Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ipmi/ipmi_linux/@/kern/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ipmi/ipmi_linux/@/kern/kern_cpuset.c |
/*- * Copyright (c) 2008, Jeffrey Roberson <jeff@freebsd.org> * All rights reserved. * * Copyright (c) 2008 Nokia Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/kern/kern_cpuset.c 225617 2011-09-16 13:58:51Z kmacy $"); #include "opt_ddb.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/sysproto.h> #include <sys/jail.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/refcount.h> #include <sys/sched.h> #include <sys/smp.h> #include <sys/syscallsubr.h> #include <sys/cpuset.h> #include <sys/sx.h> #include <sys/queue.h> #include <sys/libkern.h> #include <sys/limits.h> #include <sys/bus.h> #include <sys/interrupt.h> #include <vm/uma.h> #ifdef DDB #include <ddb/ddb.h> #endif /* DDB */ /* * cpusets provide a mechanism for creating and manipulating sets of * processors for the purpose of constraining the scheduling of threads to * specific processors. * * Each process belongs to an identified set, by default this is set 1. Each * thread may further restrict the cpus it may run on to a subset of this * named set. This creates an anonymous set which other threads and processes * may not join by number. * * The named set is referred to herein as the 'base' set to avoid ambiguity. * This set is usually a child of a 'root' set while the anonymous set may * simply be referred to as a mask. In the syscall api these are referred to * as the ROOT, CPUSET, and MASK levels where CPUSET is called 'base' here. * * Threads inherit their set from their creator whether it be anonymous or * not. This means that anonymous sets are immutable because they may be * shared. To modify an anonymous set a new set is created with the desired * mask and the same parent as the existing anonymous set. This gives the * illusion of each thread having a private mask. * * Via the syscall apis a user may ask to retrieve or modify the root, base, * or mask that is discovered via a pid, tid, or setid. Modifying a set * modifies all numbered and anonymous child sets to comply with the new mask. * Modifying a pid or tid's mask applies only to that tid but must still * exist within the assigned parent set. * * A thread may not be assigned to a group separate from other threads in * the process. This is to remove ambiguity when the setid is queried with * a pid argument. There is no other technical limitation. * * This somewhat complex arrangement is intended to make it easy for * applications to query available processors and bind their threads to * specific processors while also allowing administrators to dynamically * reprovision by changing sets which apply to groups of processes. * * A simple application should not concern itself with sets at all and * rather apply masks to its own threads via CPU_WHICH_TID and a -1 id * meaning 'curthread'. It may query available cpus for that tid with a * getaffinity call using (CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, ...). */ static uma_zone_t cpuset_zone; static struct mtx cpuset_lock; static struct setlist cpuset_ids; static struct unrhdr *cpuset_unr; static struct cpuset *cpuset_zero; /* Return the size of cpuset_t at the kernel level */ SYSCTL_INT(_kern_sched, OID_AUTO, cpusetsize, CTLFLAG_RD, 0, sizeof(cpuset_t), "sizeof(cpuset_t)"); cpuset_t *cpuset_root; /* * Acquire a reference to a cpuset, all pointers must be tracked with refs. */ struct cpuset * cpuset_ref(struct cpuset *set) { refcount_acquire(&set->cs_ref); return (set); } /* * Walks up the tree from 'set' to find the root. Returns the root * referenced. */ static struct cpuset * cpuset_refroot(struct cpuset *set) { for (; set->cs_parent != NULL; set = set->cs_parent) if (set->cs_flags & CPU_SET_ROOT) break; cpuset_ref(set); return (set); } /* * Find the first non-anonymous set starting from 'set'. Returns this set * referenced. May return the passed in set with an extra ref if it is * not anonymous. */ static struct cpuset * cpuset_refbase(struct cpuset *set) { if (set->cs_id == CPUSET_INVALID) set = set->cs_parent; cpuset_ref(set); return (set); } /* * Release a reference in a context where it is safe to allocate. */ void cpuset_rel(struct cpuset *set) { cpusetid_t id; if (refcount_release(&set->cs_ref) == 0) return; mtx_lock_spin(&cpuset_lock); LIST_REMOVE(set, cs_siblings); id = set->cs_id; if (id != CPUSET_INVALID) LIST_REMOVE(set, cs_link); mtx_unlock_spin(&cpuset_lock); cpuset_rel(set->cs_parent); uma_zfree(cpuset_zone, set); if (id != CPUSET_INVALID) free_unr(cpuset_unr, id); } /* * Deferred release must be used when in a context that is not safe to * allocate/free. This places any unreferenced sets on the list 'head'. */ static void cpuset_rel_defer(struct setlist *head, struct cpuset *set) { if (refcount_release(&set->cs_ref) == 0) return; mtx_lock_spin(&cpuset_lock); LIST_REMOVE(set, cs_siblings); if (set->cs_id != CPUSET_INVALID) LIST_REMOVE(set, cs_link); LIST_INSERT_HEAD(head, set, cs_link); mtx_unlock_spin(&cpuset_lock); } /* * Complete a deferred release. Removes the set from the list provided to * cpuset_rel_defer. */ static void cpuset_rel_complete(struct cpuset *set) { LIST_REMOVE(set, cs_link); cpuset_rel(set->cs_parent); uma_zfree(cpuset_zone, set); } /* * Find a set based on an id. Returns it with a ref. */ static struct cpuset * cpuset_lookup(cpusetid_t setid, struct thread *td) { struct cpuset *set; if (setid == CPUSET_INVALID) return (NULL); mtx_lock_spin(&cpuset_lock); LIST_FOREACH(set, &cpuset_ids, cs_link) if (set->cs_id == setid) break; if (set) cpuset_ref(set); mtx_unlock_spin(&cpuset_lock); KASSERT(td != NULL, ("[%s:%d] td is NULL", __func__, __LINE__)); if (set != NULL && jailed(td->td_ucred)) { struct cpuset *jset, *tset; jset = td->td_ucred->cr_prison->pr_cpuset; for (tset = set; tset != NULL; tset = tset->cs_parent) if (tset == jset) break; if (tset == NULL) { cpuset_rel(set); set = NULL; } } return (set); } /* * Create a set in the space provided in 'set' with the provided parameters. * The set is returned with a single ref. May return EDEADLK if the set * will have no valid cpu based on restrictions from the parent. */ static int _cpuset_create(struct cpuset *set, struct cpuset *parent, const cpuset_t *mask, cpusetid_t id) { if (!CPU_OVERLAP(&parent->cs_mask, mask)) return (EDEADLK); CPU_COPY(mask, &set->cs_mask); LIST_INIT(&set->cs_children); refcount_init(&set->cs_ref, 1); set->cs_flags = 0; mtx_lock_spin(&cpuset_lock); CPU_AND(&set->cs_mask, &parent->cs_mask); set->cs_id = id; set->cs_parent = cpuset_ref(parent); LIST_INSERT_HEAD(&parent->cs_children, set, cs_siblings); if (set->cs_id != CPUSET_INVALID) LIST_INSERT_HEAD(&cpuset_ids, set, cs_link); mtx_unlock_spin(&cpuset_lock); return (0); } /* * Create a new non-anonymous set with the requested parent and mask. May * return failures if the mask is invalid or a new number can not be * allocated. */ static int cpuset_create(struct cpuset **setp, struct cpuset *parent, const cpuset_t *mask) { struct cpuset *set; cpusetid_t id; int error; id = alloc_unr(cpuset_unr); if (id == -1) return (ENFILE); *setp = set = uma_zalloc(cpuset_zone, M_WAITOK); error = _cpuset_create(set, parent, mask, id); if (error == 0) return (0); free_unr(cpuset_unr, id); uma_zfree(cpuset_zone, set); return (error); } /* * Recursively check for errors that would occur from applying mask to * the tree of sets starting at 'set'. Checks for sets that would become * empty as well as RDONLY flags. */ static int cpuset_testupdate(struct cpuset *set, cpuset_t *mask) { struct cpuset *nset; cpuset_t newmask; int error; mtx_assert(&cpuset_lock, MA_OWNED); if (set->cs_flags & CPU_SET_RDONLY) return (EPERM); if (!CPU_OVERLAP(&set->cs_mask, mask)) return (EDEADLK); CPU_COPY(&set->cs_mask, &newmask); CPU_AND(&newmask, mask); error = 0; LIST_FOREACH(nset, &set->cs_children, cs_siblings) if ((error = cpuset_testupdate(nset, &newmask)) != 0) break; return (error); } /* * Applies the mask 'mask' without checking for empty sets or permissions. */ static void cpuset_update(struct cpuset *set, cpuset_t *mask) { struct cpuset *nset; mtx_assert(&cpuset_lock, MA_OWNED); CPU_AND(&set->cs_mask, mask); LIST_FOREACH(nset, &set->cs_children, cs_siblings) cpuset_update(nset, &set->cs_mask); return; } /* * Modify the set 'set' to use a copy of the mask provided. Apply this new * mask to restrict all children in the tree. Checks for validity before * applying the changes. */ static int cpuset_modify(struct cpuset *set, cpuset_t *mask) { struct cpuset *root; int error; error = priv_check(curthread, PRIV_SCHED_CPUSET); if (error) return (error); /* * In case we are called from within the jail * we do not allow modifying the dedicated root * cpuset of the jail but may still allow to * change child sets. */ if (jailed(curthread->td_ucred) && set->cs_flags & CPU_SET_ROOT) return (EPERM); /* * Verify that we have access to this set of * cpus. */ root = set->cs_parent; if (root && !CPU_SUBSET(&root->cs_mask, mask)) return (EINVAL); mtx_lock_spin(&cpuset_lock); error = cpuset_testupdate(set, mask); if (error) goto out; cpuset_update(set, mask); CPU_COPY(mask, &set->cs_mask); out: mtx_unlock_spin(&cpuset_lock); return (error); } /* * Resolve the 'which' parameter of several cpuset apis. * * For WHICH_PID and WHICH_TID return a locked proc and valid proc/tid. Also * checks for permission via p_cansched(). * * For WHICH_SET returns a valid set with a new reference. * * -1 may be supplied for any argument to mean the current proc/thread or * the base set of the current thread. May fail with ESRCH/EPERM. */ static int cpuset_which(cpuwhich_t which, id_t id, struct proc **pp, struct thread **tdp, struct cpuset **setp) { struct cpuset *set; struct thread *td; struct proc *p; int error; *pp = p = NULL; *tdp = td = NULL; *setp = set = NULL; switch (which) { case CPU_WHICH_PID: if (id == -1) { PROC_LOCK(curproc); p = curproc; break; } if ((p = pfind(id)) == NULL) return (ESRCH); break; case CPU_WHICH_TID: if (id == -1) { PROC_LOCK(curproc); p = curproc; td = curthread; break; } td = tdfind(id, -1); if (td == NULL) return (ESRCH); p = td->td_proc; break; case CPU_WHICH_CPUSET: if (id == -1) { thread_lock(curthread); set = cpuset_refbase(curthread->td_cpuset); thread_unlock(curthread); } else set = cpuset_lookup(id, curthread); if (set) { *setp = set; return (0); } return (ESRCH); case CPU_WHICH_JAIL: { /* Find `set' for prison with given id. */ struct prison *pr; sx_slock(&allprison_lock); pr = prison_find_child(curthread->td_ucred->cr_prison, id); sx_sunlock(&allprison_lock); if (pr == NULL) return (ESRCH); cpuset_ref(pr->pr_cpuset); *setp = pr->pr_cpuset; mtx_unlock(&pr->pr_mtx); return (0); } case CPU_WHICH_IRQ: return (0); default: return (EINVAL); } error = p_cansched(curthread, p); if (error) { PROC_UNLOCK(p); return (error); } if (td == NULL) td = FIRST_THREAD_IN_PROC(p); *pp = p; *tdp = td; return (0); } /* * Create an anonymous set with the provided mask in the space provided by * 'fset'. If the passed in set is anonymous we use its parent otherwise * the new set is a child of 'set'. */ static int cpuset_shadow(struct cpuset *set, struct cpuset *fset, const cpuset_t *mask) { struct cpuset *parent; if (set->cs_id == CPUSET_INVALID) parent = set->cs_parent; else parent = set; if (!CPU_SUBSET(&parent->cs_mask, mask)) return (EDEADLK); return (_cpuset_create(fset, parent, mask, CPUSET_INVALID)); } /* * Handle two cases for replacing the base set or mask of an entire process. * * 1) Set is non-null and mask is null. This reparents all anonymous sets * to the provided set and replaces all non-anonymous td_cpusets with the * provided set. * 2) Mask is non-null and set is null. This replaces or creates anonymous * sets for every thread with the existing base as a parent. * * This is overly complicated because we can't allocate while holding a * spinlock and spinlocks must be held while changing and examining thread * state. */ static int cpuset_setproc(pid_t pid, struct cpuset *set, cpuset_t *mask) { struct setlist freelist; struct setlist droplist; struct cpuset *tdset; struct cpuset *nset; struct thread *td; struct proc *p; int threads; int nfree; int error; /* * The algorithm requires two passes due to locking considerations. * * 1) Lookup the process and acquire the locks in the required order. * 2) If enough cpusets have not been allocated release the locks and * allocate them. Loop. */ LIST_INIT(&freelist); LIST_INIT(&droplist); nfree = 0; for (;;) { error = cpuset_which(CPU_WHICH_PID, pid, &p, &td, &nset); if (error) goto out; if (nfree >= p->p_numthreads) break; threads = p->p_numthreads; PROC_UNLOCK(p); for (; nfree < threads; nfree++) { nset = uma_zalloc(cpuset_zone, M_WAITOK); LIST_INSERT_HEAD(&freelist, nset, cs_link); } } PROC_LOCK_ASSERT(p, MA_OWNED); /* * Now that the appropriate locks are held and we have enough cpusets, * make sure the operation will succeed before applying changes. The * proc lock prevents td_cpuset from changing between calls. */ error = 0; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); tdset = td->td_cpuset; /* * Verify that a new mask doesn't specify cpus outside of * the set the thread is a member of. */ if (mask) { if (tdset->cs_id == CPUSET_INVALID) tdset = tdset->cs_parent; if (!CPU_SUBSET(&tdset->cs_mask, mask)) error = EDEADLK; /* * Verify that a new set won't leave an existing thread * mask without a cpu to run on. It can, however, restrict * the set. */ } else if (tdset->cs_id == CPUSET_INVALID) { if (!CPU_OVERLAP(&set->cs_mask, &tdset->cs_mask)) error = EDEADLK; } thread_unlock(td); if (error) goto unlock_out; } /* * Replace each thread's cpuset while using deferred release. We * must do this because the thread lock must be held while operating * on the thread and this limits the type of operations allowed. */ FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); /* * If we presently have an anonymous set or are applying a * mask we must create an anonymous shadow set. That is * either parented to our existing base or the supplied set. * * If we have a base set with no anonymous shadow we simply * replace it outright. */ tdset = td->td_cpuset; if (tdset->cs_id == CPUSET_INVALID || mask) { nset = LIST_FIRST(&freelist); LIST_REMOVE(nset, cs_link); if (mask) error = cpuset_shadow(tdset, nset, mask); else error = _cpuset_create(nset, set, &tdset->cs_mask, CPUSET_INVALID); if (error) { LIST_INSERT_HEAD(&freelist, nset, cs_link); thread_unlock(td); break; } } else nset = cpuset_ref(set); cpuset_rel_defer(&droplist, tdset); td->td_cpuset = nset; sched_affinity(td); thread_unlock(td); } unlock_out: PROC_UNLOCK(p); out: while ((nset = LIST_FIRST(&droplist)) != NULL) cpuset_rel_complete(nset); while ((nset = LIST_FIRST(&freelist)) != NULL) { LIST_REMOVE(nset, cs_link); uma_zfree(cpuset_zone, nset); } return (error); } /* * Calculate the ffs() of the cpuset. */ int cpusetobj_ffs(const cpuset_t *set) { size_t i; int cbit; cbit = 0; for (i = 0; i < _NCPUWORDS; i++) { if (set->__bits[i] != 0) { cbit = ffsl(set->__bits[i]); cbit += i * _NCPUBITS; break; } } return (cbit); } /* * Return a string representing a valid layout for a cpuset_t object. * It expects an incoming buffer at least sized as CPUSETBUFSIZ. */ char * cpusetobj_strprint(char *buf, const cpuset_t *set) { char *tbuf; size_t i, bytesp, bufsiz; tbuf = buf; bytesp = 0; bufsiz = CPUSETBUFSIZ; for (i = _NCPUWORDS - 1; i > 0; i--) { bytesp = snprintf(tbuf, bufsiz, "%lx, ", set->__bits[i]); bufsiz -= bytesp; tbuf += bytesp; } snprintf(tbuf, bufsiz, "%lx", set->__bits[0]); return (buf); } /* * Build a valid cpuset_t object from a string representation. * It expects an incoming buffer at least sized as CPUSETBUFSIZ. */ int cpusetobj_strscan(cpuset_t *set, const char *buf) { u_int nwords; int i, ret; if (strlen(buf) > CPUSETBUFSIZ - 1) return (-1); /* Allow to pass a shorter version of the mask when necessary. */ nwords = 1; for (i = 0; buf[i] != '\0'; i++) if (buf[i] == ',') nwords++; if (nwords > _NCPUWORDS) return (-1); CPU_ZERO(set); for (i = nwords - 1; i > 0; i--) { ret = sscanf(buf, "%lx, ", &set->__bits[i]); if (ret == 0 || ret == -1) return (-1); buf = strstr(buf, " "); if (buf == NULL) return (-1); buf++; } ret = sscanf(buf, "%lx", &set->__bits[0]); if (ret == 0 || ret == -1) return (-1); return (0); } /* * Apply an anonymous mask to a single thread. */ int cpuset_setthread(lwpid_t id, cpuset_t *mask) { struct cpuset *nset; struct cpuset *set; struct thread *td; struct proc *p; int error; nset = uma_zalloc(cpuset_zone, M_WAITOK); error = cpuset_which(CPU_WHICH_TID, id, &p, &td, &set); if (error) goto out; set = NULL; thread_lock(td); error = cpuset_shadow(td->td_cpuset, nset, mask); if (error == 0) { set = td->td_cpuset; td->td_cpuset = nset; sched_affinity(td); nset = NULL; } thread_unlock(td); PROC_UNLOCK(p); if (set) cpuset_rel(set); out: if (nset) uma_zfree(cpuset_zone, nset); return (error); } /* * Creates the cpuset for thread0. We make two sets: * * 0 - The root set which should represent all valid processors in the * system. It is initially created with a mask of all processors * because we don't know what processors are valid until cpuset_init() * runs. This set is immutable. * 1 - The default set which all processes are a member of until changed. * This allows an administrator to move all threads off of given cpus to * dedicate them to high priority tasks or save power etc. */ struct cpuset * cpuset_thread0(void) { struct cpuset *set; int error; cpuset_zone = uma_zcreate("cpuset", sizeof(struct cpuset), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); mtx_init(&cpuset_lock, "cpuset", NULL, MTX_SPIN | MTX_RECURSE); /* * Create the root system set for the whole machine. Doesn't use * cpuset_create() due to NULL parent. */ set = uma_zalloc(cpuset_zone, M_WAITOK | M_ZERO); CPU_FILL(&set->cs_mask); LIST_INIT(&set->cs_children); LIST_INSERT_HEAD(&cpuset_ids, set, cs_link); set->cs_ref = 1; set->cs_flags = CPU_SET_ROOT; cpuset_zero = set; cpuset_root = &set->cs_mask; /* * Now derive a default, modifiable set from that to give out. */ set = uma_zalloc(cpuset_zone, M_WAITOK); error = _cpuset_create(set, cpuset_zero, &cpuset_zero->cs_mask, 1); KASSERT(error == 0, ("Error creating default set: %d\n", error)); /* * Initialize the unit allocator. 0 and 1 are allocated above. */ cpuset_unr = new_unrhdr(2, INT_MAX, NULL); return (set); } /* * Create a cpuset, which would be cpuset_create() but * mark the new 'set' as root. * * We are not going to reparent the td to it. Use cpuset_setproc_update_set() * for that. * * In case of no error, returns the set in *setp locked with a reference. */ int cpuset_create_root(struct prison *pr, struct cpuset **setp) { struct cpuset *set; int error; KASSERT(pr != NULL, ("[%s:%d] invalid pr", __func__, __LINE__)); KASSERT(setp != NULL, ("[%s:%d] invalid setp", __func__, __LINE__)); error = cpuset_create(setp, pr->pr_cpuset, &pr->pr_cpuset->cs_mask); if (error) return (error); KASSERT(*setp != NULL, ("[%s:%d] cpuset_create returned invalid data", __func__, __LINE__)); /* Mark the set as root. */ set = *setp; set->cs_flags |= CPU_SET_ROOT; return (0); } int cpuset_setproc_update_set(struct proc *p, struct cpuset *set) { int error; KASSERT(p != NULL, ("[%s:%d] invalid proc", __func__, __LINE__)); KASSERT(set != NULL, ("[%s:%d] invalid set", __func__, __LINE__)); cpuset_ref(set); error = cpuset_setproc(p->p_pid, set, NULL); if (error) return (error); cpuset_rel(set); return (0); } /* * This is called once the final set of system cpus is known. Modifies * the root set and all children and mark the root read-only. */ static void cpuset_init(void *arg) { cpuset_t mask; mask = all_cpus; if (cpuset_modify(cpuset_zero, &mask)) panic("Can't set initial cpuset mask.\n"); cpuset_zero->cs_flags |= CPU_SET_RDONLY; } SYSINIT(cpuset, SI_SUB_SMP, SI_ORDER_ANY, cpuset_init, NULL); #ifndef _SYS_SYSPROTO_H_ struct cpuset_args { cpusetid_t *setid; }; #endif int sys_cpuset(struct thread *td, struct cpuset_args *uap) { struct cpuset *root; struct cpuset *set; int error; thread_lock(td); root = cpuset_refroot(td->td_cpuset); thread_unlock(td); error = cpuset_create(&set, root, &root->cs_mask); cpuset_rel(root); if (error) return (error); error = copyout(&set->cs_id, uap->setid, sizeof(set->cs_id)); if (error == 0) error = cpuset_setproc(-1, set, NULL); cpuset_rel(set); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_setid_args { cpuwhich_t which; id_t id; cpusetid_t setid; }; #endif int sys_cpuset_setid(struct thread *td, struct cpuset_setid_args *uap) { struct cpuset *set; int error; /* * Presently we only support per-process sets. */ if (uap->which != CPU_WHICH_PID) return (EINVAL); set = cpuset_lookup(uap->setid, td); if (set == NULL) return (ESRCH); error = cpuset_setproc(uap->id, set, NULL); cpuset_rel(set); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_getid_args { cpulevel_t level; cpuwhich_t which; id_t id; cpusetid_t *setid; #endif int sys_cpuset_getid(struct thread *td, struct cpuset_getid_args *uap) { struct cpuset *nset; struct cpuset *set; struct thread *ttd; struct proc *p; cpusetid_t id; int error; if (uap->level == CPU_LEVEL_WHICH && uap->which != CPU_WHICH_CPUSET) return (EINVAL); error = cpuset_which(uap->which, uap->id, &p, &ttd, &set); if (error) return (error); switch (uap->which) { case CPU_WHICH_TID: case CPU_WHICH_PID: thread_lock(ttd); set = cpuset_refbase(ttd->td_cpuset); thread_unlock(ttd); PROC_UNLOCK(p); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: break; case CPU_WHICH_IRQ: return (EINVAL); } switch (uap->level) { case CPU_LEVEL_ROOT: nset = cpuset_refroot(set); cpuset_rel(set); set = nset; break; case CPU_LEVEL_CPUSET: break; case CPU_LEVEL_WHICH: break; } id = set->cs_id; cpuset_rel(set); if (error == 0) error = copyout(&id, uap->setid, sizeof(id)); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_getaffinity_args { cpulevel_t level; cpuwhich_t which; id_t id; size_t cpusetsize; cpuset_t *mask; }; #endif int sys_cpuset_getaffinity(struct thread *td, struct cpuset_getaffinity_args *uap) { struct thread *ttd; struct cpuset *nset; struct cpuset *set; struct proc *p; cpuset_t *mask; int error; size_t size; if (uap->cpusetsize < sizeof(cpuset_t) || uap->cpusetsize > CPU_MAXSIZE / NBBY) return (ERANGE); size = uap->cpusetsize; mask = malloc(size, M_TEMP, M_WAITOK | M_ZERO); error = cpuset_which(uap->which, uap->id, &p, &ttd, &set); if (error) goto out; switch (uap->level) { case CPU_LEVEL_ROOT: case CPU_LEVEL_CPUSET: switch (uap->which) { case CPU_WHICH_TID: case CPU_WHICH_PID: thread_lock(ttd); set = cpuset_ref(ttd->td_cpuset); thread_unlock(ttd); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: break; case CPU_WHICH_IRQ: error = EINVAL; goto out; } if (uap->level == CPU_LEVEL_ROOT) nset = cpuset_refroot(set); else nset = cpuset_refbase(set); CPU_COPY(&nset->cs_mask, mask); cpuset_rel(nset); break; case CPU_LEVEL_WHICH: switch (uap->which) { case CPU_WHICH_TID: thread_lock(ttd); CPU_COPY(&ttd->td_cpuset->cs_mask, mask); thread_unlock(ttd); break; case CPU_WHICH_PID: FOREACH_THREAD_IN_PROC(p, ttd) { thread_lock(ttd); CPU_OR(mask, &ttd->td_cpuset->cs_mask); thread_unlock(ttd); } break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: CPU_COPY(&set->cs_mask, mask); break; case CPU_WHICH_IRQ: error = intr_getaffinity(uap->id, mask); break; } break; default: error = EINVAL; break; } if (set) cpuset_rel(set); if (p) PROC_UNLOCK(p); if (error == 0) error = copyout(mask, uap->mask, size); out: free(mask, M_TEMP); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_setaffinity_args { cpulevel_t level; cpuwhich_t which; id_t id; size_t cpusetsize; const cpuset_t *mask; }; #endif int sys_cpuset_setaffinity(struct thread *td, struct cpuset_setaffinity_args *uap) { struct cpuset *nset; struct cpuset *set; struct thread *ttd; struct proc *p; cpuset_t *mask; int error; if (uap->cpusetsize < sizeof(cpuset_t) || uap->cpusetsize > CPU_MAXSIZE / NBBY) return (ERANGE); mask = malloc(uap->cpusetsize, M_TEMP, M_WAITOK | M_ZERO); error = copyin(uap->mask, mask, uap->cpusetsize); if (error) goto out; /* * Verify that no high bits are set. */ if (uap->cpusetsize > sizeof(cpuset_t)) { char *end; char *cp; end = cp = (char *)&mask->__bits; end += uap->cpusetsize; cp += sizeof(cpuset_t); while (cp != end) if (*cp++ != 0) { error = EINVAL; goto out; } } switch (uap->level) { case CPU_LEVEL_ROOT: case CPU_LEVEL_CPUSET: error = cpuset_which(uap->which, uap->id, &p, &ttd, &set); if (error) break; switch (uap->which) { case CPU_WHICH_TID: case CPU_WHICH_PID: thread_lock(ttd); set = cpuset_ref(ttd->td_cpuset); thread_unlock(ttd); PROC_UNLOCK(p); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: break; case CPU_WHICH_IRQ: error = EINVAL; goto out; } if (uap->level == CPU_LEVEL_ROOT) nset = cpuset_refroot(set); else nset = cpuset_refbase(set); error = cpuset_modify(nset, mask); cpuset_rel(nset); cpuset_rel(set); break; case CPU_LEVEL_WHICH: switch (uap->which) { case CPU_WHICH_TID: error = cpuset_setthread(uap->id, mask); break; case CPU_WHICH_PID: error = cpuset_setproc(uap->id, NULL, mask); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: error = cpuset_which(uap->which, uap->id, &p, &ttd, &set); if (error == 0) { error = cpuset_modify(set, mask); cpuset_rel(set); } break; case CPU_WHICH_IRQ: error = intr_setaffinity(uap->id, mask); break; default: error = EINVAL; break; } break; default: error = EINVAL; break; } out: free(mask, M_TEMP); return (error); } #ifdef DDB DB_SHOW_COMMAND(cpusets, db_show_cpusets) { struct cpuset *set; int cpu, once; LIST_FOREACH(set, &cpuset_ids, cs_link) { db_printf("set=%p id=%-6u ref=%-6d flags=0x%04x parent id=%d\n", set, set->cs_id, set->cs_ref, set->cs_flags, (set->cs_parent != NULL) ? set->cs_parent->cs_id : 0); db_printf(" mask="); for (once = 0, cpu = 0; cpu < CPU_SETSIZE; cpu++) { if (CPU_ISSET(cpu, &set->cs_mask)) { if (once == 0) { db_printf("%d", cpu); once = 1; } else db_printf(",%d", cpu); } } db_printf("\n"); if (db_pager_quit) break; } } #endif /* DDB */