Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/iwnfw/iwn6000g2b/@/dev/drm2/i915/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/iwnfw/iwn6000g2b/@/dev/drm2/i915/intel_ringbuffer.c |
/* * Copyright © 2008-2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * Zou Nan hai <nanhai.zou@intel.com> * Xiang Hai hao<haihao.xiang@intel.com> * */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/drm2/i915/intel_ringbuffer.c 235783 2012-05-22 11:07:44Z kib $"); #include <dev/drm2/drmP.h> #include <dev/drm2/drm.h> #include <dev/drm2/i915/i915_drm.h> #include <dev/drm2/i915/i915_drv.h> #include <dev/drm2/i915/intel_drv.h> #include <dev/drm2/i915/intel_ringbuffer.h> #include <sys/sched.h> #include <sys/sf_buf.h> /* * 965+ support PIPE_CONTROL commands, which provide finer grained control * over cache flushing. */ struct pipe_control { struct drm_i915_gem_object *obj; volatile u32 *cpu_page; u32 gtt_offset; }; void i915_trace_irq_get(struct intel_ring_buffer *ring, uint32_t seqno) { if (ring->trace_irq_seqno == 0) { mtx_lock(&ring->irq_lock); if (ring->irq_get(ring)) ring->trace_irq_seqno = seqno; mtx_unlock(&ring->irq_lock); } } static inline int ring_space(struct intel_ring_buffer *ring) { int space = (ring->head & HEAD_ADDR) - (ring->tail + 8); if (space < 0) space += ring->size; return space; } static int render_ring_flush(struct intel_ring_buffer *ring, uint32_t invalidate_domains, uint32_t flush_domains) { struct drm_device *dev = ring->dev; uint32_t cmd; int ret; /* * read/write caches: * * I915_GEM_DOMAIN_RENDER is always invalidated, but is * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is * also flushed at 2d versus 3d pipeline switches. * * read-only caches: * * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if * MI_READ_FLUSH is set, and is always flushed on 965. * * I915_GEM_DOMAIN_COMMAND may not exist? * * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is * invalidated when MI_EXE_FLUSH is set. * * I915_GEM_DOMAIN_VERTEX, which exists on 965, is * invalidated with every MI_FLUSH. * * TLBs: * * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER * are flushed at any MI_FLUSH. */ cmd = MI_FLUSH | MI_NO_WRITE_FLUSH; if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) cmd &= ~MI_NO_WRITE_FLUSH; if (INTEL_INFO(dev)->gen < 4) { /* * On the 965, the sampler cache always gets flushed * and this bit is reserved. */ if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER) cmd |= MI_READ_FLUSH; } if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION) cmd |= MI_EXE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_COMMAND && (IS_G4X(dev) || IS_GEN5(dev))) cmd |= MI_INVALIDATE_ISP; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, cmd); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } /** * Emits a PIPE_CONTROL with a non-zero post-sync operation, for * implementing two workarounds on gen6. From section 1.4.7.1 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1: * * [DevSNB-C+{W/A}] Before any depth stall flush (including those * produced by non-pipelined state commands), software needs to first * send a PIPE_CONTROL with no bits set except Post-Sync Operation != * 0. * * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable * =1, a PIPE_CONTROL with any non-zero post-sync-op is required. * * And the workaround for these two requires this workaround first: * * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent * BEFORE the pipe-control with a post-sync op and no write-cache * flushes. * * And this last workaround is tricky because of the requirements on * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM * volume 2 part 1: * * "1 of the following must also be set: * - Render Target Cache Flush Enable ([12] of DW1) * - Depth Cache Flush Enable ([0] of DW1) * - Stall at Pixel Scoreboard ([1] of DW1) * - Depth Stall ([13] of DW1) * - Post-Sync Operation ([13] of DW1) * - Notify Enable ([8] of DW1)" * * The cache flushes require the workaround flush that triggered this * one, so we can't use it. Depth stall would trigger the same. * Post-sync nonzero is what triggered this second workaround, so we * can't use that one either. Notify enable is IRQs, which aren't * really our business. That leaves only stall at scoreboard. */ static int intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring) { struct pipe_control *pc = ring->private; u32 scratch_addr = pc->gtt_offset + 128; int ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5)); intel_ring_emit(ring, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD); intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */ intel_ring_emit(ring, 0); /* low dword */ intel_ring_emit(ring, 0); /* high dword */ intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5)); intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE); intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */ intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int gen6_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { u32 flags = 0; struct pipe_control *pc = ring->private; u32 scratch_addr = pc->gtt_offset + 128; int ret; /* Force SNB workarounds for PIPE_CONTROL flushes */ intel_emit_post_sync_nonzero_flush(ring); /* Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5)); intel_ring_emit(ring, flags); intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(ring, 0); /* lower dword */ intel_ring_emit(ring, 0); /* uppwer dword */ intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static void ring_write_tail(struct intel_ring_buffer *ring, uint32_t value) { drm_i915_private_t *dev_priv = ring->dev->dev_private; I915_WRITE_TAIL(ring, value); } u32 intel_ring_get_active_head(struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = ring->dev->dev_private; uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ? RING_ACTHD(ring->mmio_base) : ACTHD; return I915_READ(acthd_reg); } static int init_ring_common(struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = ring->dev->dev_private; struct drm_i915_gem_object *obj = ring->obj; uint32_t head; /* Stop the ring if it's running. */ I915_WRITE_CTL(ring, 0); I915_WRITE_HEAD(ring, 0); ring->write_tail(ring, 0); /* Initialize the ring. */ I915_WRITE_START(ring, obj->gtt_offset); head = I915_READ_HEAD(ring) & HEAD_ADDR; /* G45 ring initialization fails to reset head to zero */ if (head != 0) { DRM_DEBUG("%s head not reset to zero " "ctl %08x head %08x tail %08x start %08x\n", ring->name, I915_READ_CTL(ring), I915_READ_HEAD(ring), I915_READ_TAIL(ring), I915_READ_START(ring)); I915_WRITE_HEAD(ring, 0); if (I915_READ_HEAD(ring) & HEAD_ADDR) { DRM_ERROR("failed to set %s head to zero " "ctl %08x head %08x tail %08x start %08x\n", ring->name, I915_READ_CTL(ring), I915_READ_HEAD(ring), I915_READ_TAIL(ring), I915_READ_START(ring)); } } I915_WRITE_CTL(ring, ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID); /* If the head is still not zero, the ring is dead */ if (_intel_wait_for(ring->dev, (I915_READ_CTL(ring) & RING_VALID) != 0 && I915_READ_START(ring) == obj->gtt_offset && (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50, 1, "915rii")) { DRM_ERROR("%s initialization failed " "ctl %08x head %08x tail %08x start %08x\n", ring->name, I915_READ_CTL(ring), I915_READ_HEAD(ring), I915_READ_TAIL(ring), I915_READ_START(ring)); return -EIO; } if (!drm_core_check_feature(ring->dev, DRIVER_MODESET)) i915_kernel_lost_context(ring->dev); else { ring->head = I915_READ_HEAD(ring); ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR; ring->space = ring_space(ring); } return 0; } static int init_pipe_control(struct intel_ring_buffer *ring) { struct pipe_control *pc; struct drm_i915_gem_object *obj; int ret; if (ring->private) return 0; pc = malloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK); if (!pc) return -ENOMEM; obj = i915_gem_alloc_object(ring->dev, 4096); if (obj == NULL) { DRM_ERROR("Failed to allocate seqno page\n"); ret = -ENOMEM; goto err; } i915_gem_object_set_cache_level(obj, I915_CACHE_LLC); ret = i915_gem_object_pin(obj, 4096, true); if (ret) goto err_unref; pc->gtt_offset = obj->gtt_offset; pc->cpu_page = (uint32_t *)kmem_alloc_nofault(kernel_map, PAGE_SIZE); if (pc->cpu_page == NULL) goto err_unpin; pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1); pmap_invalidate_range(kernel_pmap, (vm_offset_t)pc->cpu_page, (vm_offset_t)pc->cpu_page + PAGE_SIZE); pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page, (vm_offset_t)pc->cpu_page + PAGE_SIZE); pc->obj = obj; ring->private = pc; return 0; err_unpin: i915_gem_object_unpin(obj); err_unref: drm_gem_object_unreference(&obj->base); err: free(pc, DRM_I915_GEM); return ret; } static void cleanup_pipe_control(struct intel_ring_buffer *ring) { struct pipe_control *pc = ring->private; struct drm_i915_gem_object *obj; if (!ring->private) return; obj = pc->obj; pmap_qremove((vm_offset_t)pc->cpu_page, 1); pmap_invalidate_range(kernel_pmap, (vm_offset_t)pc->cpu_page, (vm_offset_t)pc->cpu_page + PAGE_SIZE); kmem_free(kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE); i915_gem_object_unpin(obj); drm_gem_object_unreference(&obj->base); free(pc, DRM_I915_GEM); ring->private = NULL; } static int init_render_ring(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret = init_ring_common(ring); if (INTEL_INFO(dev)->gen > 3) { int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH; I915_WRITE(MI_MODE, mode); if (IS_GEN7(dev)) I915_WRITE(GFX_MODE_GEN7, GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) | GFX_MODE_ENABLE(GFX_REPLAY_MODE)); } if (INTEL_INFO(dev)->gen >= 5) { ret = init_pipe_control(ring); if (ret) return ret; } if (IS_GEN6(dev)) { /* From the Sandybridge PRM, volume 1 part 3, page 24: * "If this bit is set, STCunit will have LRA as replacement * policy. [...] This bit must be reset. LRA replacement * policy is not supported." */ I915_WRITE(CACHE_MODE_0, CM0_STC_EVICT_DISABLE_LRA_SNB << CM0_MASK_SHIFT); } if (INTEL_INFO(dev)->gen >= 6) { I915_WRITE(INSTPM, INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING); } return ret; } static void render_ring_cleanup(struct intel_ring_buffer *ring) { if (!ring->private) return; cleanup_pipe_control(ring); } static void update_mboxes(struct intel_ring_buffer *ring, u32 seqno, u32 mmio_offset) { intel_ring_emit(ring, MI_SEMAPHORE_MBOX | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_REGISTER | MI_SEMAPHORE_UPDATE); intel_ring_emit(ring, seqno); intel_ring_emit(ring, mmio_offset); } /** * gen6_add_request - Update the semaphore mailbox registers * * @ring - ring that is adding a request * @seqno - return seqno stuck into the ring * * Update the mailbox registers in the *other* rings with the current seqno. * This acts like a signal in the canonical semaphore. */ static int gen6_add_request(struct intel_ring_buffer *ring, u32 *seqno) { u32 mbox1_reg; u32 mbox2_reg; int ret; ret = intel_ring_begin(ring, 10); if (ret) return ret; mbox1_reg = ring->signal_mbox[0]; mbox2_reg = ring->signal_mbox[1]; *seqno = i915_gem_next_request_seqno(ring); update_mboxes(ring, *seqno, mbox1_reg); update_mboxes(ring, *seqno, mbox2_reg); intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, *seqno); intel_ring_emit(ring, MI_USER_INTERRUPT); intel_ring_advance(ring); return 0; } /** * intel_ring_sync - sync the waiter to the signaller on seqno * * @waiter - ring that is waiting * @signaller - ring which has, or will signal * @seqno - seqno which the waiter will block on */ static int intel_ring_sync(struct intel_ring_buffer *waiter, struct intel_ring_buffer *signaller, int ring, u32 seqno) { int ret; u32 dw1 = MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER; ret = intel_ring_begin(waiter, 4); if (ret) return ret; intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]); intel_ring_emit(waiter, seqno); intel_ring_emit(waiter, 0); intel_ring_emit(waiter, MI_NOOP); intel_ring_advance(waiter); return 0; } int render_ring_sync_to(struct intel_ring_buffer *waiter, struct intel_ring_buffer *signaller, u32 seqno); int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter, struct intel_ring_buffer *signaller, u32 seqno); int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter, struct intel_ring_buffer *signaller, u32 seqno); /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */ int render_ring_sync_to(struct intel_ring_buffer *waiter, struct intel_ring_buffer *signaller, u32 seqno) { KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID, ("valid RCS semaphore")); return intel_ring_sync(waiter, signaller, RCS, seqno); } /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */ int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter, struct intel_ring_buffer *signaller, u32 seqno) { KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID, ("Valid VCS semaphore")); return intel_ring_sync(waiter, signaller, VCS, seqno); } /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */ int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter, struct intel_ring_buffer *signaller, u32 seqno) { KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID, ("Valid BCS semaphore")); return intel_ring_sync(waiter, signaller, BCS, seqno); } #define PIPE_CONTROL_FLUSH(ring__, addr__) \ do { \ intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \ PIPE_CONTROL_DEPTH_STALL); \ intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \ intel_ring_emit(ring__, 0); \ intel_ring_emit(ring__, 0); \ } while (0) static int pc_render_add_request(struct intel_ring_buffer *ring, uint32_t *result) { u32 seqno = i915_gem_next_request_seqno(ring); struct pipe_control *pc = ring->private; u32 scratch_addr = pc->gtt_offset + 128; int ret; /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently * incoherent with writes to memory, i.e. completely fubar, * so we need to use PIPE_NOTIFY instead. * * However, we also need to workaround the qword write * incoherence by flushing the 6 PIPE_NOTIFY buffers out to * memory before requesting an interrupt. */ ret = intel_ring_begin(ring, 32); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_WRITE_FLUSH | PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE); intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(ring, seqno); intel_ring_emit(ring, 0); PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; /* write to separate cachelines */ PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_WRITE_FLUSH | PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE | PIPE_CONTROL_NOTIFY); intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(ring, seqno); intel_ring_emit(ring, 0); intel_ring_advance(ring); *result = seqno; return 0; } static int render_ring_add_request(struct intel_ring_buffer *ring, uint32_t *result) { u32 seqno = i915_gem_next_request_seqno(ring); int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, seqno); intel_ring_emit(ring, MI_USER_INTERRUPT); intel_ring_advance(ring); *result = seqno; return 0; } static u32 gen6_ring_get_seqno(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; /* Workaround to force correct ordering between irq and seqno writes on * ivb (and maybe also on snb) by reading from a CS register (like * ACTHD) before reading the status page. */ if (/* IS_GEN6(dev) || */IS_GEN7(dev)) intel_ring_get_active_head(ring); return intel_read_status_page(ring, I915_GEM_HWS_INDEX); } static uint32_t ring_get_seqno(struct intel_ring_buffer *ring) { if (ring->status_page.page_addr == NULL) return (-1); return intel_read_status_page(ring, I915_GEM_HWS_INDEX); } static uint32_t pc_render_get_seqno(struct intel_ring_buffer *ring) { struct pipe_control *pc = ring->private; if (pc != NULL) return pc->cpu_page[0]; else return (-1); } static void ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask) { dev_priv->gt_irq_mask &= ~mask; I915_WRITE(GTIMR, dev_priv->gt_irq_mask); POSTING_READ(GTIMR); } static void ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask) { dev_priv->gt_irq_mask |= mask; I915_WRITE(GTIMR, dev_priv->gt_irq_mask); POSTING_READ(GTIMR); } static void i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask) { dev_priv->irq_mask &= ~mask; I915_WRITE(IMR, dev_priv->irq_mask); POSTING_READ(IMR); } static void i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask) { dev_priv->irq_mask |= mask; I915_WRITE(IMR, dev_priv->irq_mask); POSTING_READ(IMR); } static bool render_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; if (!dev->irq_enabled) return false; mtx_assert(&ring->irq_lock, MA_OWNED); if (ring->irq_refcount++ == 0) { if (HAS_PCH_SPLIT(dev)) ironlake_enable_irq(dev_priv, GT_PIPE_NOTIFY | GT_USER_INTERRUPT); else i915_enable_irq(dev_priv, I915_USER_INTERRUPT); } return true; } static void render_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; mtx_assert(&ring->irq_lock, MA_OWNED); if (--ring->irq_refcount == 0) { if (HAS_PCH_SPLIT(dev)) ironlake_disable_irq(dev_priv, GT_USER_INTERRUPT | GT_PIPE_NOTIFY); else i915_disable_irq(dev_priv, I915_USER_INTERRUPT); } } void intel_ring_setup_status_page(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; uint32_t mmio = 0; /* The ring status page addresses are no longer next to the rest of * the ring registers as of gen7. */ if (IS_GEN7(dev)) { switch (ring->id) { case RCS: mmio = RENDER_HWS_PGA_GEN7; break; case BCS: mmio = BLT_HWS_PGA_GEN7; break; case VCS: mmio = BSD_HWS_PGA_GEN7; break; } } else if (IS_GEN6(dev)) { mmio = RING_HWS_PGA_GEN6(ring->mmio_base); } else { mmio = RING_HWS_PGA(ring->mmio_base); } I915_WRITE(mmio, (u32)ring->status_page.gfx_addr); POSTING_READ(mmio); } static int bsd_ring_flush(struct intel_ring_buffer *ring, uint32_t invalidate_domains, uint32_t flush_domains) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_FLUSH); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int ring_add_request(struct intel_ring_buffer *ring, uint32_t *result) { uint32_t seqno; int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; seqno = i915_gem_next_request_seqno(ring); intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, seqno); intel_ring_emit(ring, MI_USER_INTERRUPT); intel_ring_advance(ring); *result = seqno; return 0; } static bool gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; if (!dev->irq_enabled) return false; gen6_gt_force_wake_get(dev_priv); mtx_assert(&ring->irq_lock, MA_OWNED); if (ring->irq_refcount++ == 0) { ring->irq_mask &= ~rflag; I915_WRITE_IMR(ring, ring->irq_mask); ironlake_enable_irq(dev_priv, gflag); } return true; } static void gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; mtx_assert(&ring->irq_lock, MA_OWNED); if (--ring->irq_refcount == 0) { ring->irq_mask |= rflag; I915_WRITE_IMR(ring, ring->irq_mask); ironlake_disable_irq(dev_priv, gflag); } gen6_gt_force_wake_put(dev_priv); } static bool bsd_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; if (!dev->irq_enabled) return false; mtx_assert(&ring->irq_lock, MA_OWNED); if (ring->irq_refcount++ == 0) { if (IS_G4X(dev)) i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT); else ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT); } return true; } static void bsd_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; mtx_assert(&ring->irq_lock, MA_OWNED); if (--ring->irq_refcount == 0) { if (IS_G4X(dev)) i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT); else ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT); } } static int ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset, uint32_t length) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | (2 << 6) | MI_BATCH_NON_SECURE_I965); intel_ring_emit(ring, offset); intel_ring_advance(ring); return 0; } static int render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset, uint32_t len) { struct drm_device *dev = ring->dev; int ret; if (IS_I830(dev) || IS_845G(dev)) { ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER); intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE); intel_ring_emit(ring, offset + len - 8); intel_ring_emit(ring, 0); } else { ret = intel_ring_begin(ring, 2); if (ret) return ret; if (INTEL_INFO(dev)->gen >= 4) { intel_ring_emit(ring, MI_BATCH_BUFFER_START | (2 << 6) | MI_BATCH_NON_SECURE_I965); intel_ring_emit(ring, offset); } else { intel_ring_emit(ring, MI_BATCH_BUFFER_START | (2 << 6)); intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE); } } intel_ring_advance(ring); return 0; } static void cleanup_status_page(struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = ring->dev->dev_private; struct drm_i915_gem_object *obj; obj = ring->status_page.obj; if (obj == NULL) return; pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1); pmap_invalidate_range(kernel_pmap, (vm_offset_t)ring->status_page.page_addr, (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE); kmem_free(kernel_map, (vm_offset_t)ring->status_page.page_addr, PAGE_SIZE); i915_gem_object_unpin(obj); drm_gem_object_unreference(&obj->base); ring->status_page.obj = NULL; memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map)); } static int init_status_page(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; int ret; obj = i915_gem_alloc_object(dev, 4096); if (obj == NULL) { DRM_ERROR("Failed to allocate status page\n"); ret = -ENOMEM; goto err; } i915_gem_object_set_cache_level(obj, I915_CACHE_LLC); ret = i915_gem_object_pin(obj, 4096, true); if (ret != 0) { goto err_unref; } ring->status_page.gfx_addr = obj->gtt_offset; ring->status_page.page_addr = (void *)kmem_alloc_nofault(kernel_map, PAGE_SIZE); if (ring->status_page.page_addr == NULL) { memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map)); goto err_unpin; } pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0], 1); pmap_invalidate_range(kernel_pmap, (vm_offset_t)ring->status_page.page_addr, (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE); pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr, (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE); ring->status_page.obj = obj; memset(ring->status_page.page_addr, 0, PAGE_SIZE); intel_ring_setup_status_page(ring); DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n", ring->name, ring->status_page.gfx_addr); return 0; err_unpin: i915_gem_object_unpin(obj); err_unref: drm_gem_object_unreference(&obj->base); err: return ret; } static int intel_init_ring_buffer(struct drm_device *dev, struct intel_ring_buffer *ring) { struct drm_i915_gem_object *obj; int ret; ring->dev = dev; INIT_LIST_HEAD(&ring->active_list); INIT_LIST_HEAD(&ring->request_list); INIT_LIST_HEAD(&ring->gpu_write_list); mtx_init(&ring->irq_lock, "ringb", NULL, MTX_DEF); ring->irq_mask = ~0; if (I915_NEED_GFX_HWS(dev)) { ret = init_status_page(ring); if (ret) return ret; } obj = i915_gem_alloc_object(dev, ring->size); if (obj == NULL) { DRM_ERROR("Failed to allocate ringbuffer\n"); ret = -ENOMEM; goto err_hws; } ring->obj = obj; ret = i915_gem_object_pin(obj, PAGE_SIZE, true); if (ret) goto err_unref; ring->map.size = ring->size; ring->map.offset = dev->agp->base + obj->gtt_offset; ring->map.type = 0; ring->map.flags = 0; ring->map.mtrr = 0; drm_core_ioremap_wc(&ring->map, dev); if (ring->map.virtual == NULL) { DRM_ERROR("Failed to map ringbuffer.\n"); ret = -EINVAL; goto err_unpin; } ring->virtual_start = ring->map.virtual; ret = ring->init(ring); if (ret) goto err_unmap; /* Workaround an erratum on the i830 which causes a hang if * the TAIL pointer points to within the last 2 cachelines * of the buffer. */ ring->effective_size = ring->size; if (IS_I830(ring->dev) || IS_845G(ring->dev)) ring->effective_size -= 128; return 0; err_unmap: drm_core_ioremapfree(&ring->map, dev); err_unpin: i915_gem_object_unpin(obj); err_unref: drm_gem_object_unreference(&obj->base); ring->obj = NULL; err_hws: cleanup_status_page(ring); return ret; } void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv; int ret; if (ring->obj == NULL) return; /* Disable the ring buffer. The ring must be idle at this point */ dev_priv = ring->dev->dev_private; ret = intel_wait_ring_idle(ring); I915_WRITE_CTL(ring, 0); drm_core_ioremapfree(&ring->map, ring->dev); i915_gem_object_unpin(ring->obj); drm_gem_object_unreference(&ring->obj->base); ring->obj = NULL; if (ring->cleanup) ring->cleanup(ring); cleanup_status_page(ring); } static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring) { unsigned int *virt; int rem = ring->size - ring->tail; if (ring->space < rem) { int ret = intel_wait_ring_buffer(ring, rem); if (ret) return ret; } virt = (unsigned int *)((char *)ring->virtual_start + ring->tail); rem /= 8; while (rem--) { *virt++ = MI_NOOP; *virt++ = MI_NOOP; } ring->tail = 0; ring->space = ring_space(ring); return 0; } static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno) { struct drm_i915_private *dev_priv = ring->dev->dev_private; bool was_interruptible; int ret; /* XXX As we have not yet audited all the paths to check that * they are ready for ERESTARTSYS from intel_ring_begin, do not * allow us to be interruptible by a signal. */ was_interruptible = dev_priv->mm.interruptible; dev_priv->mm.interruptible = false; ret = i915_wait_request(ring, seqno, true); dev_priv->mm.interruptible = was_interruptible; return ret; } static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n) { struct drm_i915_gem_request *request; u32 seqno = 0; int ret; i915_gem_retire_requests_ring(ring); if (ring->last_retired_head != -1) { ring->head = ring->last_retired_head; ring->last_retired_head = -1; ring->space = ring_space(ring); if (ring->space >= n) return 0; } list_for_each_entry(request, &ring->request_list, list) { int space; if (request->tail == -1) continue; space = request->tail - (ring->tail + 8); if (space < 0) space += ring->size; if (space >= n) { seqno = request->seqno; break; } /* Consume this request in case we need more space than * is available and so need to prevent a race between * updating last_retired_head and direct reads of * I915_RING_HEAD. It also provides a nice sanity check. */ request->tail = -1; } if (seqno == 0) return -ENOSPC; ret = intel_ring_wait_seqno(ring, seqno); if (ret) return ret; if (ring->last_retired_head == -1) return -ENOSPC; ring->head = ring->last_retired_head; ring->last_retired_head = -1; ring->space = ring_space(ring); if (ring->space < n) return -ENOSPC; return 0; } int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; int end; int ret; ret = intel_ring_wait_request(ring, n); if (ret != -ENOSPC) return ret; CTR1(KTR_DRM, "ring_wait_begin %s", ring->name); if (drm_core_check_feature(dev, DRIVER_GEM)) /* With GEM the hangcheck timer should kick us out of the loop, * leaving it early runs the risk of corrupting GEM state (due * to running on almost untested codepaths). But on resume * timers don't work yet, so prevent a complete hang in that * case by choosing an insanely large timeout. */ end = ticks + hz * 60; else end = ticks + hz * 3; do { ring->head = I915_READ_HEAD(ring); ring->space = ring_space(ring); if (ring->space >= n) { CTR1(KTR_DRM, "ring_wait_end %s", ring->name); return 0; } #if 0 if (dev->primary->master) { struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; if (master_priv->sarea_priv) master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT; } #else if (dev_priv->sarea_priv) dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT; #endif pause("915rng", 1); if (atomic_load_acq_32(&dev_priv->mm.wedged) != 0) { CTR1(KTR_DRM, "ring_wait_end %s wedged", ring->name); return -EAGAIN; } } while (!time_after(ticks, end)); CTR1(KTR_DRM, "ring_wait_end %s busy", ring->name); return -EBUSY; } int intel_ring_begin(struct intel_ring_buffer *ring, int num_dwords) { struct drm_i915_private *dev_priv = ring->dev->dev_private; int n = 4*num_dwords; int ret; if (atomic_load_acq_int(&dev_priv->mm.wedged)) return -EIO; if (ring->tail + n > ring->effective_size) { ret = intel_wrap_ring_buffer(ring); if (ret != 0) return ret; } if (ring->space < n) { ret = intel_wait_ring_buffer(ring, n); if (ret != 0) return ret; } ring->space -= n; return 0; } void intel_ring_advance(struct intel_ring_buffer *ring) { ring->tail &= ring->size - 1; ring->write_tail(ring, ring->tail); } static const struct intel_ring_buffer render_ring = { .name = "render ring", .id = RCS, .mmio_base = RENDER_RING_BASE, .size = 32 * PAGE_SIZE, .init = init_render_ring, .write_tail = ring_write_tail, .flush = render_ring_flush, .add_request = render_ring_add_request, .get_seqno = ring_get_seqno, .irq_get = render_ring_get_irq, .irq_put = render_ring_put_irq, .dispatch_execbuffer = render_ring_dispatch_execbuffer, .cleanup = render_ring_cleanup, .sync_to = render_ring_sync_to, .semaphore_register = {MI_SEMAPHORE_SYNC_INVALID, MI_SEMAPHORE_SYNC_RV, MI_SEMAPHORE_SYNC_RB}, .signal_mbox = {GEN6_VRSYNC, GEN6_BRSYNC}, }; /* ring buffer for bit-stream decoder */ static const struct intel_ring_buffer bsd_ring = { .name = "bsd ring", .id = VCS, .mmio_base = BSD_RING_BASE, .size = 32 * PAGE_SIZE, .init = init_ring_common, .write_tail = ring_write_tail, .flush = bsd_ring_flush, .add_request = ring_add_request, .get_seqno = ring_get_seqno, .irq_get = bsd_ring_get_irq, .irq_put = bsd_ring_put_irq, .dispatch_execbuffer = ring_dispatch_execbuffer, }; static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring, uint32_t value) { drm_i915_private_t *dev_priv = ring->dev->dev_private; /* Every tail move must follow the sequence below */ I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL, GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK | GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE); I915_WRITE(GEN6_BSD_RNCID, 0x0); if (_intel_wait_for(ring->dev, (I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) & GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0, 50, true, "915g6i") != 0) DRM_ERROR("timed out waiting for IDLE Indicator\n"); I915_WRITE_TAIL(ring, value); I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL, GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK | GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE); } static int gen6_ring_flush(struct intel_ring_buffer *ring, uint32_t invalidate, uint32_t flush) { uint32_t cmd; int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; cmd = MI_FLUSH_DW; if (invalidate & I915_GEM_GPU_DOMAINS) cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD; intel_ring_emit(ring, cmd); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset, uint32_t len) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965); /* bit0-7 is the length on GEN6+ */ intel_ring_emit(ring, offset); intel_ring_advance(ring); return 0; } static bool gen6_render_ring_get_irq(struct intel_ring_buffer *ring) { return gen6_ring_get_irq(ring, GT_USER_INTERRUPT, GEN6_RENDER_USER_INTERRUPT); } static void gen6_render_ring_put_irq(struct intel_ring_buffer *ring) { return gen6_ring_put_irq(ring, GT_USER_INTERRUPT, GEN6_RENDER_USER_INTERRUPT); } static bool gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring) { return gen6_ring_get_irq(ring, GT_GEN6_BSD_USER_INTERRUPT, GEN6_BSD_USER_INTERRUPT); } static void gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring) { return gen6_ring_put_irq(ring, GT_GEN6_BSD_USER_INTERRUPT, GEN6_BSD_USER_INTERRUPT); } /* ring buffer for Video Codec for Gen6+ */ static const struct intel_ring_buffer gen6_bsd_ring = { .name = "gen6 bsd ring", .id = VCS, .mmio_base = GEN6_BSD_RING_BASE, .size = 32 * PAGE_SIZE, .init = init_ring_common, .write_tail = gen6_bsd_ring_write_tail, .flush = gen6_ring_flush, .add_request = gen6_add_request, .get_seqno = gen6_ring_get_seqno, .irq_get = gen6_bsd_ring_get_irq, .irq_put = gen6_bsd_ring_put_irq, .dispatch_execbuffer = gen6_ring_dispatch_execbuffer, .sync_to = gen6_bsd_ring_sync_to, .semaphore_register = {MI_SEMAPHORE_SYNC_VR, MI_SEMAPHORE_SYNC_INVALID, MI_SEMAPHORE_SYNC_VB}, .signal_mbox = {GEN6_RVSYNC, GEN6_BVSYNC}, }; /* Blitter support (SandyBridge+) */ static bool blt_ring_get_irq(struct intel_ring_buffer *ring) { return gen6_ring_get_irq(ring, GT_BLT_USER_INTERRUPT, GEN6_BLITTER_USER_INTERRUPT); } static void blt_ring_put_irq(struct intel_ring_buffer *ring) { gen6_ring_put_irq(ring, GT_BLT_USER_INTERRUPT, GEN6_BLITTER_USER_INTERRUPT); } static int blt_ring_flush(struct intel_ring_buffer *ring, uint32_t invalidate, uint32_t flush) { uint32_t cmd; int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; cmd = MI_FLUSH_DW; if (invalidate & I915_GEM_DOMAIN_RENDER) cmd |= MI_INVALIDATE_TLB; intel_ring_emit(ring, cmd); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static const struct intel_ring_buffer gen6_blt_ring = { .name = "blt ring", .id = BCS, .mmio_base = BLT_RING_BASE, .size = 32 * PAGE_SIZE, .init = init_ring_common, .write_tail = ring_write_tail, .flush = blt_ring_flush, .add_request = gen6_add_request, .get_seqno = gen6_ring_get_seqno, .irq_get = blt_ring_get_irq, .irq_put = blt_ring_put_irq, .dispatch_execbuffer = gen6_ring_dispatch_execbuffer, .sync_to = gen6_blt_ring_sync_to, .semaphore_register = {MI_SEMAPHORE_SYNC_BR, MI_SEMAPHORE_SYNC_BV, MI_SEMAPHORE_SYNC_INVALID}, .signal_mbox = {GEN6_RBSYNC, GEN6_VBSYNC}, }; int intel_init_render_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->rings[RCS]; *ring = render_ring; if (INTEL_INFO(dev)->gen >= 6) { ring->add_request = gen6_add_request; ring->flush = gen6_render_ring_flush; ring->irq_get = gen6_render_ring_get_irq; ring->irq_put = gen6_render_ring_put_irq; ring->get_seqno = gen6_ring_get_seqno; } else if (IS_GEN5(dev)) { ring->add_request = pc_render_add_request; ring->get_seqno = pc_render_get_seqno; } if (!I915_NEED_GFX_HWS(dev)) { ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr; memset(ring->status_page.page_addr, 0, PAGE_SIZE); } return intel_init_ring_buffer(dev, ring); } int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start, uint32_t size) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->rings[RCS]; *ring = render_ring; if (INTEL_INFO(dev)->gen >= 6) { ring->add_request = gen6_add_request; ring->irq_get = gen6_render_ring_get_irq; ring->irq_put = gen6_render_ring_put_irq; } else if (IS_GEN5(dev)) { ring->add_request = pc_render_add_request; ring->get_seqno = pc_render_get_seqno; } ring->dev = dev; INIT_LIST_HEAD(&ring->active_list); INIT_LIST_HEAD(&ring->request_list); INIT_LIST_HEAD(&ring->gpu_write_list); ring->size = size; ring->effective_size = ring->size; if (IS_I830(ring->dev)) ring->effective_size -= 128; ring->map.offset = start; ring->map.size = size; ring->map.type = 0; ring->map.flags = 0; ring->map.mtrr = 0; drm_core_ioremap_wc(&ring->map, dev); if (ring->map.virtual == NULL) { DRM_ERROR("can not ioremap virtual address for" " ring buffer\n"); return -ENOMEM; } ring->virtual_start = (void *)ring->map.virtual; return 0; } int intel_init_bsd_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->rings[VCS]; if (IS_GEN6(dev) || IS_GEN7(dev)) *ring = gen6_bsd_ring; else *ring = bsd_ring; return intel_init_ring_buffer(dev, ring); } int intel_init_blt_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->rings[BCS]; *ring = gen6_blt_ring; return intel_init_ring_buffer(dev, ring); }