Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ispfw/isp_1080_it/@/dev/sound/pcm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ispfw/isp_1080_it/@/dev/sound/pcm/feeder_chain.c |
/*- * Copyright (c) 2008-2009 Ariff Abdullah <ariff@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include <dev/sound/pcm/sound.h> #include "feeder_if.h" SND_DECLARE_FILE("$FreeBSD: release/9.1.0/sys/dev/sound/pcm/feeder_chain.c 193640 2009-06-07 19:12:08Z ariff $"); /* chain state */ struct feeder_chain_state { uint32_t afmt; /* audio format */ uint32_t rate; /* sampling rate */ struct pcmchan_matrix *matrix; /* matrix map */ }; /* * chain descriptor that will be passed around from the beginning until the * end of chain process. */ struct feeder_chain_desc { struct feeder_chain_state origin; /* original state */ struct feeder_chain_state current; /* current state */ struct feeder_chain_state target; /* target state */ struct pcm_feederdesc desc; /* feeder descriptor */ uint32_t afmt_ne; /* prefered native endian */ int mode; /* chain mode */ int use_eq; /* need EQ? */ int use_matrix; /* need channel matrixing? */ int use_volume; /* need softpcmvol? */ int dummy; /* dummy passthrough */ int expensive; /* possibly expensive */ }; #define FEEDER_CHAIN_LEAN 0 #define FEEDER_CHAIN_16 1 #define FEEDER_CHAIN_32 2 #define FEEDER_CHAIN_MULTI 3 #define FEEDER_CHAIN_FULLMULTI 4 #define FEEDER_CHAIN_LAST 5 #if defined(SND_FEEDER_FULL_MULTIFORMAT) #define FEEDER_CHAIN_DEFAULT FEEDER_CHAIN_FULLMULTI #elif defined(SND_FEEDER_MULTIFORMAT) #define FEEDER_CHAIN_DEFAULT FEEDER_CHAIN_MULTI #else #define FEEDER_CHAIN_DEFAULT FEEDER_CHAIN_LEAN #endif /* * List of prefered formats that might be required during * processing. It will be decided through snd_fmtbest(). */ /* 'Lean' mode, signed 16 or 32 bit native endian. */ static uint32_t feeder_chain_formats_lean[] = { AFMT_S16_NE, AFMT_S32_NE, 0 }; /* Force everything to signed 16 bit native endian. */ static uint32_t feeder_chain_formats_16[] = { AFMT_S16_NE, 0 }; /* Force everything to signed 32 bit native endian. */ static uint32_t feeder_chain_formats_32[] = { AFMT_S32_NE, 0 }; /* Multiple choices, all except 8 bit. */ static uint32_t feeder_chain_formats_multi[] = { AFMT_S16_LE, AFMT_S16_BE, AFMT_U16_LE, AFMT_U16_BE, AFMT_S24_LE, AFMT_S24_BE, AFMT_U24_LE, AFMT_U24_BE, AFMT_S32_LE, AFMT_S32_BE, AFMT_U32_LE, AFMT_U32_BE, 0 }; /* Everything that is convertible. */ static uint32_t feeder_chain_formats_fullmulti[] = { AFMT_S8, AFMT_U8, AFMT_S16_LE, AFMT_S16_BE, AFMT_U16_LE, AFMT_U16_BE, AFMT_S24_LE, AFMT_S24_BE, AFMT_U24_LE, AFMT_U24_BE, AFMT_S32_LE, AFMT_S32_BE, AFMT_U32_LE, AFMT_U32_BE, 0 }; static uint32_t *feeder_chain_formats[FEEDER_CHAIN_LAST] = { [FEEDER_CHAIN_LEAN] = feeder_chain_formats_lean, [FEEDER_CHAIN_16] = feeder_chain_formats_16, [FEEDER_CHAIN_32] = feeder_chain_formats_32, [FEEDER_CHAIN_MULTI] = feeder_chain_formats_multi, [FEEDER_CHAIN_FULLMULTI] = feeder_chain_formats_fullmulti }; static int feeder_chain_mode = FEEDER_CHAIN_DEFAULT; #if defined(_KERNEL) && defined(SND_DEBUG) && defined(SND_FEEDER_FULL_MULTIFORMAT) TUNABLE_INT("hw.snd.feeder_chain_mode", &feeder_chain_mode); SYSCTL_INT(_hw_snd, OID_AUTO, feeder_chain_mode, CTLFLAG_RW, &feeder_chain_mode, 0, "feeder chain mode " "(0=lean, 1=16bit, 2=32bit, 3=multiformat, 4=fullmultiformat)"); #endif /* * feeder_build_format(): Chain any format converter. */ static int feeder_build_format(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feederdesc *desc; int ret; desc = &(cdesc->desc); desc->type = FEEDER_FORMAT; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_format\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = cdesc->target.afmt; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_format\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_FORMAT; cdesc->current.afmt = cdesc->target.afmt; return (0); } /* * feeder_build_formatne(): Chain format converter that suite best for native * endian format. */ static int feeder_build_formatne(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_chain_state otarget; int ret; if (cdesc->afmt_ne == 0 || AFMT_ENCODING(cdesc->current.afmt) == cdesc->afmt_ne) return (0); otarget = cdesc->target; cdesc->target = cdesc->current; cdesc->target.afmt = SND_FORMAT(cdesc->afmt_ne, cdesc->current.matrix->channels, cdesc->current.matrix->ext); ret = feeder_build_format(c, cdesc); if (ret != 0) return (ret); cdesc->target = otarget; return (0); } /* * feeder_build_rate(): Chain sample rate converter. */ static int feeder_build_rate(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feeder *f; struct pcm_feederdesc *desc; int ret; ret = feeder_build_formatne(c, cdesc); if (ret != 0) return (ret); desc = &(cdesc->desc); desc->type = FEEDER_RATE; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_rate\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = desc->in; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_rate\n", __func__); return (ret); } f = c->feeder; /* * If in 'dummy' mode (possibly due to passthrough mode), set the * conversion quality to the lowest possible (should be fastest) since * listener won't be hearing anything. Theoretically we can just * disable it, but that will cause weird runtime behaviour: * application appear to play something that is either too fast or too * slow. */ if (cdesc->dummy != 0) { ret = FEEDER_SET(f, FEEDRATE_QUALITY, 0); if (ret != 0) { device_printf(c->dev, "%s(): can't set resampling quality\n", __func__); return (ret); } } ret = FEEDER_SET(f, FEEDRATE_SRC, cdesc->current.rate); if (ret != 0) { device_printf(c->dev, "%s(): can't set source rate\n", __func__); return (ret); } ret = FEEDER_SET(f, FEEDRATE_DST, cdesc->target.rate); if (ret != 0) { device_printf(c->dev, "%s(): can't set destination rate\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_RATE; cdesc->current.rate = cdesc->target.rate; return (0); } /* * feeder_build_matrix(): Chain channel matrixing converter. */ static int feeder_build_matrix(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feeder *f; struct pcm_feederdesc *desc; int ret; ret = feeder_build_formatne(c, cdesc); if (ret != 0) return (ret); desc = &(cdesc->desc); desc->type = FEEDER_MATRIX; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_matrix\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = SND_FORMAT(cdesc->current.afmt, cdesc->target.matrix->channels, cdesc->target.matrix->ext); ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_matrix\n", __func__); return (ret); } f = c->feeder; ret = feeder_matrix_setup(f, cdesc->current.matrix, cdesc->target.matrix); if (ret != 0) { device_printf(c->dev, "%s(): feeder_matrix_setup() failed\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_MATRIX; cdesc->current.afmt = desc->out; cdesc->current.matrix = cdesc->target.matrix; cdesc->use_matrix = 0; return (0); } /* * feeder_build_volume(): Chain soft volume. */ static int feeder_build_volume(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feeder *f; struct pcm_feederdesc *desc; int ret; ret = feeder_build_formatne(c, cdesc); if (ret != 0) return (ret); desc = &(cdesc->desc); desc->type = FEEDER_VOLUME; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_volume\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = desc->in; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_volume\n", __func__); return (ret); } f = c->feeder; /* * If in 'dummy' mode (possibly due to passthrough mode), set BYPASS * mode since listener won't be hearing anything. Theoretically we can * just disable it, but that will confuse volume per channel mixer. */ if (cdesc->dummy != 0) { ret = FEEDER_SET(f, FEEDVOLUME_STATE, FEEDVOLUME_BYPASS); if (ret != 0) { device_printf(c->dev, "%s(): can't set volume bypass\n", __func__); return (ret); } } ret = feeder_volume_apply_matrix(f, cdesc->current.matrix); if (ret != 0) { device_printf(c->dev, "%s(): feeder_volume_apply_matrix() failed\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_VOLUME; cdesc->use_volume = 0; return (0); } /* * feeder_build_eq(): Chain parametric software equalizer. */ static int feeder_build_eq(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feeder *f; struct pcm_feederdesc *desc; int ret; ret = feeder_build_formatne(c, cdesc); if (ret != 0) return (ret); desc = &(cdesc->desc); desc->type = FEEDER_EQ; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_eq\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = desc->in; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_eq\n", __func__); return (ret); } f = c->feeder; ret = FEEDER_SET(f, FEEDEQ_RATE, cdesc->current.rate); if (ret != 0) { device_printf(c->dev, "%s(): can't set rate on feeder_eq\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_EQ; cdesc->use_eq = 0; return (0); } /* * feeder_build_root(): Chain root feeder, the top, father of all. */ static int feeder_build_root(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; int ret; fc = feeder_getclass(NULL); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_root\n", __func__); return (ENOTSUP); } ret = chn_addfeeder(c, fc, NULL); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_root\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_ROOT; c->feeder->desc->in = cdesc->current.afmt; c->feeder->desc->out = cdesc->current.afmt; return (0); } /* * feeder_build_mixer(): Chain software mixer for virtual channels. */ static int feeder_build_mixer(struct pcm_channel *c, struct feeder_chain_desc *cdesc) { struct feeder_class *fc; struct pcm_feederdesc *desc; int ret; desc = &(cdesc->desc); desc->type = FEEDER_MIXER; desc->in = 0; desc->out = 0; desc->flags = 0; fc = feeder_getclass(desc); if (fc == NULL) { device_printf(c->dev, "%s(): can't find feeder_mixer\n", __func__); return (ENOTSUP); } desc->in = cdesc->current.afmt; desc->out = desc->in; ret = chn_addfeeder(c, fc, desc); if (ret != 0) { device_printf(c->dev, "%s(): can't add feeder_mixer\n", __func__); return (ret); } c->feederflags |= 1 << FEEDER_MIXER; return (0); } /* Macrosses to ease our job doing stuffs later. */ #define FEEDER_BW(c, t) ((c)->t.matrix->channels * (c)->t.rate) #define FEEDRATE_UP(c) ((c)->target.rate > (c)->current.rate) #define FEEDRATE_DOWN(c) ((c)->target.rate < (c)->current.rate) #define FEEDRATE_REQUIRED(c) (FEEDRATE_UP(c) || FEEDRATE_DOWN(c)) #define FEEDMATRIX_UP(c) ((c)->target.matrix->channels > \ (c)->current.matrix->channels) #define FEEDMATRIX_DOWN(c) ((c)->target.matrix->channels < \ (c)->current.matrix->channels) #define FEEDMATRIX_REQUIRED(c) (FEEDMATRIX_UP(c) || \ FEEDMATRIX_DOWN(c) || (c)->use_matrix != 0) #define FEEDFORMAT_REQUIRED(c) (AFMT_ENCODING((c)->current.afmt) != \ AFMT_ENCODING((c)->target.afmt)) #define FEEDVOLUME_REQUIRED(c) ((c)->use_volume != 0) #define FEEDEQ_VALIDRATE(c, t) (feeder_eq_validrate((c)->t.rate) != 0) #define FEEDEQ_ECONOMY(c) (FEEDER_BW(c, current) < FEEDER_BW(c, target)) #define FEEDEQ_REQUIRED(c) ((c)->use_eq != 0 && \ FEEDEQ_VALIDRATE(c, current)) #define FEEDFORMAT_NE_REQUIRED(c) \ ((c)->afmt_ne != AFMT_S32_NE && \ (((c)->mode == FEEDER_CHAIN_16 && \ AFMT_ENCODING((c)->current.afmt) != AFMT_S16_NE) || \ ((c)->mode == FEEDER_CHAIN_32 && \ AFMT_ENCODING((c)->current.afmt) != AFMT_S32_NE) || \ (c)->mode == FEEDER_CHAIN_FULLMULTI || \ ((c)->mode == FEEDER_CHAIN_MULTI && \ ((c)->current.afmt & AFMT_8BIT)) || \ ((c)->mode == FEEDER_CHAIN_LEAN && \ !((c)->current.afmt & (AFMT_S16_NE | AFMT_S32_NE))))) int feeder_chain(struct pcm_channel *c) { struct snddev_info *d; struct pcmchan_caps *caps; struct feeder_chain_desc cdesc; struct pcmchan_matrix *hwmatrix, *softmatrix; uint32_t hwfmt, softfmt; int ret; CHN_LOCKASSERT(c); /* Remove everything first. */ while (chn_removefeeder(c) == 0) ; KASSERT(c->feeder == NULL, ("feeder chain not empty")); /* clear and populate chain descriptor. */ bzero(&cdesc, sizeof(cdesc)); switch (feeder_chain_mode) { case FEEDER_CHAIN_LEAN: case FEEDER_CHAIN_16: case FEEDER_CHAIN_32: #if defined(SND_FEEDER_MULTIFORMAT) || defined(SND_FEEDER_FULL_MULTIFORMAT) case FEEDER_CHAIN_MULTI: #endif #if defined(SND_FEEDER_FULL_MULTIFORMAT) case FEEDER_CHAIN_FULLMULTI: #endif break; default: feeder_chain_mode = FEEDER_CHAIN_DEFAULT; break; } cdesc.mode = feeder_chain_mode; cdesc.expensive = 1; /* XXX faster.. */ #define VCHAN_PASSTHROUGH(c) (((c)->flags & (CHN_F_VIRTUAL | \ CHN_F_PASSTHROUGH)) == \ (CHN_F_VIRTUAL | CHN_F_PASSTHROUGH)) /* Get the best possible hardware format. */ if (VCHAN_PASSTHROUGH(c)) hwfmt = c->parentchannel->format; else { caps = chn_getcaps(c); if (caps == NULL || caps->fmtlist == NULL) { device_printf(c->dev, "%s(): failed to get channel caps\n", __func__); return (ENODEV); } if ((c->format & AFMT_PASSTHROUGH) && !snd_fmtvalid(c->format, caps->fmtlist)) return (ENODEV); hwfmt = snd_fmtbest(c->format, caps->fmtlist); if (hwfmt == 0 || !snd_fmtvalid(hwfmt, caps->fmtlist)) { device_printf(c->dev, "%s(): invalid hardware format 0x%08x\n", __func__, hwfmt); { int i; for (i = 0; caps->fmtlist[i] != 0; i++) printf("0x%08x\n", caps->fmtlist[i]); printf("Req: 0x%08x\n", c->format); } return (ENODEV); } } /* * The 'hardware' possibly have different intepretation of channel * matrixing, so get it first ..... */ hwmatrix = CHANNEL_GETMATRIX(c->methods, c->devinfo, hwfmt); if (hwmatrix == NULL) { device_printf(c->dev, "%s(): failed to acquire hw matrix [0x%08x]\n", __func__, hwfmt); return (ENODEV); } /* ..... and rebuild hwfmt. */ hwfmt = SND_FORMAT(hwfmt, hwmatrix->channels, hwmatrix->ext); /* Reset and rebuild default channel format/matrix map. */ softfmt = c->format; softmatrix = &c->matrix; if (softmatrix->channels != AFMT_CHANNEL(softfmt) || softmatrix->ext != AFMT_EXTCHANNEL(softfmt)) { softmatrix = feeder_matrix_format_map(softfmt); if (softmatrix == NULL) { device_printf(c->dev, "%s(): failed to acquire soft matrix [0x%08x]\n", __func__, softfmt); return (ENODEV); } c->matrix = *softmatrix; c->matrix.id = SND_CHN_MATRIX_PCMCHANNEL; } softfmt = SND_FORMAT(softfmt, softmatrix->channels, softmatrix->ext); if (softfmt != c->format) device_printf(c->dev, "%s(): WARNING: %s Soft format 0x%08x -> 0x%08x\n", __func__, CHN_DIRSTR(c), c->format, softfmt); /* * PLAY and REC are opposite. */ if (c->direction == PCMDIR_PLAY) { cdesc.origin.afmt = softfmt; cdesc.origin.matrix = softmatrix; cdesc.origin.rate = c->speed; cdesc.target.afmt = hwfmt; cdesc.target.matrix = hwmatrix; cdesc.target.rate = sndbuf_getspd(c->bufhard); } else { cdesc.origin.afmt = hwfmt; cdesc.origin.matrix = hwmatrix; cdesc.origin.rate = sndbuf_getspd(c->bufhard); cdesc.target.afmt = softfmt; cdesc.target.matrix = softmatrix; cdesc.target.rate = c->speed; } d = c->parentsnddev; /* * If channel is in bitperfect or passthrough mode, make it appear * that 'origin' and 'target' identical, skipping mostly chain * procedures. */ if (CHN_BITPERFECT(c) || (c->format & AFMT_PASSTHROUGH)) { if (c->direction == PCMDIR_PLAY) cdesc.origin = cdesc.target; else cdesc.target = cdesc.origin; c->format = cdesc.target.afmt; c->speed = cdesc.target.rate; } else { /* hwfmt is not convertible, so 'dummy' it. */ if (hwfmt & AFMT_PASSTHROUGH) cdesc.dummy = 1; if ((softfmt & AFMT_CONVERTIBLE) && (((d->flags & SD_F_VPC) && !(c->flags & CHN_F_HAS_VCHAN)) || (!(d->flags & SD_F_VPC) && (d->flags & SD_F_SOFTPCMVOL) && !(c->flags & CHN_F_VIRTUAL)))) cdesc.use_volume = 1; if (feeder_matrix_compare(cdesc.origin.matrix, cdesc.target.matrix) != 0) cdesc.use_matrix = 1; /* Soft EQ only applicable for PLAY. */ if (cdesc.dummy == 0 && c->direction == PCMDIR_PLAY && (d->flags & SD_F_EQ) && (((d->flags & SD_F_EQ_PC) && !(c->flags & CHN_F_HAS_VCHAN)) || (!(d->flags & SD_F_EQ_PC) && !(c->flags & CHN_F_VIRTUAL)))) cdesc.use_eq = 1; if (FEEDFORMAT_NE_REQUIRED(&cdesc)) { cdesc.afmt_ne = (cdesc.dummy != 0) ? snd_fmtbest(AFMT_ENCODING(softfmt), feeder_chain_formats[cdesc.mode]) : snd_fmtbest(AFMT_ENCODING(cdesc.target.afmt), feeder_chain_formats[cdesc.mode]); if (cdesc.afmt_ne == 0) { device_printf(c->dev, "%s(): snd_fmtbest failed!\n", __func__); cdesc.afmt_ne = (((cdesc.dummy != 0) ? softfmt : cdesc.target.afmt) & (AFMT_24BIT | AFMT_32BIT)) ? AFMT_S32_NE : AFMT_S16_NE; } } } cdesc.current = cdesc.origin; /* Build everything. */ c->feederflags = 0; #define FEEDER_BUILD(t) do { \ ret = feeder_build_##t(c, &cdesc); \ if (ret != 0) \ return (ret); \ } while (0) if (!(c->flags & CHN_F_HAS_VCHAN) || c->direction == PCMDIR_REC) FEEDER_BUILD(root); else if (c->direction == PCMDIR_PLAY && (c->flags & CHN_F_HAS_VCHAN)) FEEDER_BUILD(mixer); else return (ENOTSUP); /* * The basic idea is: The smaller the bandwidth, the cheaper the * conversion process, with following constraints:- * * 1) Almost all feeders work best in 16/32 native endian. * 2) Try to avoid 8bit feeders due to poor dynamic range. * 3) Avoid volume, format, matrix and rate in BITPERFECT or * PASSTHROUGH mode. * 4) Try putting volume before EQ or rate. Should help to * avoid/reduce possible clipping. * 5) EQ require specific, valid rate, unless it allow sloppy * conversion. */ if (FEEDMATRIX_UP(&cdesc)) { if (FEEDEQ_REQUIRED(&cdesc) && (!FEEDEQ_VALIDRATE(&cdesc, target) || (cdesc.expensive == 0 && FEEDEQ_ECONOMY(&cdesc)))) FEEDER_BUILD(eq); if (FEEDRATE_REQUIRED(&cdesc)) FEEDER_BUILD(rate); FEEDER_BUILD(matrix); if (FEEDVOLUME_REQUIRED(&cdesc)) FEEDER_BUILD(volume); if (FEEDEQ_REQUIRED(&cdesc)) FEEDER_BUILD(eq); } else if (FEEDMATRIX_DOWN(&cdesc)) { FEEDER_BUILD(matrix); if (FEEDVOLUME_REQUIRED(&cdesc)) FEEDER_BUILD(volume); if (FEEDEQ_REQUIRED(&cdesc) && (!FEEDEQ_VALIDRATE(&cdesc, target) || FEEDEQ_ECONOMY(&cdesc))) FEEDER_BUILD(eq); if (FEEDRATE_REQUIRED(&cdesc)) FEEDER_BUILD(rate); if (FEEDEQ_REQUIRED(&cdesc)) FEEDER_BUILD(eq); } else { if (FEEDRATE_DOWN(&cdesc)) { if (FEEDEQ_REQUIRED(&cdesc) && !FEEDEQ_VALIDRATE(&cdesc, target)) { if (FEEDVOLUME_REQUIRED(&cdesc)) FEEDER_BUILD(volume); FEEDER_BUILD(eq); } FEEDER_BUILD(rate); } if (FEEDMATRIX_REQUIRED(&cdesc)) FEEDER_BUILD(matrix); if (FEEDVOLUME_REQUIRED(&cdesc)) FEEDER_BUILD(volume); if (FEEDRATE_UP(&cdesc)) { if (FEEDEQ_REQUIRED(&cdesc) && !FEEDEQ_VALIDRATE(&cdesc, target)) FEEDER_BUILD(eq); FEEDER_BUILD(rate); } if (FEEDEQ_REQUIRED(&cdesc)) FEEDER_BUILD(eq); } if (FEEDFORMAT_REQUIRED(&cdesc)) FEEDER_BUILD(format); if (c->direction == PCMDIR_REC && (c->flags & CHN_F_HAS_VCHAN)) FEEDER_BUILD(mixer); sndbuf_setfmt(c->bufsoft, c->format); sndbuf_setspd(c->bufsoft, c->speed); sndbuf_setfmt(c->bufhard, hwfmt); chn_syncstate(c); return (0); }