config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ip_mroute_mod/@/mips/mips/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ip_mroute_mod/@/mips/mips/tick.c

/*-
 * Copyright (c) 2006-2007 Bruce M. Simpson.
 * Copyright (c) 2003-2004 Juli Mallett.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *	notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *	notice, this list of conditions and the following disclaimer in the
 *	documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * Simple driver for the 32-bit interval counter built in to all
 * MIPS32 CPUs.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/mips/mips/tick.c 217616 2011-01-19 23:00:25Z mdf $");

#include "opt_cputype.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/power.h>
#include <sys/smp.h>
#include <sys/time.h>
#include <sys/timeet.h>
#include <sys/timetc.h>

#include <machine/hwfunc.h>
#include <machine/clock.h>
#include <machine/locore.h>
#include <machine/md_var.h>

uint64_t counter_freq;

struct timecounter *platform_timecounter;

static DPCPU_DEFINE(uint32_t, cycles_per_tick);
static uint32_t cycles_per_usec;

static DPCPU_DEFINE(volatile uint32_t, counter_upper);
static DPCPU_DEFINE(volatile uint32_t, counter_lower_last);
static DPCPU_DEFINE(uint32_t, compare_ticks);
static DPCPU_DEFINE(uint32_t, lost_ticks);

struct clock_softc {
	int intr_rid;
	struct resource *intr_res;
	void *intr_handler;
	struct timecounter tc;
	struct eventtimer et;
};
static struct clock_softc *softc;

/*
 * Device methods
 */
static int clock_probe(device_t);
static void clock_identify(driver_t *, device_t);
static int clock_attach(device_t);
static unsigned counter_get_timecount(struct timecounter *tc);

void 
mips_timer_early_init(uint64_t clock_hz)
{
	/* Initialize clock early so that we can use DELAY sooner */
	counter_freq = clock_hz;
	cycles_per_usec = (clock_hz / (1000 * 1000));
}

void
platform_initclocks(void)
{

	if (platform_timecounter != NULL)
		tc_init(platform_timecounter);
}

static uint64_t
tick_ticker(void)
{
	uint64_t ret;
	uint32_t ticktock;
	uint32_t t_lower_last, t_upper;

	/*
	 * Disable preemption because we are working with cpu specific data.
	 */
	critical_enter();

	/*
	 * Note that even though preemption is disabled, interrupts are
	 * still enabled. In particular there is a race with clock_intr()
	 * reading the values of 'counter_upper' and 'counter_lower_last'.
	 *
	 * XXX this depends on clock_intr() being executed periodically
	 * so that 'counter_upper' and 'counter_lower_last' are not stale.
	 */
	do {
		t_upper = DPCPU_GET(counter_upper);
		t_lower_last = DPCPU_GET(counter_lower_last);
	} while (t_upper != DPCPU_GET(counter_upper));

	ticktock = mips_rd_count();

	critical_exit();

	/* COUNT register wrapped around */
	if (ticktock < t_lower_last)
		t_upper++;

	ret = ((uint64_t)t_upper << 32) | ticktock;
	return (ret);
}

void
mips_timer_init_params(uint64_t platform_counter_freq, int double_count)
{

	/*
	 * XXX: Do not use printf here: uart code 8250 may use DELAY so this
	 * function should  be called before cninit.
	 */
	counter_freq = platform_counter_freq;
	/*
	 * XXX: Some MIPS32 cores update the Count register only every two
	 * pipeline cycles.
	 * We know this because of status registers in CP0, make it automatic.
	 */
	if (double_count != 0)
		counter_freq /= 2;

	cycles_per_usec = counter_freq / (1 * 1000 * 1000);
	set_cputicker(tick_ticker, counter_freq, 1);
}

static int
sysctl_machdep_counter_freq(SYSCTL_HANDLER_ARGS)
{
	int error;
	uint64_t freq;

	if (softc == NULL)
		return (EOPNOTSUPP);
	freq = counter_freq;
	error = sysctl_handle_64(oidp, &freq, sizeof(freq), req);
	if (error == 0 && req->newptr != NULL) {
		counter_freq = freq;
		softc->et.et_frequency = counter_freq;
		softc->tc.tc_frequency = counter_freq;
	}
	return (error);
}

SYSCTL_PROC(_machdep, OID_AUTO, counter_freq, CTLTYPE_U64 | CTLFLAG_RW,
    NULL, 0, sysctl_machdep_counter_freq, "QU",
    "Timecounter frequency in Hz");

static unsigned
counter_get_timecount(struct timecounter *tc)
{

	return (mips_rd_count());
}

/*
 * Wait for about n microseconds (at least!).
 */
void
DELAY(int n)
{
	uint32_t cur, last, delta, usecs;

	/*
	 * This works by polling the timer and counting the number of
	 * microseconds that go by.
	 */
	last = mips_rd_count();
	delta = usecs = 0;

	while (n > usecs) {
		cur = mips_rd_count();

		/* Check to see if the timer has wrapped around. */
		if (cur < last)
			delta += cur + (0xffffffff - last) + 1;
		else
			delta += cur - last;

		last = cur;

		if (delta >= cycles_per_usec) {
			usecs += delta / cycles_per_usec;
			delta %= cycles_per_usec;
		}
	}
}

static int
clock_start(struct eventtimer *et,
    struct bintime *first, struct bintime *period)
{
	uint32_t fdiv, div, next;

	if (period != NULL) {
		div = (et->et_frequency * (period->frac >> 32)) >> 32;
		if (period->sec != 0)
			div += et->et_frequency * period->sec;
	} else
		div = 0;
	if (first != NULL) {
		fdiv = (et->et_frequency * (first->frac >> 32)) >> 32;
		if (first->sec != 0)
			fdiv += et->et_frequency * first->sec;
	} else 
		fdiv = div;
	DPCPU_SET(cycles_per_tick, div);
	next = mips_rd_count() + fdiv;
	DPCPU_SET(compare_ticks, next);
	mips_wr_compare(next);
	return (0);
}

static int
clock_stop(struct eventtimer *et)
{

	DPCPU_SET(cycles_per_tick, 0);
	mips_wr_compare(0xffffffff);
	return (0);
}

/*
 * Device section of file below
 */
static int
clock_intr(void *arg)
{
	struct clock_softc *sc = (struct clock_softc *)arg;
	uint32_t cycles_per_tick;
	uint32_t count, compare_last, compare_next, lost_ticks;

	cycles_per_tick = DPCPU_GET(cycles_per_tick);
	/*
	 * Set next clock edge.
	 */
	count = mips_rd_count();
	compare_last = DPCPU_GET(compare_ticks);
	if (cycles_per_tick > 0) {
		compare_next = count + cycles_per_tick;
		DPCPU_SET(compare_ticks, compare_next);
		mips_wr_compare(compare_next);
	} else	/* In one-shot mode timer should be stopped after the event. */
		mips_wr_compare(0xffffffff);

	/* COUNT register wrapped around */
	if (count < DPCPU_GET(counter_lower_last)) {
		DPCPU_SET(counter_upper, DPCPU_GET(counter_upper) + 1);
	}
	DPCPU_SET(counter_lower_last, count);

	if (cycles_per_tick > 0) {

		/*
		 * Account for the "lost time" between when the timer interrupt
		 * fired and when 'clock_intr' actually started executing.
		 */
		lost_ticks = DPCPU_GET(lost_ticks);
		lost_ticks += count - compare_last;
	
		/*
		 * If the COUNT and COMPARE registers are no longer in sync
		 * then make up some reasonable value for the 'lost_ticks'.
		 *
		 * This could happen, for e.g., after we resume normal
		 * operations after exiting the debugger.
		 */
		if (lost_ticks > 2 * cycles_per_tick)
			lost_ticks = cycles_per_tick;

		while (lost_ticks >= cycles_per_tick) {
			if (sc->et.et_active)
				sc->et.et_event_cb(&sc->et, sc->et.et_arg);
			lost_ticks -= cycles_per_tick;
		}
		DPCPU_SET(lost_ticks, lost_ticks);
	}
	if (sc->et.et_active)
		sc->et.et_event_cb(&sc->et, sc->et.et_arg);
	return (FILTER_HANDLED);
}

static int
clock_probe(device_t dev)
{

	if (device_get_unit(dev) != 0)
		panic("can't attach more clocks");

	device_set_desc(dev, "Generic MIPS32 ticker");
	return (0);
}

static void
clock_identify(driver_t * drv, device_t parent)
{

	BUS_ADD_CHILD(parent, 0, "clock", 0);
}

static int
clock_attach(device_t dev)
{
	struct clock_softc *sc;
	int error;

	softc = sc = device_get_softc(dev);
	sc->intr_rid = 0;
	sc->intr_res = bus_alloc_resource(dev,
	    SYS_RES_IRQ, &sc->intr_rid, 5, 5, 1, RF_ACTIVE);
	if (sc->intr_res == NULL) {
		device_printf(dev, "failed to allocate irq\n");
		return (ENXIO);
	}
	error = bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
	    clock_intr, NULL, sc, &sc->intr_handler);
	if (error != 0) {
		device_printf(dev, "bus_setup_intr returned %d\n", error);
		return (error);
	}

	sc->tc.tc_get_timecount = counter_get_timecount;
	sc->tc.tc_counter_mask = 0xffffffff;
	sc->tc.tc_frequency = counter_freq;
	sc->tc.tc_name = "MIPS32";
	sc->tc.tc_quality = 800;
	sc->tc.tc_priv = sc;
	tc_init(&sc->tc);
	sc->et.et_name = "MIPS32";
	sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT |
	    ET_FLAGS_PERCPU;
	sc->et.et_quality = 800;
	sc->et.et_frequency = counter_freq;
	sc->et.et_min_period.sec = 0;
	sc->et.et_min_period.frac = 0x00004000LLU << 32; /* To be safe. */
	sc->et.et_max_period.sec = 0xfffffffeU / sc->et.et_frequency;
	sc->et.et_max_period.frac =
	    ((0xfffffffeLLU << 32) / sc->et.et_frequency) << 32;
	sc->et.et_start = clock_start;
	sc->et.et_stop = clock_stop;
	sc->et.et_priv = sc;
	et_register(&sc->et);
	return (0);
}

static device_method_t clock_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe, clock_probe),
	DEVMETHOD(device_identify, clock_identify),
	DEVMETHOD(device_attach, clock_attach),
	DEVMETHOD(device_detach, bus_generic_detach),
	DEVMETHOD(device_shutdown, bus_generic_shutdown),

	{0, 0}
};

static driver_t clock_driver = {
	"clock",
	clock_methods,
	sizeof(struct clock_softc),
};

static devclass_t clock_devclass;

DRIVER_MODULE(clock, nexus, clock_driver, clock_devclass, 0, 0);

Man Man