Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ipmi/ipmi_linux/@/dev/hwpmc/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ipmi/ipmi_linux/@/dev/hwpmc/hwpmc_xscale.c |
/*- * Copyright (c) 2009 Rui Paulo <rpaulo@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/hwpmc/hwpmc_xscale.c 236238 2012-05-29 14:50:21Z fabient $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/pmc.h> #include <sys/pmckern.h> #include <machine/pmc_mdep.h> /* * Support for the Intel XScale network processors * * XScale processors have up to now three generations. * * The first generation has two PMC; the event selection, interrupt config * and overflow flag setup are done by writing to the PMNC register. * It also has less monitoring events than the latter generations. * * The second and third generatiosn have four PMCs, one register for the event * selection, one register for the interrupt config and one register for * the overflow flags. */ static int xscale_npmcs; static int xscale_gen; /* XScale Core generation */ struct xscale_event_code_map { enum pmc_event pe_ev; uint8_t pe_code; }; const struct xscale_event_code_map xscale_event_codes[] = { /* 1st and 2nd Generation XScale cores */ { PMC_EV_XSCALE_IC_FETCH, 0x00 }, { PMC_EV_XSCALE_IC_MISS, 0x01 }, { PMC_EV_XSCALE_DATA_DEPENDENCY_STALLED,0x02 }, { PMC_EV_XSCALE_ITLB_MISS, 0x03 }, { PMC_EV_XSCALE_DTLB_MISS, 0x04 }, { PMC_EV_XSCALE_BRANCH_RETIRED, 0x05 }, { PMC_EV_XSCALE_BRANCH_MISPRED, 0x06 }, { PMC_EV_XSCALE_INSTR_RETIRED, 0x07 }, { PMC_EV_XSCALE_DC_FULL_CYCLE, 0x08 }, { PMC_EV_XSCALE_DC_FULL_CONTIG, 0x09 }, { PMC_EV_XSCALE_DC_ACCESS, 0x0a }, { PMC_EV_XSCALE_DC_MISS, 0x0b }, { PMC_EV_XSCALE_DC_WRITEBACK, 0x0c }, { PMC_EV_XSCALE_PC_CHANGE, 0x0d }, /* 3rd Generation XScale cores */ { PMC_EV_XSCALE_BRANCH_RETIRED_ALL, 0x0e }, { PMC_EV_XSCALE_INSTR_CYCLE, 0x0f }, { PMC_EV_XSCALE_CP_STALL, 0x17 }, { PMC_EV_XSCALE_PC_CHANGE_ALL, 0x18 }, { PMC_EV_XSCALE_PIPELINE_FLUSH, 0x19 }, { PMC_EV_XSCALE_BACKEND_STALL, 0x1a }, { PMC_EV_XSCALE_MULTIPLIER_USE, 0x1b }, { PMC_EV_XSCALE_MULTIPLIER_STALLED, 0x1c }, { PMC_EV_XSCALE_DATA_CACHE_STALLED, 0x1e }, { PMC_EV_XSCALE_L2_CACHE_REQ, 0x20 }, { PMC_EV_XSCALE_L2_CACHE_MISS, 0x23 }, { PMC_EV_XSCALE_ADDRESS_BUS_TRANS, 0x40 }, { PMC_EV_XSCALE_SELF_ADDRESS_BUS_TRANS, 0x41 }, { PMC_EV_XSCALE_DATA_BUS_TRANS, 0x48 }, }; const int xscale_event_codes_size = sizeof(xscale_event_codes) / sizeof(xscale_event_codes[0]); /* * Per-processor information. */ struct xscale_cpu { struct pmc_hw *pc_xscalepmcs; }; static struct xscale_cpu **xscale_pcpu; /* * Performance Monitor Control Register */ static __inline uint32_t xscale_pmnc_read(void) { uint32_t reg; __asm __volatile("mrc p14, 0, %0, c0, c1, 0" : "=r" (reg)); return (reg); } static __inline void xscale_pmnc_write(uint32_t reg) { __asm __volatile("mcr p14, 0, %0, c0, c1, 0" : : "r" (reg)); } /* * Clock Counter Register */ static __inline uint32_t xscale_ccnt_read(void) { uint32_t reg; __asm __volatile("mrc p14, 0, %0, c1, c1, 0" : "=r" (reg)); return (reg); } static __inline void xscale_ccnt_write(uint32_t reg) { __asm __volatile("mcr p14, 0, %0, c1, c1, 0" : : "r" (reg)); } /* * Interrupt Enable Register */ static __inline uint32_t xscale_inten_read(void) { uint32_t reg; __asm __volatile("mrc p14, 0, %0, c4, c1, 0" : "=r" (reg)); return (reg); } static __inline void xscale_inten_write(uint32_t reg) { __asm __volatile("mcr p14, 0, %0, c4, c1, 0" : : "r" (reg)); } /* * Overflow Flag Register */ static __inline uint32_t xscale_flag_read(void) { uint32_t reg; __asm __volatile("mrc p14, 0, %0, c5, c1, 0" : "=r" (reg)); return (reg); } static __inline void xscale_flag_write(uint32_t reg) { __asm __volatile("mcr p14, 0, %0, c5, c1, 0" : : "r" (reg)); } /* * Event Selection Register */ static __inline uint32_t xscale_evtsel_read(void) { uint32_t reg; __asm __volatile("mrc p14, 0, %0, c8, c1, 0" : "=r" (reg)); return (reg); } static __inline void xscale_evtsel_write(uint32_t reg) { __asm __volatile("mcr p14, 0, %0, c8, c1, 0" : : "r" (reg)); } /* * Performance Count Register N */ static uint32_t xscale_pmcn_read(unsigned int pmc) { uint32_t reg = 0; KASSERT(pmc < 4, ("[xscale,%d] illegal PMC number %d", __LINE__, pmc)); switch (pmc) { case 0: __asm __volatile("mrc p14, 0, %0, c0, c2, 0" : "=r" (reg)); break; case 1: __asm __volatile("mrc p14, 0, %0, c1, c2, 0" : "=r" (reg)); break; case 2: __asm __volatile("mrc p14, 0, %0, c2, c2, 0" : "=r" (reg)); break; case 3: __asm __volatile("mrc p14, 0, %0, c3, c2, 0" : "=r" (reg)); break; } return (reg); } static uint32_t xscale_pmcn_write(unsigned int pmc, uint32_t reg) { KASSERT(pmc < 4, ("[xscale,%d] illegal PMC number %d", __LINE__, pmc)); switch (pmc) { case 0: __asm __volatile("mcr p14, 0, %0, c0, c2, 0" : : "r" (reg)); break; case 1: __asm __volatile("mcr p14, 0, %0, c1, c2, 0" : : "r" (reg)); break; case 2: __asm __volatile("mcr p14, 0, %0, c2, c2, 0" : : "r" (reg)); break; case 3: __asm __volatile("mcr p14, 0, %0, c3, c2, 0" : : "r" (reg)); break; } return (reg); } static int xscale_allocate_pmc(int cpu, int ri, struct pmc *pm, const struct pmc_op_pmcallocate *a) { enum pmc_event pe; uint32_t caps, config; int i; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[xscale,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < xscale_npmcs, ("[xscale,%d] illegal row index %d", __LINE__, ri)); caps = a->pm_caps; if (a->pm_class != PMC_CLASS_XSCALE) return (EINVAL); pe = a->pm_ev; for (i = 0; i < xscale_event_codes_size; i++) { if (xscale_event_codes[i].pe_ev == pe) { config = xscale_event_codes[i].pe_code; break; } } if (i == xscale_event_codes_size) return EINVAL; /* Generation 1 has fewer events */ if (xscale_gen == 1 && i > PMC_EV_XSCALE_PC_CHANGE) return EINVAL; pm->pm_md.pm_xscale.pm_xscale_evsel = config; PMCDBG(MDP,ALL,2,"xscale-allocate ri=%d -> config=0x%x", ri, config); return 0; } static int xscale_read_pmc(int cpu, int ri, pmc_value_t *v) { struct pmc *pm; pmc_value_t tmp; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[xscale,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < xscale_npmcs, ("[xscale,%d] illegal row index %d", __LINE__, ri)); pm = xscale_pcpu[cpu]->pc_xscalepmcs[ri].phw_pmc; tmp = xscale_pmcn_read(ri); PMCDBG(MDP,REA,2,"xscale-read id=%d -> %jd", ri, tmp); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) *v = XSCALE_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp); else *v = tmp; return 0; } static int xscale_write_pmc(int cpu, int ri, pmc_value_t v) { struct pmc *pm; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[xscale,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < xscale_npmcs, ("[xscale,%d] illegal row-index %d", __LINE__, ri)); pm = xscale_pcpu[cpu]->pc_xscalepmcs[ri].phw_pmc; if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) v = XSCALE_RELOAD_COUNT_TO_PERFCTR_VALUE(v); PMCDBG(MDP,WRI,1,"xscale-write cpu=%d ri=%d v=%jx", cpu, ri, v); xscale_pmcn_write(ri, v); return 0; } static int xscale_config_pmc(int cpu, int ri, struct pmc *pm) { struct pmc_hw *phw; PMCDBG(MDP,CFG,1, "cpu=%d ri=%d pm=%p", cpu, ri, pm); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[xscale,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < xscale_npmcs, ("[xscale,%d] illegal row-index %d", __LINE__, ri)); phw = &xscale_pcpu[cpu]->pc_xscalepmcs[ri]; KASSERT(pm == NULL || phw->phw_pmc == NULL, ("[xscale,%d] pm=%p phw->pm=%p hwpmc not unconfigured", __LINE__, pm, phw->phw_pmc)); phw->phw_pmc = pm; return 0; } static int xscale_start_pmc(int cpu, int ri) { uint32_t pmnc, config, evtsel; struct pmc *pm; struct pmc_hw *phw; phw = &xscale_pcpu[cpu]->pc_xscalepmcs[ri]; pm = phw->phw_pmc; config = pm->pm_md.pm_xscale.pm_xscale_evsel; /* * Configure the event selection. * * On the XScale 2nd Generation there's no EVTSEL register. */ if (xscale_npmcs == 2) { pmnc = xscale_pmnc_read(); switch (ri) { case 0: pmnc &= ~XSCALE_PMNC_EVT0_MASK; pmnc |= (config << 12) & XSCALE_PMNC_EVT0_MASK; break; case 1: pmnc &= ~XSCALE_PMNC_EVT1_MASK; pmnc |= (config << 20) & XSCALE_PMNC_EVT1_MASK; break; default: /* XXX */ break; } xscale_pmnc_write(pmnc); } else { evtsel = xscale_evtsel_read(); switch (ri) { case 0: evtsel &= ~XSCALE_EVTSEL_EVT0_MASK; evtsel |= config & XSCALE_EVTSEL_EVT0_MASK; break; case 1: evtsel &= ~XSCALE_EVTSEL_EVT1_MASK; evtsel |= (config << 8) & XSCALE_EVTSEL_EVT1_MASK; break; case 2: evtsel &= ~XSCALE_EVTSEL_EVT2_MASK; evtsel |= (config << 16) & XSCALE_EVTSEL_EVT2_MASK; break; case 3: evtsel &= ~XSCALE_EVTSEL_EVT3_MASK; evtsel |= (config << 24) & XSCALE_EVTSEL_EVT3_MASK; break; default: /* XXX */ break; } xscale_evtsel_write(evtsel); } /* * Enable the PMC. * * Note that XScale provides only one bit to enable/disable _all_ * performance monitoring units. */ pmnc = xscale_pmnc_read(); pmnc |= XSCALE_PMNC_ENABLE; xscale_pmnc_write(pmnc); return 0; } static int xscale_stop_pmc(int cpu, int ri) { uint32_t pmnc, evtsel; struct pmc *pm; struct pmc_hw *phw; phw = &xscale_pcpu[cpu]->pc_xscalepmcs[ri]; pm = phw->phw_pmc; /* * Disable the PMCs. * * Note that XScale provides only one bit to enable/disable _all_ * performance monitoring units. */ pmnc = xscale_pmnc_read(); pmnc &= ~XSCALE_PMNC_ENABLE; xscale_pmnc_write(pmnc); /* * A value of 0xff makes the corresponding PMU go into * power saving mode. */ if (xscale_npmcs == 2) { pmnc = xscale_pmnc_read(); switch (ri) { case 0: pmnc |= XSCALE_PMNC_EVT0_MASK; break; case 1: pmnc |= XSCALE_PMNC_EVT1_MASK; break; default: /* XXX */ break; } xscale_pmnc_write(pmnc); } else { evtsel = xscale_evtsel_read(); switch (ri) { case 0: evtsel |= XSCALE_EVTSEL_EVT0_MASK; break; case 1: evtsel |= XSCALE_EVTSEL_EVT1_MASK; break; case 2: evtsel |= XSCALE_EVTSEL_EVT2_MASK; break; case 3: evtsel |= XSCALE_EVTSEL_EVT3_MASK; break; default: /* XXX */ break; } xscale_evtsel_write(evtsel); } return 0; } static int xscale_release_pmc(int cpu, int ri, struct pmc *pmc) { struct pmc_hw *phw; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[xscale,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < xscale_npmcs, ("[xscale,%d] illegal row-index %d", __LINE__, ri)); phw = &xscale_pcpu[cpu]->pc_xscalepmcs[ri]; KASSERT(phw->phw_pmc == NULL, ("[xscale,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc)); return 0; } static int xscale_intr(int cpu, struct trapframe *tf) { printf("intr\n"); return 0; } static int xscale_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc) { int error; struct pmc_hw *phw; char xscale_name[PMC_NAME_MAX]; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[xscale,%d], illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < xscale_npmcs, ("[xscale,%d] row-index %d out of range", __LINE__, ri)); phw = &xscale_pcpu[cpu]->pc_xscalepmcs[ri]; snprintf(xscale_name, sizeof(xscale_name), "XSCALE-%d", ri); if ((error = copystr(xscale_name, pi->pm_name, PMC_NAME_MAX, NULL)) != 0) return error; pi->pm_class = PMC_CLASS_XSCALE; if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) { pi->pm_enabled = TRUE; *ppmc = phw->phw_pmc; } else { pi->pm_enabled = FALSE; *ppmc = NULL; } return (0); } static int xscale_get_config(int cpu, int ri, struct pmc **ppm) { *ppm = xscale_pcpu[cpu]->pc_xscalepmcs[ri].phw_pmc; return 0; } /* * XXX don't know what we should do here. */ static int xscale_switch_in(struct pmc_cpu *pc, struct pmc_process *pp) { return 0; } static int xscale_switch_out(struct pmc_cpu *pc, struct pmc_process *pp) { return 0; } static int xscale_pcpu_init(struct pmc_mdep *md, int cpu) { int first_ri, i; struct pmc_cpu *pc; struct xscale_cpu *pac; struct pmc_hw *phw; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[xscale,%d] wrong cpu number %d", __LINE__, cpu)); PMCDBG(MDP,INI,1,"xscale-init cpu=%d", cpu); xscale_pcpu[cpu] = pac = malloc(sizeof(struct xscale_cpu), M_PMC, M_WAITOK|M_ZERO); pac->pc_xscalepmcs = malloc(sizeof(struct pmc_hw) * xscale_npmcs, M_PMC, M_WAITOK|M_ZERO); pc = pmc_pcpu[cpu]; first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_XSCALE].pcd_ri; KASSERT(pc != NULL, ("[xscale,%d] NULL per-cpu pointer", __LINE__)); for (i = 0, phw = pac->pc_xscalepmcs; i < xscale_npmcs; i++, phw++) { phw->phw_state = PMC_PHW_FLAG_IS_ENABLED | PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i); phw->phw_pmc = NULL; pc->pc_hwpmcs[i + first_ri] = phw; } /* * Disable and put the PMUs into power save mode. */ if (xscale_npmcs == 2) { xscale_pmnc_write(XSCALE_PMNC_EVT1_MASK | XSCALE_PMNC_EVT0_MASK); } else { xscale_evtsel_write(XSCALE_EVTSEL_EVT3_MASK | XSCALE_EVTSEL_EVT2_MASK | XSCALE_EVTSEL_EVT1_MASK | XSCALE_EVTSEL_EVT0_MASK); } return 0; } static int xscale_pcpu_fini(struct pmc_mdep *md, int cpu) { return 0; } struct pmc_mdep * pmc_xscale_initialize() { struct pmc_mdep *pmc_mdep; struct pmc_classdep *pcd; uint32_t idreg; /* Get the Core Generation from CP15 */ __asm __volatile("mrc p15, 0, %0, c0, c0, 0" : "=r" (idreg)); xscale_gen = (idreg >> 13) & 0x3; switch (xscale_gen) { case 1: xscale_npmcs = 2; break; case 2: case 3: xscale_npmcs = 4; break; default: printf("%s: unknown XScale core generation\n", __func__); return (NULL); } PMCDBG(MDP,INI,1,"xscale-init npmcs=%d", xscale_npmcs); /* * Allocate space for pointers to PMC HW descriptors and for * the MDEP structure used by MI code. */ xscale_pcpu = malloc(sizeof(struct xscale_cpu *) * pmc_cpu_max(), M_PMC, M_WAITOK|M_ZERO); /* Just one class */ pmc_mdep = pmc_mdep_alloc(1); pmc_mdep->pmd_cputype = PMC_CPU_INTEL_XSCALE; pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_XSCALE]; pcd->pcd_caps = XSCALE_PMC_CAPS; pcd->pcd_class = PMC_CLASS_XSCALE; pcd->pcd_num = xscale_npmcs; pcd->pcd_ri = pmc_mdep->pmd_npmc; pcd->pcd_width = 32; pcd->pcd_allocate_pmc = xscale_allocate_pmc; pcd->pcd_config_pmc = xscale_config_pmc; pcd->pcd_pcpu_fini = xscale_pcpu_fini; pcd->pcd_pcpu_init = xscale_pcpu_init; pcd->pcd_describe = xscale_describe; pcd->pcd_get_config = xscale_get_config; pcd->pcd_read_pmc = xscale_read_pmc; pcd->pcd_release_pmc = xscale_release_pmc; pcd->pcd_start_pmc = xscale_start_pmc; pcd->pcd_stop_pmc = xscale_stop_pmc; pcd->pcd_write_pmc = xscale_write_pmc; pmc_mdep->pmd_intr = xscale_intr; pmc_mdep->pmd_switch_in = xscale_switch_in; pmc_mdep->pmd_switch_out = xscale_switch_out; pmc_mdep->pmd_npmc += xscale_npmcs; return (pmc_mdep); } void pmc_xscale_finalize(struct pmc_mdep *md) { }