits > nbits) { err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) { err = ENOMEM; goto errout; } bzero(me->me_E.dma_vaddr, normbits / 8); bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p, me->me_E.dma_vaddr, (ebits + 7) / 8); if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf), &me->me_epb, 0)) { err = ENOMEM; goto errout; } epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr; epb->pb_addr = htole32(me->me_E.dma_paddr); epb->pb_next = 0; epb->pb_len = htole32((ebits + 7) / 8); #ifdef UBSEC_DEBUG if (ubsec_debug) { printf("Epb "); ubsec_dump_pb(epb); } #endif mcr->mcr_pkts = htole16(1); mcr->mcr_flags = 0; mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr); mcr->mcr_reserved = 0; mcr->mcr_pktlen = 0; mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr); mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8); mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr); mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr); mcr->mcr_opktbuf.pb_next = 0; mcr->mcr_opktbuf.pb_len = htole32(normbits / 8); #ifdef DIAGNOSTIC /* Misaligned output buffer will hang the chip. */ if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0) panic("%s: modexp invalid addr 0x%x\n", device_get_nameunit(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_addr)); if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0) panic("%s: modexp invalid len 0x%x\n", device_get_nameunit(sc->sc_dev), letoh32(mcr->mcr_opktbuf.pb_len)); #endif ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr; bzero(ctx, sizeof(*ctx)); bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N, (nbits + 7) / 8); ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t))); ctx->me_op = htole16(UBS_CTXOP_MODEXP); ctx->me_E_len = htole16(ebits); ctx->me_N_len = htole16(nbits); #ifdef UBSEC_DEBUG if (ubsec_debug) { ubsec_dump_mcr(mcr); ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx); } #endif /* * ubsec_feed2 will sync mcr and ctx, we just need to sync * everything else. */ ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE); ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE); ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD); ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE); /* Enqueue and we're done... */ mtx_lock(&sc->sc_mcr2lock); SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next); ubsec_feed2(sc); mtx_unlock(&sc->sc_mcr2lock); return (0); errout: if (me != NULL) { if (me->me_q.q_mcr.dma_map != NULL) ubsec_dma_free(sc, &me->me_q.q_mcr); if (me->me_q.q_ctx.dma_map != NULL) { bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size); ubsec_dma_free(sc, &me->me_q.q_ctx); } if (me->me_M.dma_map != NULL) { bzero(me->me_M.dma_vaddr, me->me_M.dma_size); ubsec_dma_free(sc, &me->me_M); } if (me->me_E.dma_map != NULL) { bzero(me->me_E.dma_vaddr, me->me_E.dma_size); ubsec_dma_free(sc, &me->me_E); } if (me->me_C.dma_map != NULL) { bzero(me->me_C.dma_vaddr, me->me_C.dma_size); ubsec_dma_free(sc, &me->me_C); } if (me->me_epb.dma_map != NULL) ubsec_dma_free(sc, &me->me_epb); free(me, M_DEVBUF); } krp->krp_status = err; crypto_kdone(krp); return (0); } static int ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint) { struct ubsec_q2_rsapriv *rp = NULL; struct ubsec_mcr *mcr; struct ubsec_ctx_rsapriv *ctx; int err = 0; u_int padlen, msglen; msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]); padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]); if (msglen > padlen) padlen = msglen; if (padlen <= 256) padlen = 256; else if (padlen <= 384) padlen = 384; else if (padlen <= 512) padlen = 512; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768) padlen = 768; else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024) padlen = 1024; else { err = E2BIG; goto errout; } if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) { err = E2BIG; goto errout; } if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) { err = E2BIG; goto errout; } if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) { err = E2BIG; goto errout; } rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT); if (rp == NULL) return (ENOMEM); bzero(rp, sizeof *rp); rp->rpr_krp = krp; rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr), &rp->rpr_q.q_mcr, 0)) { err = ENOMEM; goto errout; } mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr; if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv), &rp->rpr_q.q_ctx, 0)) { err = ENOMEM; goto errout; } ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr; bzero(ctx, sizeof *ctx); /* Copy in p */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p, &ctx->rpr_buf[0 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8); /* Copy in q */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p, &ctx->rpr_buf[1 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8); /* Copy in dp */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p, &ctx->rpr_buf[2 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8); /* Copy in dq */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p, &ctx->rpr_buf[3 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8); /* Copy in pinv */ bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p, &ctx->rpr_buf[4 * (padlen / 8)], (krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8); msglen = padlen * 2; /* Copy in input message (aligned buffer/length). */ if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) { /* Is this likely? */ err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) { err = ENOMEM; goto errout; } bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8); bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p, rp->rpr_msgin.dma_vaddr, (krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8); /* Prepare space for output message (aligned buffer/length). */ if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) { /* Is this likely? */ err = E2BIG; goto errout; } if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) { err = ENOMEM; goto errout; } bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8); mcr->mcr_pkts = htole16(1); mcr->mcr_flags = 0; mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr); mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr); mcr->mcr_ipktbuf.pb_next = 0; mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size); mcr->mcr_reserved = 0; mcr->mcr_pktlen = htole16(msglen); mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr); mcr->mcr_opktbuf.pb_next = 0; mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size); #ifdef DIAGNOSTIC if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) { panic("%s: rsapriv: invalid msgin %x(0x%jx)", device_get_nameunit(sc->sc_dev), rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size); } if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) { panic("%s: rsapriv: invalid msgout %x(0x%jx)", device_get_nameunit(sc->sc_dev), rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size); } #endif ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8)); ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV); ctx->rpr_q_len = htole16(padlen); ctx->rpr_p_len = htole16(padlen); /* * ubsec_feed2 will sync mcr and ctx, we just need to sync * everything else. */ ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE); ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD); /* Enqueue and we're done... */ mtx_lock(&sc->sc_mcr2lock); SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next); ubsec_feed2(sc); ubsecstats.hst_modexpcrt++; mtx_unlock(&sc->sc_mcr2lock); return (0); errout: if (rp != NULL) { if (rp->rpr_q.q_mcr.dma_map != NULL) ubsec_dma_free(sc, &rp->rpr_q.q_mcr); if (rp->rpr_msgin.dma_map != NULL) { bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size); ubsec_dma_free(sc, &rp->rpr_msgin); } if (rp->rpr_msgout.dma_map != NULL) { bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size); ubsec_dma_free(sc, &rp->rpr_msgout); } free(rp, M_DEVBUF); } krp->krp_status = err; crypto_kdone(krp); return (0); } #ifdef UBSEC_DEBUG static void ubsec_dump_pb(volatile struct ubsec_pktbuf *pb) { printf("addr 0x%x (0x%x) next 0x%x\n", pb->pb_addr, pb->pb_len, pb->pb_next); } static void ubsec_dump_ctx2(struct ubsec_ctx_keyop *c) { printf("CTX (0x%x):\n", c->ctx_len); switch (letoh16(c->ctx_op)) { case UBS_CTXOP_RNGBYPASS: case UBS_CTXOP_RNGSHA1: break; case UBS_CTXOP_MODEXP: { struct ubsec_ctx_modexp *cx = (void *)c; int i, len; printf(" Elen %u, Nlen %u\n", letoh16(cx->me_E_len), letoh16(cx->me_N_len)); len = (cx->me_N_len + 7)/8; for (i = 0; i < len; i++) printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]); printf("\n"); break; } default: printf("unknown context: %x\n", c->ctx_op); } printf("END CTX\n"); } static void ubsec_dump_mcr(struct ubsec_mcr *mcr) { volatile struct ubsec_mcr_add *ma; int i; printf("MCR:\n"); printf(" pkts: %u, flags 0x%x\n", letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags)); ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp; for (i = 0; i < letoh16(mcr->mcr_pkts); i++) { printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i, letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen), letoh16(ma->mcr_reserved)); printf(" %d: ipkt ", i); ubsec_dump_pb(&ma->mcr_ipktbuf); printf(" %d: opkt ", i); ubsec_dump_pb(&ma->mcr_opktbuf); ma++; } printf("END MCR\n"); } #endif /* UBSEC_DEBUG */ /* * Return the number of significant bits of a big number. */ static int ubsec_ksigbits(struct crparam *cr) { u_int plen = (cr->crp_nbits + 7) / 8; int i, sig = plen * 8; u_int8_t c, *p = cr->crp_p; for (i = plen - 1; i >= 0; i--) { c = p[i]; if (c != 0) { while ((c & 0x80) == 0) { sig--; c <<= 1; } break; } sig -= 8; } return (sig); } static void ubsec_kshift_r( u_int shiftbits, u_int8_t *src, u_int srcbits, u_int8_t *dst, u_int dstbits) { u_int slen, dlen; int i, si, di, n; slen = (srcbits + 7) / 8; dlen = (dstbits + 7) / 8; for (i = 0; i < slen; i++) dst[i] = src[i]; for (i = 0; i < dlen - slen; i++) dst[slen + i] = 0; n = shiftbits / 8; if (n != 0) { si = dlen - n - 1; di = dlen - 1; while (si >= 0) dst[di--] = dst[si--]; while (di >= 0) dst[di--] = 0; } n = shiftbits % 8; if (n != 0) { for (i = dlen - 1; i > 0; i--) dst[i] = (dst[i] << n) | (dst[i - 1] >> (8 - n)); dst[0] = dst[0] << n; } } static void ubsec_kshift_l( u_int shiftbits, u_int8_t *src, u_int srcbits, u_int8_t *dst, u_int dstbits) { int slen, dlen, i, n; slen = (srcbits + 7) / 8; dlen = (dstbits + 7) / 8; n = shiftbits / 8; for (i = 0; i < slen; i++) dst[i] = src[i + n]; for (i = 0; i < dlen - slen; i++) dst[slen + i] = 0; n = shiftbits % 8; if (n != 0) { for (i = 0; i < (dlen - 1); i++) dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n)); dst[dlen - 1] = dst[dlen - 1] >> n; } }