Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ip_mroute_mod/@/dev/isci/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ip_mroute_mod/@/dev/isci/isci_controller.c |
/*- * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/isci/isci_controller.c 239741 2012-08-27 18:10:25Z jimharris $"); #include <dev/isci/isci.h> #include <sys/conf.h> #include <sys/malloc.h> #include <cam/cam_periph.h> #include <cam/cam_xpt_periph.h> #include <dev/isci/scil/sci_memory_descriptor_list.h> #include <dev/isci/scil/sci_memory_descriptor_list_decorator.h> #include <dev/isci/scil/scif_controller.h> #include <dev/isci/scil/scif_library.h> #include <dev/isci/scil/scif_io_request.h> #include <dev/isci/scil/scif_task_request.h> #include <dev/isci/scil/scif_remote_device.h> #include <dev/isci/scil/scif_domain.h> #include <dev/isci/scil/scif_user_callback.h> void isci_action(struct cam_sim *sim, union ccb *ccb); void isci_poll(struct cam_sim *sim); #define ccb_sim_ptr sim_priv.entries[0].ptr /** * @brief This user callback will inform the user that the controller has * had a serious unexpected error. The user should not the error, * disable interrupts, and wait for current ongoing processing to * complete. Subsequently, the user should reset the controller. * * @param[in] controller This parameter specifies the controller that had * an error. * * @return none */ void scif_cb_controller_error(SCI_CONTROLLER_HANDLE_T controller, SCI_CONTROLLER_ERROR error) { isci_log_message(0, "ISCI", "scif_cb_controller_error: 0x%x\n", error); } /** * @brief This user callback will inform the user that the controller has * finished the start process. * * @param[in] controller This parameter specifies the controller that was * started. * @param[in] completion_status This parameter specifies the results of * the start operation. SCI_SUCCESS indicates successful * completion. * * @return none */ void scif_cb_controller_start_complete(SCI_CONTROLLER_HANDLE_T controller, SCI_STATUS completion_status) { uint32_t index; struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) sci_object_get_association(controller); isci_controller->is_started = TRUE; /* Set bits for all domains. We will clear them one-by-one once * the domains complete discovery, or return error when calling * scif_domain_discover. Once all bits are clear, we will register * the controller with CAM. */ isci_controller->initial_discovery_mask = (1 << SCI_MAX_DOMAINS) - 1; for(index = 0; index < SCI_MAX_DOMAINS; index++) { SCI_STATUS status; SCI_DOMAIN_HANDLE_T domain = isci_controller->domain[index].sci_object; status = scif_domain_discover( domain, scif_domain_get_suggested_discover_timeout(domain), DEVICE_TIMEOUT ); if (status != SCI_SUCCESS) { isci_controller_domain_discovery_complete( isci_controller, &isci_controller->domain[index]); } } } /** * @brief This user callback will inform the user that the controller has * finished the stop process. Note, after user calls * scif_controller_stop(), before user receives this controller stop * complete callback, user should not expect any callback from * framework, such like scif_cb_domain_change_notification(). * * @param[in] controller This parameter specifies the controller that was * stopped. * @param[in] completion_status This parameter specifies the results of * the stop operation. SCI_SUCCESS indicates successful * completion. * * @return none */ void scif_cb_controller_stop_complete(SCI_CONTROLLER_HANDLE_T controller, SCI_STATUS completion_status) { struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) sci_object_get_association(controller); isci_controller->is_started = FALSE; } static void isci_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) { SCI_PHYSICAL_ADDRESS *phys_addr = arg; *phys_addr = seg[0].ds_addr; } /** * @brief This method will be invoked to allocate memory dynamically. * * @param[in] controller This parameter represents the controller * object for which to allocate memory. * @param[out] mde This parameter represents the memory descriptor to * be filled in by the user that will reference the newly * allocated memory. * * @return none */ void scif_cb_controller_allocate_memory(SCI_CONTROLLER_HANDLE_T controller, SCI_PHYSICAL_MEMORY_DESCRIPTOR_T *mde) { struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) sci_object_get_association(controller); /* * Note this routine is only used for buffers needed to translate * SCSI UNMAP commands to ATA DSM commands for SATA disks. * * We first try to pull a buffer from the controller's pool, and only * call contigmalloc if one isn't there. */ if (!sci_pool_empty(isci_controller->unmap_buffer_pool)) { sci_pool_get(isci_controller->unmap_buffer_pool, mde->virtual_address); } else mde->virtual_address = contigmalloc(PAGE_SIZE, M_ISCI, M_NOWAIT, 0, BUS_SPACE_MAXADDR, mde->constant_memory_alignment, 0); if (mde->virtual_address != NULL) bus_dmamap_load(isci_controller->buffer_dma_tag, NULL, mde->virtual_address, PAGE_SIZE, isci_single_map, &mde->physical_address, BUS_DMA_NOWAIT); } /** * @brief This method will be invoked to allocate memory dynamically. * * @param[in] controller This parameter represents the controller * object for which to allocate memory. * @param[out] mde This parameter represents the memory descriptor to * be filled in by the user that will reference the newly * allocated memory. * * @return none */ void scif_cb_controller_free_memory(SCI_CONTROLLER_HANDLE_T controller, SCI_PHYSICAL_MEMORY_DESCRIPTOR_T * mde) { struct ISCI_CONTROLLER *isci_controller = (struct ISCI_CONTROLLER *) sci_object_get_association(controller); /* * Put the buffer back into the controller's buffer pool, rather * than invoking configfree. This helps reduce chance we won't * have buffers available when system is under memory pressure. */ sci_pool_put(isci_controller->unmap_buffer_pool, mde->virtual_address); } void isci_controller_construct(struct ISCI_CONTROLLER *controller, struct isci_softc *isci) { SCI_CONTROLLER_HANDLE_T scif_controller_handle; scif_library_allocate_controller(isci->sci_library_handle, &scif_controller_handle); scif_controller_construct(isci->sci_library_handle, scif_controller_handle, NULL); controller->isci = isci; controller->scif_controller_handle = scif_controller_handle; /* This allows us to later use * sci_object_get_association(scif_controller_handle) * inside of a callback routine to get our struct ISCI_CONTROLLER object */ sci_object_set_association(scif_controller_handle, (void *)controller); controller->is_started = FALSE; controller->is_frozen = FALSE; controller->release_queued_ccbs = FALSE; controller->sim = NULL; controller->initial_discovery_mask = 0; sci_fast_list_init(&controller->pending_device_reset_list); mtx_init(&controller->lock, "isci", NULL, MTX_DEF); uint32_t domain_index; for(domain_index = 0; domain_index < SCI_MAX_DOMAINS; domain_index++) { isci_domain_construct( &controller->domain[domain_index], domain_index, controller); } controller->timer_memory = malloc( sizeof(struct ISCI_TIMER) * SCI_MAX_TIMERS, M_ISCI, M_NOWAIT | M_ZERO); sci_pool_initialize(controller->timer_pool); struct ISCI_TIMER *timer = (struct ISCI_TIMER *) controller->timer_memory; for ( int i = 0; i < SCI_MAX_TIMERS; i++ ) { sci_pool_put(controller->timer_pool, timer++); } sci_pool_initialize(controller->unmap_buffer_pool); } SCI_STATUS isci_controller_initialize(struct ISCI_CONTROLLER *controller) { SCIC_USER_PARAMETERS_T scic_user_parameters; SCI_CONTROLLER_HANDLE_T scic_controller_handle; unsigned long tunable; int i; scic_controller_handle = scif_controller_get_scic_handle(controller->scif_controller_handle); if (controller->isci->oem_parameters_found == TRUE) { scic_oem_parameters_set( scic_controller_handle, &controller->oem_parameters, (uint8_t)(controller->oem_parameters_version)); } scic_user_parameters_get(scic_controller_handle, &scic_user_parameters); if (TUNABLE_ULONG_FETCH("hw.isci.no_outbound_task_timeout", &tunable)) scic_user_parameters.sds1.no_outbound_task_timeout = (uint8_t)tunable; if (TUNABLE_ULONG_FETCH("hw.isci.ssp_max_occupancy_timeout", &tunable)) scic_user_parameters.sds1.ssp_max_occupancy_timeout = (uint16_t)tunable; if (TUNABLE_ULONG_FETCH("hw.isci.stp_max_occupancy_timeout", &tunable)) scic_user_parameters.sds1.stp_max_occupancy_timeout = (uint16_t)tunable; if (TUNABLE_ULONG_FETCH("hw.isci.ssp_inactivity_timeout", &tunable)) scic_user_parameters.sds1.ssp_inactivity_timeout = (uint16_t)tunable; if (TUNABLE_ULONG_FETCH("hw.isci.stp_inactivity_timeout", &tunable)) scic_user_parameters.sds1.stp_inactivity_timeout = (uint16_t)tunable; if (TUNABLE_ULONG_FETCH("hw.isci.max_speed_generation", &tunable)) for (i = 0; i < SCI_MAX_PHYS; i++) scic_user_parameters.sds1.phys[i].max_speed_generation = (uint8_t)tunable; scic_user_parameters_set(scic_controller_handle, &scic_user_parameters); /* Scheduler bug in SCU requires SCIL to reserve some task contexts as a * a workaround - one per domain. */ controller->queue_depth = SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS; if (TUNABLE_INT_FETCH("hw.isci.controller_queue_depth", &controller->queue_depth)) { controller->queue_depth = max(1, min(controller->queue_depth, SCI_MAX_IO_REQUESTS - SCI_MAX_DOMAINS)); } /* Reserve one request so that we can ensure we have one available TC * to do internal device resets. */ controller->sim_queue_depth = controller->queue_depth - 1; /* Although we save one TC to do internal device resets, it is possible * we could end up using several TCs for simultaneous device resets * while at the same time having CAM fill our controller queue. To * simulate this condition, and how our driver handles it, we can set * this io_shortage parameter, which will tell CAM that we have a * large queue depth than we really do. */ uint32_t io_shortage = 0; TUNABLE_INT_FETCH("hw.isci.io_shortage", &io_shortage); controller->sim_queue_depth += io_shortage; /* Attach to CAM using xpt_bus_register now, then immediately freeze * the simq. It will get released later when initial domain discovery * is complete. */ controller->has_been_scanned = FALSE; mtx_lock(&controller->lock); isci_controller_attach_to_cam(controller); xpt_freeze_simq(controller->sim, 1); mtx_unlock(&controller->lock); return (scif_controller_initialize(controller->scif_controller_handle)); } int isci_controller_allocate_memory(struct ISCI_CONTROLLER *controller) { int error; device_t device = controller->isci->device; uint32_t max_segment_size = isci_io_request_get_max_io_size(); uint32_t status = 0; struct ISCI_MEMORY *uncached_controller_memory = &controller->uncached_controller_memory; struct ISCI_MEMORY *cached_controller_memory = &controller->cached_controller_memory; struct ISCI_MEMORY *request_memory = &controller->request_memory; POINTER_UINT virtual_address; bus_addr_t physical_address; controller->mdl = sci_controller_get_memory_descriptor_list_handle( controller->scif_controller_handle); uncached_controller_memory->size = sci_mdl_decorator_get_memory_size( controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS); error = isci_allocate_dma_buffer(device, uncached_controller_memory); if (error != 0) return (error); sci_mdl_decorator_assign_memory( controller->mdl, SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, uncached_controller_memory->virtual_address, uncached_controller_memory->physical_address); cached_controller_memory->size = sci_mdl_decorator_get_memory_size( controller->mdl, SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS ); error = isci_allocate_dma_buffer(device, cached_controller_memory); if (error != 0) return (error); sci_mdl_decorator_assign_memory(controller->mdl, SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS, cached_controller_memory->virtual_address, cached_controller_memory->physical_address); request_memory->size = controller->queue_depth * isci_io_request_get_object_size(); error = isci_allocate_dma_buffer(device, request_memory); if (error != 0) return (error); /* For STP PIO testing, we want to ensure we can force multiple SGLs * since this has been a problem area in SCIL. This tunable parameter * will allow us to force DMA segments to a smaller size, ensuring * that even if a physically contiguous buffer is attached to this * I/O, the DMA subsystem will pass us multiple segments in our DMA * load callback. */ TUNABLE_INT_FETCH("hw.isci.max_segment_size", &max_segment_size); /* Create DMA tag for our I/O requests. Then we can create DMA maps based off * of this tag and store them in each of our ISCI_IO_REQUEST objects. This * will enable better performance than creating the DMA maps everytime we get * an I/O. */ status = bus_dma_tag_create(bus_get_dma_tag(device), 0x1, 0x0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, isci_io_request_get_max_io_size(), SCI_MAX_SCATTER_GATHER_ELEMENTS, max_segment_size, 0, NULL, NULL, &controller->buffer_dma_tag); sci_pool_initialize(controller->request_pool); virtual_address = request_memory->virtual_address; physical_address = request_memory->physical_address; for (int i = 0; i < controller->queue_depth; i++) { struct ISCI_REQUEST *request = (struct ISCI_REQUEST *)virtual_address; isci_request_construct(request, controller->scif_controller_handle, controller->buffer_dma_tag, physical_address); sci_pool_put(controller->request_pool, request); virtual_address += isci_request_get_object_size(); physical_address += isci_request_get_object_size(); } uint32_t remote_device_size = sizeof(struct ISCI_REMOTE_DEVICE) + scif_remote_device_get_object_size(); controller->remote_device_memory = (uint8_t *) malloc( remote_device_size * SCI_MAX_REMOTE_DEVICES, M_ISCI, M_NOWAIT | M_ZERO); sci_pool_initialize(controller->remote_device_pool); uint8_t *remote_device_memory_ptr = controller->remote_device_memory; for (int i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { struct ISCI_REMOTE_DEVICE *remote_device = (struct ISCI_REMOTE_DEVICE *)remote_device_memory_ptr; controller->remote_device[i] = NULL; remote_device->index = i; remote_device->is_resetting = FALSE; remote_device->frozen_lun_mask = 0; sci_fast_list_element_init(remote_device, &remote_device->pending_device_reset_element); TAILQ_INIT(&remote_device->queued_ccbs); remote_device->release_queued_ccb = FALSE; remote_device->queued_ccb_in_progress = NULL; /* * For the first SCI_MAX_DOMAINS device objects, do not put * them in the pool, rather assign them to each domain. This * ensures that any device attached directly to port "i" will * always get CAM target id "i". */ if (i < SCI_MAX_DOMAINS) controller->domain[i].da_remote_device = remote_device; else sci_pool_put(controller->remote_device_pool, remote_device); remote_device_memory_ptr += remote_device_size; } return (0); } void isci_controller_start(void *controller_handle) { struct ISCI_CONTROLLER *controller = (struct ISCI_CONTROLLER *)controller_handle; SCI_CONTROLLER_HANDLE_T scif_controller_handle = controller->scif_controller_handle; scif_controller_start(scif_controller_handle, scif_controller_get_suggested_start_timeout(scif_controller_handle)); scic_controller_enable_interrupts( scif_controller_get_scic_handle(controller->scif_controller_handle)); } void isci_controller_domain_discovery_complete( struct ISCI_CONTROLLER *isci_controller, struct ISCI_DOMAIN *isci_domain) { if (!isci_controller->has_been_scanned) { /* Controller has not been scanned yet. We'll clear * the discovery bit for this domain, then check if all bits * are now clear. That would indicate that all domains are * done with discovery and we can then proceed with initial * scan. */ isci_controller->initial_discovery_mask &= ~(1 << isci_domain->index); if (isci_controller->initial_discovery_mask == 0) { struct isci_softc *driver = isci_controller->isci; uint8_t next_index = isci_controller->index + 1; isci_controller->has_been_scanned = TRUE; /* Unfreeze simq to allow initial scan to proceed. */ xpt_release_simq(isci_controller->sim, TRUE); #if __FreeBSD_version < 800000 /* When driver is loaded after boot, we need to * explicitly rescan here for versions <8.0, because * CAM only automatically scans new buses at boot * time. */ union ccb *ccb = xpt_alloc_ccb_nowait(); xpt_create_path(&ccb->ccb_h.path, xpt_periph, cam_sim_path(isci_controller->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); xpt_rescan(ccb); #endif if (next_index < driver->controller_count) { /* There are more controllers that need to * start. So start the next one. */ isci_controller_start( &driver->controllers[next_index]); } else { /* All controllers have been started and completed discovery. * Disestablish the config hook while will signal to the * kernel during boot that it is safe to try to find and * mount the root partition. */ config_intrhook_disestablish( &driver->config_hook); } } } } int isci_controller_attach_to_cam(struct ISCI_CONTROLLER *controller) { struct isci_softc *isci = controller->isci; device_t parent = device_get_parent(isci->device); int unit = device_get_unit(isci->device); struct cam_devq *isci_devq = cam_simq_alloc(controller->sim_queue_depth); if(isci_devq == NULL) { isci_log_message(0, "ISCI", "isci_devq is NULL \n"); return (-1); } controller->sim = cam_sim_alloc(isci_action, isci_poll, "isci", controller, unit, &controller->lock, controller->sim_queue_depth, controller->sim_queue_depth, isci_devq); if(controller->sim == NULL) { isci_log_message(0, "ISCI", "cam_sim_alloc... fails\n"); cam_simq_free(isci_devq); return (-1); } if(xpt_bus_register(controller->sim, parent, controller->index) != CAM_SUCCESS) { isci_log_message(0, "ISCI", "xpt_bus_register...fails \n"); cam_sim_free(controller->sim, TRUE); mtx_unlock(&controller->lock); return (-1); } if(xpt_create_path(&controller->path, NULL, cam_sim_path(controller->sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { isci_log_message(0, "ISCI", "xpt_create_path....fails\n"); xpt_bus_deregister(cam_sim_path(controller->sim)); cam_sim_free(controller->sim, TRUE); mtx_unlock(&controller->lock); return (-1); } return (0); } void isci_poll(struct cam_sim *sim) { struct ISCI_CONTROLLER *controller = (struct ISCI_CONTROLLER *)cam_sim_softc(sim); isci_interrupt_poll_handler(controller); } void isci_action(struct cam_sim *sim, union ccb *ccb) { struct ISCI_CONTROLLER *controller = (struct ISCI_CONTROLLER *)cam_sim_softc(sim); switch ( ccb->ccb_h.func_code ) { case XPT_PATH_INQ: { struct ccb_pathinq *cpi = &ccb->cpi; int bus = cam_sim_bus(sim); ccb->ccb_h.ccb_sim_ptr = sim; cpi->version_num = 1; cpi->hba_inquiry = PI_TAG_ABLE; cpi->target_sprt = 0; cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN; cpi->hba_eng_cnt = 0; cpi->max_target = SCI_MAX_REMOTE_DEVICES - 1; cpi->max_lun = ISCI_MAX_LUN; #if __FreeBSD_version >= 800102 cpi->maxio = isci_io_request_get_max_io_size(); #endif cpi->unit_number = cam_sim_unit(sim); cpi->bus_id = bus; cpi->initiator_id = SCI_MAX_REMOTE_DEVICES; cpi->base_transfer_speed = 300000; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "Intel Corp.", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->transport = XPORT_SAS; cpi->transport_version = 0; cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_SPC2; cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); } break; case XPT_GET_TRAN_SETTINGS: { struct ccb_trans_settings *general_settings = &ccb->cts; struct ccb_trans_settings_sas *sas_settings = &general_settings->xport_specific.sas; struct ccb_trans_settings_scsi *scsi_settings = &general_settings->proto_specific.scsi; struct ISCI_REMOTE_DEVICE *remote_device; remote_device = controller->remote_device[ccb->ccb_h.target_id]; if (remote_device == NULL) { ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_DEV_NOT_THERE; xpt_done(ccb); break; } general_settings->protocol = PROTO_SCSI; general_settings->transport = XPORT_SAS; general_settings->protocol_version = SCSI_REV_SPC2; general_settings->transport_version = 0; scsi_settings->valid = CTS_SCSI_VALID_TQ; scsi_settings->flags = CTS_SCSI_FLAGS_TAG_ENB; ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_REQ_CMP; sas_settings->bitrate = isci_remote_device_get_bitrate(remote_device); if (sas_settings->bitrate != 0) sas_settings->valid = CTS_SAS_VALID_SPEED; xpt_done(ccb); } break; case XPT_SCSI_IO: isci_io_request_execute_scsi_io(ccb, controller); break; #if __FreeBSD_version >= 900026 case XPT_SMP_IO: isci_io_request_execute_smp_io(ccb, controller); break; #endif case XPT_SET_TRAN_SETTINGS: ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_REQ_CMP; xpt_done(ccb); break; case XPT_CALC_GEOMETRY: cam_calc_geometry(&ccb->ccg, /*extended*/1); xpt_done(ccb); break; case XPT_RESET_DEV: { struct ISCI_REMOTE_DEVICE *remote_device = controller->remote_device[ccb->ccb_h.target_id]; if (remote_device != NULL) isci_remote_device_reset(remote_device, ccb); else { ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_DEV_NOT_THERE; xpt_done(ccb); } } break; case XPT_RESET_BUS: ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; default: isci_log_message(0, "ISCI", "Unhandled func_code 0x%x\n", ccb->ccb_h.func_code); ccb->ccb_h.status &= ~CAM_SIM_QUEUED; ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_REQ_INVALID; xpt_done(ccb); break; } } /* * Unfortunately, SCIL doesn't cleanly handle retry conditions. * CAM_REQUEUE_REQ works only when no one is using the pass(4) interface. So * when SCIL denotes an I/O needs to be retried (typically because of mixing * tagged/non-tagged ATA commands, or running out of NCQ slots), we queue * these I/O internally. Once SCIL completes an I/O to this device, or we get * a ready notification, we will retry the first I/O on the queue. * Unfortunately, SCIL also doesn't cleanly handle starting the new I/O within * the context of the completion handler, so we need to retry these I/O after * the completion handler is done executing. */ void isci_controller_release_queued_ccbs(struct ISCI_CONTROLLER *controller) { struct ISCI_REMOTE_DEVICE *dev; struct ccb_hdr *ccb_h; int dev_idx; KASSERT(mtx_owned(&controller->lock), ("controller lock not owned")); controller->release_queued_ccbs = FALSE; for (dev_idx = 0; dev_idx < SCI_MAX_REMOTE_DEVICES; dev_idx++) { dev = controller->remote_device[dev_idx]; if (dev != NULL && dev->release_queued_ccb == TRUE && dev->queued_ccb_in_progress == NULL) { dev->release_queued_ccb = FALSE; ccb_h = TAILQ_FIRST(&dev->queued_ccbs); if (ccb_h == NULL) continue; isci_log_message(1, "ISCI", "release %p %x\n", ccb_h, ((union ccb *)ccb_h)->csio.cdb_io.cdb_bytes[0]); dev->queued_ccb_in_progress = (union ccb *)ccb_h; isci_io_request_execute_scsi_io( (union ccb *)ccb_h, controller); } } }