Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ixgb/@/dev/sound/isa/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ixgb/@/dev/sound/isa/mss.c |
/*- * Copyright (c) 2001 George Reid <greid@ukug.uk.freebsd.org> * Copyright (c) 1999 Cameron Grant <cg@freebsd.org> * Copyright (c) 1997,1998 Luigi Rizzo * Copyright (c) 1994,1995 Hannu Savolainen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include <dev/sound/pcm/sound.h> SND_DECLARE_FILE("$FreeBSD: release/9.1.0/sys/dev/sound/isa/mss.c 193640 2009-06-07 19:12:08Z ariff $"); /* board-specific include files */ #include <dev/sound/isa/mss.h> #include <dev/sound/isa/sb.h> #include <dev/sound/chip.h> #include <isa/isavar.h> #include "mixer_if.h" #define MSS_DEFAULT_BUFSZ (4096) #define MSS_INDEXED_REGS 0x20 #define OPL_INDEXED_REGS 0x19 struct mss_info; struct mss_chinfo { struct mss_info *parent; struct pcm_channel *channel; struct snd_dbuf *buffer; int dir; u_int32_t fmt, blksz; }; struct mss_info { struct resource *io_base; /* primary I/O address for the board */ int io_rid; struct resource *conf_base; /* and the opti931 also has a config space */ int conf_rid; struct resource *irq; int irq_rid; struct resource *drq1; /* play */ int drq1_rid; struct resource *drq2; /* rec */ int drq2_rid; void *ih; bus_dma_tag_t parent_dmat; struct mtx *lock; char mss_indexed_regs[MSS_INDEXED_REGS]; char opl_indexed_regs[OPL_INDEXED_REGS]; int bd_id; /* used to hold board-id info, eg. sb version, * mss codec type, etc. etc. */ int opti_offset; /* offset from config_base for opti931 */ u_long bd_flags; /* board-specific flags */ int optibase; /* base address for OPTi9xx config */ struct resource *indir; /* Indirect register index address */ int indir_rid; int password; /* password for opti9xx cards */ int passwdreg; /* password register */ unsigned int bufsize; struct mss_chinfo pch, rch; }; static int mss_probe(device_t dev); static int mss_attach(device_t dev); static driver_intr_t mss_intr; /* prototypes for local functions */ static int mss_detect(device_t dev, struct mss_info *mss); #ifndef PC98 static int opti_detect(device_t dev, struct mss_info *mss); #endif static char *ymf_test(device_t dev, struct mss_info *mss); static void ad_unmute(struct mss_info *mss); /* mixer set funcs */ static int mss_mixer_set(struct mss_info *mss, int dev, int left, int right); static int mss_set_recsrc(struct mss_info *mss, int mask); /* io funcs */ static int ad_wait_init(struct mss_info *mss, int x); static int ad_read(struct mss_info *mss, int reg); static void ad_write(struct mss_info *mss, int reg, u_char data); static void ad_write_cnt(struct mss_info *mss, int reg, u_short data); static void ad_enter_MCE(struct mss_info *mss); static void ad_leave_MCE(struct mss_info *mss); /* OPTi-specific functions */ static void opti_write(struct mss_info *mss, u_char reg, u_char data); #ifndef PC98 static u_char opti_read(struct mss_info *mss, u_char reg); #endif static int opti_init(device_t dev, struct mss_info *mss); /* io primitives */ static void conf_wr(struct mss_info *mss, u_char reg, u_char data); static u_char conf_rd(struct mss_info *mss, u_char reg); static int pnpmss_probe(device_t dev); static int pnpmss_attach(device_t dev); static driver_intr_t opti931_intr; static u_int32_t mss_fmt[] = { SND_FORMAT(AFMT_U8, 1, 0), SND_FORMAT(AFMT_U8, 2, 0), SND_FORMAT(AFMT_S16_LE, 1, 0), SND_FORMAT(AFMT_S16_LE, 2, 0), SND_FORMAT(AFMT_MU_LAW, 1, 0), SND_FORMAT(AFMT_MU_LAW, 2, 0), SND_FORMAT(AFMT_A_LAW, 1, 0), SND_FORMAT(AFMT_A_LAW, 2, 0), 0 }; static struct pcmchan_caps mss_caps = {4000, 48000, mss_fmt, 0}; static u_int32_t guspnp_fmt[] = { SND_FORMAT(AFMT_U8, 1, 0), SND_FORMAT(AFMT_U8, 2, 0), SND_FORMAT(AFMT_S16_LE, 1, 0), SND_FORMAT(AFMT_S16_LE, 2, 0), SND_FORMAT(AFMT_A_LAW, 1, 0), SND_FORMAT(AFMT_A_LAW, 2, 0), 0 }; static struct pcmchan_caps guspnp_caps = {4000, 48000, guspnp_fmt, 0}; static u_int32_t opti931_fmt[] = { SND_FORMAT(AFMT_U8, 1, 0), SND_FORMAT(AFMT_U8, 2, 0), SND_FORMAT(AFMT_S16_LE, 1, 0), SND_FORMAT(AFMT_S16_LE, 2, 0), 0 }; static struct pcmchan_caps opti931_caps = {4000, 48000, opti931_fmt, 0}; #define MD_AD1848 0x91 #define MD_AD1845 0x92 #define MD_CS42XX 0xA1 #define MD_CS423X 0xA2 #define MD_OPTI930 0xB0 #define MD_OPTI931 0xB1 #define MD_OPTI925 0xB2 #define MD_OPTI924 0xB3 #define MD_GUSPNP 0xB8 #define MD_GUSMAX 0xB9 #define MD_YM0020 0xC1 #define MD_VIVO 0xD1 #define DV_F_TRUE_MSS 0x00010000 /* mss _with_ base regs */ #define FULL_DUPLEX(x) ((x)->bd_flags & BD_F_DUPLEX) static void mss_lock(struct mss_info *mss) { snd_mtxlock(mss->lock); } static void mss_unlock(struct mss_info *mss) { snd_mtxunlock(mss->lock); } static int port_rd(struct resource *port, int off) { if (port) return bus_space_read_1(rman_get_bustag(port), rman_get_bushandle(port), off); else return -1; } static void port_wr(struct resource *port, int off, u_int8_t data) { if (port) bus_space_write_1(rman_get_bustag(port), rman_get_bushandle(port), off, data); } static int io_rd(struct mss_info *mss, int reg) { if (mss->bd_flags & BD_F_MSS_OFFSET) reg -= 4; return port_rd(mss->io_base, reg); } static void io_wr(struct mss_info *mss, int reg, u_int8_t data) { if (mss->bd_flags & BD_F_MSS_OFFSET) reg -= 4; port_wr(mss->io_base, reg, data); } static void conf_wr(struct mss_info *mss, u_char reg, u_char value) { port_wr(mss->conf_base, 0, reg); port_wr(mss->conf_base, 1, value); } static u_char conf_rd(struct mss_info *mss, u_char reg) { port_wr(mss->conf_base, 0, reg); return port_rd(mss->conf_base, 1); } static void opti_wr(struct mss_info *mss, u_char reg, u_char value) { port_wr(mss->conf_base, mss->opti_offset + 0, reg); port_wr(mss->conf_base, mss->opti_offset + 1, value); } static u_char opti_rd(struct mss_info *mss, u_char reg) { port_wr(mss->conf_base, mss->opti_offset + 0, reg); return port_rd(mss->conf_base, mss->opti_offset + 1); } static void gus_wr(struct mss_info *mss, u_char reg, u_char value) { port_wr(mss->conf_base, 3, reg); port_wr(mss->conf_base, 5, value); } static u_char gus_rd(struct mss_info *mss, u_char reg) { port_wr(mss->conf_base, 3, reg); return port_rd(mss->conf_base, 5); } static void mss_release_resources(struct mss_info *mss, device_t dev) { if (mss->irq) { if (mss->ih) bus_teardown_intr(dev, mss->irq, mss->ih); bus_release_resource(dev, SYS_RES_IRQ, mss->irq_rid, mss->irq); mss->irq = 0; } if (mss->drq2) { if (mss->drq2 != mss->drq1) { isa_dma_release(rman_get_start(mss->drq2)); bus_release_resource(dev, SYS_RES_DRQ, mss->drq2_rid, mss->drq2); } mss->drq2 = 0; } if (mss->drq1) { isa_dma_release(rman_get_start(mss->drq1)); bus_release_resource(dev, SYS_RES_DRQ, mss->drq1_rid, mss->drq1); mss->drq1 = 0; } if (mss->io_base) { bus_release_resource(dev, SYS_RES_IOPORT, mss->io_rid, mss->io_base); mss->io_base = 0; } if (mss->conf_base) { bus_release_resource(dev, SYS_RES_IOPORT, mss->conf_rid, mss->conf_base); mss->conf_base = 0; } if (mss->indir) { bus_release_resource(dev, SYS_RES_IOPORT, mss->indir_rid, mss->indir); mss->indir = 0; } if (mss->parent_dmat) { bus_dma_tag_destroy(mss->parent_dmat); mss->parent_dmat = 0; } if (mss->lock) snd_mtxfree(mss->lock); free(mss, M_DEVBUF); } static int mss_alloc_resources(struct mss_info *mss, device_t dev) { int pdma, rdma, ok = 1; if (!mss->io_base) mss->io_base = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &mss->io_rid, RF_ACTIVE); if (!mss->irq) mss->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &mss->irq_rid, RF_ACTIVE); if (!mss->drq1) mss->drq1 = bus_alloc_resource_any(dev, SYS_RES_DRQ, &mss->drq1_rid, RF_ACTIVE); if (mss->conf_rid >= 0 && !mss->conf_base) mss->conf_base = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &mss->conf_rid, RF_ACTIVE); if (mss->drq2_rid >= 0 && !mss->drq2) mss->drq2 = bus_alloc_resource_any(dev, SYS_RES_DRQ, &mss->drq2_rid, RF_ACTIVE); if (!mss->io_base || !mss->drq1 || !mss->irq) ok = 0; if (mss->conf_rid >= 0 && !mss->conf_base) ok = 0; if (mss->drq2_rid >= 0 && !mss->drq2) ok = 0; if (ok) { pdma = rman_get_start(mss->drq1); isa_dma_acquire(pdma); isa_dmainit(pdma, mss->bufsize); mss->bd_flags &= ~BD_F_DUPLEX; if (mss->drq2) { rdma = rman_get_start(mss->drq2); isa_dma_acquire(rdma); isa_dmainit(rdma, mss->bufsize); mss->bd_flags |= BD_F_DUPLEX; } else mss->drq2 = mss->drq1; } return ok; } /* * The various mixers use a variety of bitmasks etc. The Voxware * driver had a very nice technique to describe a mixer and interface * to it. A table defines, for each channel, which register, bits, * offset, polarity to use. This procedure creates the new value * using the table and the old value. */ static void change_bits(mixer_tab *t, u_char *regval, int dev, int chn, int newval) { u_char mask; int shift; DEB(printf("ch_bits dev %d ch %d val %d old 0x%02x " "r %d p %d bit %d off %d\n", dev, chn, newval, *regval, (*t)[dev][chn].regno, (*t)[dev][chn].polarity, (*t)[dev][chn].nbits, (*t)[dev][chn].bitoffs ) ); if ( (*t)[dev][chn].polarity == 1) /* reverse */ newval = 100 - newval ; mask = (1 << (*t)[dev][chn].nbits) - 1; newval = (int) ((newval * mask) + 50) / 100; /* Scale it */ shift = (*t)[dev][chn].bitoffs /*- (*t)[dev][LEFT_CHN].nbits + 1*/; *regval &= ~(mask << shift); /* Filter out the previous value */ *regval |= (newval & mask) << shift; /* Set the new value */ } /* -------------------------------------------------------------------- */ /* only one source can be set... */ static int mss_set_recsrc(struct mss_info *mss, int mask) { u_char recdev; switch (mask) { case SOUND_MASK_LINE: case SOUND_MASK_LINE3: recdev = 0; break; case SOUND_MASK_CD: case SOUND_MASK_LINE1: recdev = 0x40; break; case SOUND_MASK_IMIX: recdev = 0xc0; break; case SOUND_MASK_MIC: default: mask = SOUND_MASK_MIC; recdev = 0x80; } ad_write(mss, 0, (ad_read(mss, 0) & 0x3f) | recdev); ad_write(mss, 1, (ad_read(mss, 1) & 0x3f) | recdev); return mask; } /* there are differences in the mixer depending on the actual sound card. */ static int mss_mixer_set(struct mss_info *mss, int dev, int left, int right) { int regoffs; mixer_tab *mix_d; u_char old, val; switch (mss->bd_id) { case MD_OPTI931: mix_d = &opti931_devices; break; case MD_OPTI930: mix_d = &opti930_devices; break; default: mix_d = &mix_devices; } if ((*mix_d)[dev][LEFT_CHN].nbits == 0) { DEB(printf("nbits = 0 for dev %d\n", dev)); return -1; } if ((*mix_d)[dev][RIGHT_CHN].nbits == 0) right = left; /* mono */ /* Set the left channel */ regoffs = (*mix_d)[dev][LEFT_CHN].regno; old = val = ad_read(mss, regoffs); /* if volume is 0, mute chan. Otherwise, unmute. */ if (regoffs != 0) val = (left == 0)? old | 0x80 : old & 0x7f; change_bits(mix_d, &val, dev, LEFT_CHN, left); ad_write(mss, regoffs, val); DEB(printf("LEFT: dev %d reg %d old 0x%02x new 0x%02x\n", dev, regoffs, old, val)); if ((*mix_d)[dev][RIGHT_CHN].nbits != 0) { /* have stereo */ /* Set the right channel */ regoffs = (*mix_d)[dev][RIGHT_CHN].regno; old = val = ad_read(mss, regoffs); if (regoffs != 1) val = (right == 0)? old | 0x80 : old & 0x7f; change_bits(mix_d, &val, dev, RIGHT_CHN, right); ad_write(mss, regoffs, val); DEB(printf("RIGHT: dev %d reg %d old 0x%02x new 0x%02x\n", dev, regoffs, old, val)); } return 0; /* success */ } /* -------------------------------------------------------------------- */ static int mssmix_init(struct snd_mixer *m) { struct mss_info *mss = mix_getdevinfo(m); mix_setdevs(m, MODE2_MIXER_DEVICES); mix_setrecdevs(m, MSS_REC_DEVICES); switch(mss->bd_id) { case MD_OPTI930: mix_setdevs(m, OPTI930_MIXER_DEVICES); break; case MD_OPTI931: mix_setdevs(m, OPTI931_MIXER_DEVICES); mss_lock(mss); ad_write(mss, 20, 0x88); ad_write(mss, 21, 0x88); mss_unlock(mss); break; case MD_AD1848: mix_setdevs(m, MODE1_MIXER_DEVICES); break; case MD_GUSPNP: case MD_GUSMAX: /* this is only necessary in mode 3 ... */ mss_lock(mss); ad_write(mss, 22, 0x88); ad_write(mss, 23, 0x88); mss_unlock(mss); break; } return 0; } static int mssmix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct mss_info *mss = mix_getdevinfo(m); mss_lock(mss); mss_mixer_set(mss, dev, left, right); mss_unlock(mss); return left | (right << 8); } static u_int32_t mssmix_setrecsrc(struct snd_mixer *m, u_int32_t src) { struct mss_info *mss = mix_getdevinfo(m); mss_lock(mss); src = mss_set_recsrc(mss, src); mss_unlock(mss); return src; } static kobj_method_t mssmix_mixer_methods[] = { KOBJMETHOD(mixer_init, mssmix_init), KOBJMETHOD(mixer_set, mssmix_set), KOBJMETHOD(mixer_setrecsrc, mssmix_setrecsrc), KOBJMETHOD_END }; MIXER_DECLARE(mssmix_mixer); /* -------------------------------------------------------------------- */ static int ymmix_init(struct snd_mixer *m) { struct mss_info *mss = mix_getdevinfo(m); mssmix_init(m); mix_setdevs(m, mix_getdevs(m) | SOUND_MASK_VOLUME | SOUND_MASK_MIC | SOUND_MASK_BASS | SOUND_MASK_TREBLE); /* Set master volume */ mss_lock(mss); conf_wr(mss, OPL3SAx_VOLUMEL, 7); conf_wr(mss, OPL3SAx_VOLUMER, 7); mss_unlock(mss); return 0; } static int ymmix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct mss_info *mss = mix_getdevinfo(m); int t, l, r; mss_lock(mss); switch (dev) { case SOUND_MIXER_VOLUME: if (left) t = 15 - (left * 15) / 100; else t = 0x80; /* mute */ conf_wr(mss, OPL3SAx_VOLUMEL, t); if (right) t = 15 - (right * 15) / 100; else t = 0x80; /* mute */ conf_wr(mss, OPL3SAx_VOLUMER, t); break; case SOUND_MIXER_MIC: t = left; if (left) t = 31 - (left * 31) / 100; else t = 0x80; /* mute */ conf_wr(mss, OPL3SAx_MIC, t); break; case SOUND_MIXER_BASS: l = (left * 7) / 100; r = (right * 7) / 100; t = (r << 4) | l; conf_wr(mss, OPL3SAx_BASS, t); break; case SOUND_MIXER_TREBLE: l = (left * 7) / 100; r = (right * 7) / 100; t = (r << 4) | l; conf_wr(mss, OPL3SAx_TREBLE, t); break; default: mss_mixer_set(mss, dev, left, right); } mss_unlock(mss); return left | (right << 8); } static u_int32_t ymmix_setrecsrc(struct snd_mixer *m, u_int32_t src) { struct mss_info *mss = mix_getdevinfo(m); mss_lock(mss); src = mss_set_recsrc(mss, src); mss_unlock(mss); return src; } static kobj_method_t ymmix_mixer_methods[] = { KOBJMETHOD(mixer_init, ymmix_init), KOBJMETHOD(mixer_set, ymmix_set), KOBJMETHOD(mixer_setrecsrc, ymmix_setrecsrc), KOBJMETHOD_END }; MIXER_DECLARE(ymmix_mixer); /* -------------------------------------------------------------------- */ /* * XXX This might be better off in the gusc driver. */ static void gusmax_setup(struct mss_info *mss, device_t dev, struct resource *alt) { static const unsigned char irq_bits[16] = { 0, 0, 0, 3, 0, 2, 0, 4, 0, 1, 0, 5, 6, 0, 0, 7 }; static const unsigned char dma_bits[8] = { 0, 1, 0, 2, 0, 3, 4, 5 }; device_t parent = device_get_parent(dev); unsigned char irqctl, dmactl; int s; s = splhigh(); port_wr(alt, 0x0f, 0x05); port_wr(alt, 0x00, 0x0c); port_wr(alt, 0x0b, 0x00); port_wr(alt, 0x0f, 0x00); irqctl = irq_bits[isa_get_irq(parent)]; /* Share the IRQ with the MIDI driver. */ irqctl |= 0x40; dmactl = dma_bits[isa_get_drq(parent)]; if (device_get_flags(parent) & DV_F_DUAL_DMA) dmactl |= dma_bits[device_get_flags(parent) & DV_F_DRQ_MASK] << 3; /* * Set the DMA and IRQ control latches. */ port_wr(alt, 0x00, 0x0c); port_wr(alt, 0x0b, dmactl | 0x80); port_wr(alt, 0x00, 0x4c); port_wr(alt, 0x0b, irqctl); port_wr(alt, 0x00, 0x0c); port_wr(alt, 0x0b, dmactl); port_wr(alt, 0x00, 0x4c); port_wr(alt, 0x0b, irqctl); port_wr(mss->conf_base, 2, 0); port_wr(alt, 0x00, 0x0c); port_wr(mss->conf_base, 2, 0); splx(s); } static int mss_init(struct mss_info *mss, device_t dev) { u_char r6, r9; struct resource *alt; int rid, tmp; mss->bd_flags |= BD_F_MCE_BIT; switch(mss->bd_id) { case MD_OPTI931: /* * The MED3931 v.1.0 allocates 3 bytes for the config * space, whereas v.2.0 allocates 4 bytes. What I know * for sure is that the upper two ports must be used, * and they should end on a boundary of 4 bytes. So I * need the following trick. */ mss->opti_offset = (rman_get_start(mss->conf_base) & ~3) + 2 - rman_get_start(mss->conf_base); BVDDB(printf("mss_init: opti_offset=%d\n", mss->opti_offset)); opti_wr(mss, 4, 0xd6); /* fifo empty, OPL3, audio enable, SB3.2 */ ad_write(mss, 10, 2); /* enable interrupts */ opti_wr(mss, 6, 2); /* MCIR6: mss enable, sb disable */ opti_wr(mss, 5, 0x28); /* MCIR5: codec in exp. mode,fifo */ break; case MD_GUSPNP: case MD_GUSMAX: gus_wr(mss, 0x4c /* _URSTI */, 0);/* Pull reset */ DELAY(1000 * 30); /* release reset and enable DAC */ gus_wr(mss, 0x4c /* _URSTI */, 3); DELAY(1000 * 30); /* end of reset */ rid = 0; alt = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (alt == NULL) { printf("XXX couldn't init GUS PnP/MAX\n"); break; } port_wr(alt, 0, 0xC); /* enable int and dma */ if (mss->bd_id == MD_GUSMAX) gusmax_setup(mss, dev, alt); bus_release_resource(dev, SYS_RES_IOPORT, rid, alt); /* * unmute left & right line. Need to go in mode3, unmute, * and back to mode 2 */ tmp = ad_read(mss, 0x0c); ad_write(mss, 0x0c, 0x6c); /* special value to enter mode 3 */ ad_write(mss, 0x19, 0); /* unmute left */ ad_write(mss, 0x1b, 0); /* unmute right */ ad_write(mss, 0x0c, tmp); /* restore old mode */ /* send codec interrupts on irq1 and only use that one */ gus_wr(mss, 0x5a, 0x4f); /* enable access to hidden regs */ tmp = gus_rd(mss, 0x5b /* IVERI */); gus_wr(mss, 0x5b, tmp | 1); BVDDB(printf("GUS: silicon rev %c\n", 'A' + ((tmp & 0xf) >> 4))); break; case MD_YM0020: conf_wr(mss, OPL3SAx_DMACONF, 0xa9); /* dma-b rec, dma-a play */ r6 = conf_rd(mss, OPL3SAx_DMACONF); r9 = conf_rd(mss, OPL3SAx_MISC); /* version */ BVDDB(printf("Yamaha: ver 0x%x DMA config 0x%x\n", r6, r9);) /* yamaha - set volume to max */ conf_wr(mss, OPL3SAx_VOLUMEL, 0); conf_wr(mss, OPL3SAx_VOLUMER, 0); conf_wr(mss, OPL3SAx_DMACONF, FULL_DUPLEX(mss)? 0xa9 : 0x8b); break; } if (FULL_DUPLEX(mss) && mss->bd_id != MD_OPTI931) ad_write(mss, 12, ad_read(mss, 12) | 0x40); /* mode 2 */ ad_enter_MCE(mss); ad_write(mss, 9, FULL_DUPLEX(mss)? 0 : 4); ad_leave_MCE(mss); ad_write(mss, 10, 2); /* int enable */ io_wr(mss, MSS_STATUS, 0); /* Clear interrupt status */ /* the following seem required on the CS4232 */ ad_unmute(mss); return 0; } /* * main irq handler for the CS423x. The OPTi931 code is * a separate one. * The correct way to operate for a device with multiple internal * interrupt sources is to loop on the status register and ack * interrupts until all interrupts are served and none are reported. At * this point the IRQ line to the ISA IRQ controller should go low * and be raised at the next interrupt. * * Since the ISA IRQ controller is sent EOI _before_ passing control * to the isr, it might happen that we serve an interrupt early, in * which case the status register at the next interrupt should just * say that there are no more interrupts... */ static void mss_intr(void *arg) { struct mss_info *mss = arg; u_char c = 0, served = 0; int i; DEB(printf("mss_intr\n")); mss_lock(mss); ad_read(mss, 11); /* fake read of status bits */ /* loop until there are interrupts, but no more than 10 times. */ for (i = 10; i > 0 && io_rd(mss, MSS_STATUS) & 1; i--) { /* get exact reason for full-duplex boards */ c = FULL_DUPLEX(mss)? ad_read(mss, 24) : 0x30; c &= ~served; if (sndbuf_runsz(mss->pch.buffer) && (c & 0x10)) { served |= 0x10; mss_unlock(mss); chn_intr(mss->pch.channel); mss_lock(mss); } if (sndbuf_runsz(mss->rch.buffer) && (c & 0x20)) { served |= 0x20; mss_unlock(mss); chn_intr(mss->rch.channel); mss_lock(mss); } /* now ack the interrupt */ if (FULL_DUPLEX(mss)) ad_write(mss, 24, ~c); /* ack selectively */ else io_wr(mss, MSS_STATUS, 0); /* Clear interrupt status */ } if (i == 10) { BVDDB(printf("mss_intr: irq, but not from mss\n")); } else if (served == 0) { BVDDB(printf("mss_intr: unexpected irq with reason %x\n", c)); /* * this should not happen... I have no idea what to do now. * maybe should do a sanity check and restart dmas ? */ io_wr(mss, MSS_STATUS, 0); /* Clear interrupt status */ } mss_unlock(mss); } /* * AD_WAIT_INIT waits if we are initializing the board and * we cannot modify its settings */ static int ad_wait_init(struct mss_info *mss, int x) { int arg = x, n = 0; /* to shut up the compiler... */ for (; x > 0; x--) if ((n = io_rd(mss, MSS_INDEX)) & MSS_IDXBUSY) DELAY(10); else return n; printf("AD_WAIT_INIT FAILED %d 0x%02x\n", arg, n); return n; } static int ad_read(struct mss_info *mss, int reg) { int x; ad_wait_init(mss, 201000); x = io_rd(mss, MSS_INDEX) & ~MSS_IDXMASK; io_wr(mss, MSS_INDEX, (u_char)(reg & MSS_IDXMASK) | x); x = io_rd(mss, MSS_IDATA); /* printf("ad_read %d, %x\n", reg, x); */ return x; } static void ad_write(struct mss_info *mss, int reg, u_char data) { int x; /* printf("ad_write %d, %x\n", reg, data); */ ad_wait_init(mss, 1002000); x = io_rd(mss, MSS_INDEX) & ~MSS_IDXMASK; io_wr(mss, MSS_INDEX, (u_char)(reg & MSS_IDXMASK) | x); io_wr(mss, MSS_IDATA, data); } static void ad_write_cnt(struct mss_info *mss, int reg, u_short cnt) { ad_write(mss, reg+1, cnt & 0xff); ad_write(mss, reg, cnt >> 8); /* upper base must be last */ } static void wait_for_calibration(struct mss_info *mss) { int t; /* * Wait until the auto calibration process has finished. * * 1) Wait until the chip becomes ready (reads don't return 0x80). * 2) Wait until the ACI bit of I11 gets on * 3) Wait until the ACI bit of I11 gets off */ t = ad_wait_init(mss, 1000000); if (t & MSS_IDXBUSY) printf("mss: Auto calibration timed out(1).\n"); /* * The calibration mode for chips that support it is set so that * we never see ACI go on. */ if (mss->bd_id == MD_GUSMAX || mss->bd_id == MD_GUSPNP) { for (t = 100; t > 0 && (ad_read(mss, 11) & 0x20) == 0; t--); } else { /* * XXX This should only be enabled for cards that *really* * need it. Are there any? */ for (t = 100; t > 0 && (ad_read(mss, 11) & 0x20) == 0; t--) DELAY(100); } for (t = 100; t > 0 && ad_read(mss, 11) & 0x20; t--) DELAY(100); } static void ad_unmute(struct mss_info *mss) { ad_write(mss, 6, ad_read(mss, 6) & ~I6_MUTE); ad_write(mss, 7, ad_read(mss, 7) & ~I6_MUTE); } static void ad_enter_MCE(struct mss_info *mss) { int prev; mss->bd_flags |= BD_F_MCE_BIT; ad_wait_init(mss, 203000); prev = io_rd(mss, MSS_INDEX); prev &= ~MSS_TRD; io_wr(mss, MSS_INDEX, prev | MSS_MCE); } static void ad_leave_MCE(struct mss_info *mss) { u_char prev; if ((mss->bd_flags & BD_F_MCE_BIT) == 0) { DEB(printf("--- hey, leave_MCE: MCE bit was not set!\n")); return; } ad_wait_init(mss, 1000000); mss->bd_flags &= ~BD_F_MCE_BIT; prev = io_rd(mss, MSS_INDEX); prev &= ~MSS_TRD; io_wr(mss, MSS_INDEX, prev & ~MSS_MCE); /* Clear the MCE bit */ wait_for_calibration(mss); } static int mss_speed(struct mss_chinfo *ch, int speed) { struct mss_info *mss = ch->parent; /* * In the CS4231, the low 4 bits of I8 are used to hold the * sample rate. Only a fixed number of values is allowed. This * table lists them. The speed-setting routines scans the table * looking for the closest match. This is the only supported method. * * In the CS4236, there is an alternate metod (which we do not * support yet) which provides almost arbitrary frequency setting. * In the AD1845, it looks like the sample rate can be * almost arbitrary, and written directly to a register. * In the OPTi931, there is a SB command which provides for * almost arbitrary frequency setting. * */ ad_enter_MCE(mss); if (mss->bd_id == MD_AD1845) { /* Use alternate speed select regs */ ad_write(mss, 22, (speed >> 8) & 0xff); /* Speed MSB */ ad_write(mss, 23, speed & 0xff); /* Speed LSB */ /* XXX must also do something in I27 for the ad1845 */ } else { int i, sel = 0; /* assume entry 0 does not contain -1 */ static int speeds[] = {8000, 5512, 16000, 11025, 27429, 18900, 32000, 22050, -1, 37800, -1, 44100, 48000, 33075, 9600, 6615}; for (i = 1; i < 16; i++) if (speeds[i] > 0 && abs(speed-speeds[i]) < abs(speed-speeds[sel])) sel = i; speed = speeds[sel]; ad_write(mss, 8, (ad_read(mss, 8) & 0xf0) | sel); ad_wait_init(mss, 10000); } ad_leave_MCE(mss); return speed; } /* * mss_format checks that the format is supported (or defaults to AFMT_U8) * and returns the bit setting for the 1848 register corresponding to * the desired format. * * fixed lr970724 */ static int mss_format(struct mss_chinfo *ch, u_int32_t format) { struct mss_info *mss = ch->parent; int i, arg = AFMT_ENCODING(format); /* * The data format uses 3 bits (just 2 on the 1848). For each * bit setting, the following array returns the corresponding format. * The code scans the array looking for a suitable format. In * case it is not found, default to AFMT_U8 (not such a good * choice, but let's do it for compatibility...). */ static int fmts[] = {AFMT_U8, AFMT_MU_LAW, AFMT_S16_LE, AFMT_A_LAW, -1, AFMT_IMA_ADPCM, AFMT_U16_BE, -1}; ch->fmt = format; for (i = 0; i < 8; i++) if (arg == fmts[i]) break; arg = i << 1; if (AFMT_CHANNEL(format) > 1) arg |= 1; arg <<= 4; ad_enter_MCE(mss); ad_write(mss, 8, (ad_read(mss, 8) & 0x0f) | arg); ad_wait_init(mss, 10000); if (ad_read(mss, 12) & 0x40) { /* mode2? */ ad_write(mss, 28, arg); /* capture mode */ ad_wait_init(mss, 10000); } ad_leave_MCE(mss); return format; } static int mss_trigger(struct mss_chinfo *ch, int go) { struct mss_info *mss = ch->parent; u_char m; int retry, wr, cnt, ss; ss = 1; ss <<= (AFMT_CHANNEL(ch->fmt) > 1)? 1 : 0; ss <<= (ch->fmt & AFMT_16BIT)? 1 : 0; wr = (ch->dir == PCMDIR_PLAY)? 1 : 0; m = ad_read(mss, 9); switch (go) { case PCMTRIG_START: cnt = (ch->blksz / ss) - 1; DEB(if (m & 4) printf("OUCH! reg 9 0x%02x\n", m);); m |= wr? I9_PEN : I9_CEN; /* enable DMA */ ad_write_cnt(mss, (wr || !FULL_DUPLEX(mss))? 14 : 30, cnt); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: /* XXX check this... */ m &= ~(wr? I9_PEN : I9_CEN); /* Stop DMA */ #if 0 /* * try to disable DMA by clearing count registers. Not sure it * is needed, and it might cause false interrupts when the * DMA is re-enabled later. */ ad_write_cnt(mss, (wr || !FULL_DUPLEX(mss))? 14 : 30, 0); #endif } /* on the OPTi931 the enable bit seems hard to set... */ for (retry = 10; retry > 0; retry--) { ad_write(mss, 9, m); if (ad_read(mss, 9) == m) break; } if (retry == 0) BVDDB(printf("stop dma, failed to set bit 0x%02x 0x%02x\n", \ m, ad_read(mss, 9))); return 0; } /* * the opti931 seems to miss interrupts when working in full * duplex, so we try some heuristics to catch them. */ static void opti931_intr(void *arg) { struct mss_info *mss = (struct mss_info *)arg; u_char masked = 0, i11, mc11, c = 0; u_char reason; /* b0 = playback, b1 = capture, b2 = timer */ int loops = 10; #if 0 reason = io_rd(mss, MSS_STATUS); if (!(reason & 1)) {/* no int, maybe a shared line ? */ DEB(printf("intr: flag 0, mcir11 0x%02x\n", ad_read(mss, 11))); return; } #endif mss_lock(mss); i11 = ad_read(mss, 11); /* XXX what's for ? */ again: c = mc11 = FULL_DUPLEX(mss)? opti_rd(mss, 11) : 0xc; mc11 &= 0x0c; if (c & 0x10) { DEB(printf("Warning: CD interrupt\n");) mc11 |= 0x10; } if (c & 0x20) { DEB(printf("Warning: MPU interrupt\n");) mc11 |= 0x20; } if (mc11 & masked) BVDDB(printf("irq reset failed, mc11 0x%02x, 0x%02x\n",\ mc11, masked)); masked |= mc11; /* * the nice OPTi931 sets the IRQ line before setting the bits in * mc11. So, on some occasions I have to retry (max 10 times). */ if (mc11 == 0) { /* perhaps can return ... */ reason = io_rd(mss, MSS_STATUS); if (reason & 1) { DEB(printf("one more try...\n");) if (--loops) goto again; else BVDDB(printf("intr, but mc11 not set\n");) } if (loops == 0) BVDDB(printf("intr, nothing in mcir11 0x%02x\n", mc11)); mss_unlock(mss); return; } if (sndbuf_runsz(mss->rch.buffer) && (mc11 & 8)) { mss_unlock(mss); chn_intr(mss->rch.channel); mss_lock(mss); } if (sndbuf_runsz(mss->pch.buffer) && (mc11 & 4)) { mss_unlock(mss); chn_intr(mss->pch.channel); mss_lock(mss); } opti_wr(mss, 11, ~mc11); /* ack */ if (--loops) goto again; mss_unlock(mss); DEB(printf("xxx too many loops\n");) } /* -------------------------------------------------------------------- */ /* channel interface */ static void * msschan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct mss_info *mss = devinfo; struct mss_chinfo *ch = (dir == PCMDIR_PLAY)? &mss->pch : &mss->rch; ch->parent = mss; ch->channel = c; ch->buffer = b; ch->dir = dir; if (sndbuf_alloc(ch->buffer, mss->parent_dmat, 0, mss->bufsize) != 0) return NULL; sndbuf_dmasetup(ch->buffer, (dir == PCMDIR_PLAY)? mss->drq1 : mss->drq2); return ch; } static int msschan_setformat(kobj_t obj, void *data, u_int32_t format) { struct mss_chinfo *ch = data; struct mss_info *mss = ch->parent; mss_lock(mss); mss_format(ch, format); mss_unlock(mss); return 0; } static u_int32_t msschan_setspeed(kobj_t obj, void *data, u_int32_t speed) { struct mss_chinfo *ch = data; struct mss_info *mss = ch->parent; u_int32_t r; mss_lock(mss); r = mss_speed(ch, speed); mss_unlock(mss); return r; } static u_int32_t msschan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize) { struct mss_chinfo *ch = data; ch->blksz = blocksize; sndbuf_resize(ch->buffer, 2, ch->blksz); return ch->blksz; } static int msschan_trigger(kobj_t obj, void *data, int go) { struct mss_chinfo *ch = data; struct mss_info *mss = ch->parent; if (!PCMTRIG_COMMON(go)) return 0; sndbuf_dma(ch->buffer, go); mss_lock(mss); mss_trigger(ch, go); mss_unlock(mss); return 0; } static u_int32_t msschan_getptr(kobj_t obj, void *data) { struct mss_chinfo *ch = data; return sndbuf_dmaptr(ch->buffer); } static struct pcmchan_caps * msschan_getcaps(kobj_t obj, void *data) { struct mss_chinfo *ch = data; switch(ch->parent->bd_id) { case MD_OPTI931: return &opti931_caps; break; case MD_GUSPNP: case MD_GUSMAX: return &guspnp_caps; break; default: return &mss_caps; break; } } static kobj_method_t msschan_methods[] = { KOBJMETHOD(channel_init, msschan_init), KOBJMETHOD(channel_setformat, msschan_setformat), KOBJMETHOD(channel_setspeed, msschan_setspeed), KOBJMETHOD(channel_setblocksize, msschan_setblocksize), KOBJMETHOD(channel_trigger, msschan_trigger), KOBJMETHOD(channel_getptr, msschan_getptr), KOBJMETHOD(channel_getcaps, msschan_getcaps), KOBJMETHOD_END }; CHANNEL_DECLARE(msschan); /* -------------------------------------------------------------------- */ /* * mss_probe() is the probe routine. Note, it is not necessary to * go through this for PnP devices, since they are already * indentified precisely using their PnP id. * * The base address supplied in the device refers to the old MSS * specs where the four 4 registers in io space contain configuration * information. Some boards (as an example, early MSS boards) * has such a block of registers, whereas others (generally CS42xx) * do not. In order to distinguish between the two and do not have * to supply two separate probe routines, the flags entry in isa_device * has a bit to mark this. * */ static int mss_probe(device_t dev) { u_char tmp, tmpx; int flags, irq, drq, result = ENXIO, setres = 0; struct mss_info *mss; if (isa_get_logicalid(dev)) return ENXIO; /* not yet */ mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO); if (!mss) return ENXIO; mss->io_rid = 0; mss->conf_rid = -1; mss->irq_rid = 0; mss->drq1_rid = 0; mss->drq2_rid = -1; mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->io_rid, 0, ~0, 8, RF_ACTIVE); if (!mss->io_base) { BVDDB(printf("mss_probe: no address given, try 0x%x\n", 0x530)); mss->io_rid = 0; /* XXX verify this */ setres = 1; bus_set_resource(dev, SYS_RES_IOPORT, mss->io_rid, 0x530, 8); mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->io_rid, 0, ~0, 8, RF_ACTIVE); } if (!mss->io_base) goto no; /* got irq/dma regs? */ flags = device_get_flags(dev); irq = isa_get_irq(dev); drq = isa_get_drq(dev); if (!(device_get_flags(dev) & DV_F_TRUE_MSS)) goto mss_probe_end; /* * Check if the IO port returns valid signature. The original MS * Sound system returns 0x04 while some cards * (AudioTriX Pro for example) return 0x00 or 0x0f. */ device_set_desc(dev, "MSS"); tmpx = tmp = io_rd(mss, 3); if (tmp == 0xff) { /* Bus float */ BVDDB(printf("I/O addr inactive (%x), try pseudo_mss\n", tmp)); device_set_flags(dev, flags & ~DV_F_TRUE_MSS); goto mss_probe_end; } tmp &= 0x3f; if (!(tmp == 0x04 || tmp == 0x0f || tmp == 0x00 || tmp == 0x05)) { BVDDB(printf("No MSS signature detected on port 0x%lx (0x%x)\n", rman_get_start(mss->io_base), tmpx)); goto no; } #ifdef PC98 if (irq > 12) { #else if (irq > 11) { #endif printf("MSS: Bad IRQ %d\n", irq); goto no; } if (!(drq == 0 || drq == 1 || drq == 3)) { printf("MSS: Bad DMA %d\n", drq); goto no; } if (tmpx & 0x80) { /* 8-bit board: only drq1/3 and irq7/9 */ if (drq == 0) { printf("MSS: Can't use DMA0 with a 8 bit card/slot\n"); goto no; } if (!(irq == 7 || irq == 9)) { printf("MSS: Can't use IRQ%d with a 8 bit card/slot\n", irq); goto no; } } mss_probe_end: result = mss_detect(dev, mss); no: mss_release_resources(mss, dev); #if 0 if (setres) ISA_DELETE_RESOURCE(device_get_parent(dev), dev, SYS_RES_IOPORT, mss->io_rid); /* XXX ? */ #endif return result; } static int mss_detect(device_t dev, struct mss_info *mss) { int i; u_char tmp = 0, tmp1, tmp2; char *name, *yamaha; if (mss->bd_id != 0) { device_printf(dev, "presel bd_id 0x%04x -- %s\n", mss->bd_id, device_get_desc(dev)); return 0; } name = "AD1848"; mss->bd_id = MD_AD1848; /* AD1848 or CS4248 */ #ifndef PC98 if (opti_detect(dev, mss)) { switch (mss->bd_id) { case MD_OPTI924: name = "OPTi924"; break; case MD_OPTI930: name = "OPTi930"; break; } printf("Found OPTi device %s\n", name); if (opti_init(dev, mss) == 0) goto gotit; } #endif /* * Check that the I/O address is in use. * * bit 7 of the base I/O port is known to be 0 after the chip has * performed its power on initialization. Just assume this has * happened before the OS is starting. * * If the I/O address is unused, it typically returns 0xff. */ for (i = 0; i < 10; i++) if ((tmp = io_rd(mss, MSS_INDEX)) & MSS_IDXBUSY) DELAY(10000); else break; if (i >= 10) { /* Not an AD1848 */ BVDDB(printf("mss_detect, busy still set (0x%02x)\n", tmp)); goto no; } /* * Test if it's possible to change contents of the indirect * registers. Registers 0 and 1 are ADC volume registers. The bit * 0x10 is read only so try to avoid using it. */ ad_write(mss, 0, 0xaa); ad_write(mss, 1, 0x45);/* 0x55 with bit 0x10 clear */ tmp1 = ad_read(mss, 0); tmp2 = ad_read(mss, 1); if (tmp1 != 0xaa || tmp2 != 0x45) { BVDDB(printf("mss_detect error - IREG (%x/%x)\n", tmp1, tmp2)); goto no; } ad_write(mss, 0, 0x45); ad_write(mss, 1, 0xaa); tmp1 = ad_read(mss, 0); tmp2 = ad_read(mss, 1); if (tmp1 != 0x45 || tmp2 != 0xaa) { BVDDB(printf("mss_detect error - IREG2 (%x/%x)\n", tmp1, tmp2)); goto no; } /* * The indirect register I12 has some read only bits. Lets try to * change them. */ tmp = ad_read(mss, 12); ad_write(mss, 12, (~tmp) & 0x0f); tmp1 = ad_read(mss, 12); if ((tmp & 0x0f) != (tmp1 & 0x0f)) { BVDDB(printf("mss_detect - I12 (0x%02x was 0x%02x)\n", tmp1, tmp)); goto no; } /* * NOTE! Last 4 bits of the reg I12 tell the chip revision. * 0x01=RevB * 0x0A=RevC. also CS4231/CS4231A and OPTi931 */ BVDDB(printf("mss_detect - chip revision 0x%02x\n", tmp & 0x0f);) /* * The original AD1848/CS4248 has just 16 indirect registers. This * means that I0 and I16 should return the same value (etc.). Ensure * that the Mode2 enable bit of I12 is 0. Otherwise this test fails * with new parts. */ ad_write(mss, 12, 0); /* Mode2=disabled */ #if 0 for (i = 0; i < 16; i++) { if ((tmp1 = ad_read(mss, i)) != (tmp2 = ad_read(mss, i + 16))) { BVDDB(printf("mss_detect warning - I%d: 0x%02x/0x%02x\n", i, tmp1, tmp2)); /* * note - this seems to fail on the 4232 on I11. So we just break * rather than fail. (which makes this test pointless - cg) */ break; /* return 0; */ } } #endif /* * Try to switch the chip to mode2 (CS4231) by setting the MODE2 bit * (0x40). The bit 0x80 is always 1 in CS4248 and CS4231. * * On the OPTi931, however, I12 is readonly and only contains the * chip revision ID (as in the CS4231A). The upper bits return 0. */ ad_write(mss, 12, 0x40); /* Set mode2, clear 0x80 */ tmp1 = ad_read(mss, 12); if (tmp1 & 0x80) name = "CS4248"; /* Our best knowledge just now */ if ((tmp1 & 0xf0) == 0x00) { BVDDB(printf("this should be an OPTi931\n");) } else if ((tmp1 & 0xc0) != 0xC0) goto gotit; /* * The 4231 has bit7=1 always, and bit6 we just set to 1. * We want to check that this is really a CS4231 * Verify that setting I0 doesn't change I16. */ ad_write(mss, 16, 0); /* Set I16 to known value */ ad_write(mss, 0, 0x45); if ((tmp1 = ad_read(mss, 16)) == 0x45) goto gotit; ad_write(mss, 0, 0xaa); if ((tmp1 = ad_read(mss, 16)) == 0xaa) { /* Rotten bits? */ BVDDB(printf("mss_detect error - step H(%x)\n", tmp1)); goto no; } /* Verify that some bits of I25 are read only. */ tmp1 = ad_read(mss, 25); /* Original bits */ ad_write(mss, 25, ~tmp1); /* Invert all bits */ if ((ad_read(mss, 25) & 0xe7) == (tmp1 & 0xe7)) { int id; /* It's at least CS4231 */ name = "CS4231"; mss->bd_id = MD_CS42XX; /* * It could be an AD1845 or CS4231A as well. * CS4231 and AD1845 report the same revision info in I25 * while the CS4231A reports different. */ id = ad_read(mss, 25) & 0xe7; /* * b7-b5 = version number; * 100 : all CS4231 * 101 : CS4231A * * b2-b0 = chip id; */ switch (id) { case 0xa0: name = "CS4231A"; mss->bd_id = MD_CS42XX; break; case 0xa2: name = "CS4232"; mss->bd_id = MD_CS42XX; break; case 0xb2: /* strange: the 4231 data sheet says b4-b3 are XX * so this should be the same as 0xa2 */ name = "CS4232A"; mss->bd_id = MD_CS42XX; break; case 0x80: /* * It must be a CS4231 or AD1845. The register I23 * of CS4231 is undefined and it appears to be read * only. AD1845 uses I23 for setting sample rate. * Assume the chip is AD1845 if I23 is changeable. */ tmp = ad_read(mss, 23); ad_write(mss, 23, ~tmp); if (ad_read(mss, 23) != tmp) { /* AD1845 ? */ name = "AD1845"; mss->bd_id = MD_AD1845; } ad_write(mss, 23, tmp); /* Restore */ yamaha = ymf_test(dev, mss); if (yamaha) { mss->bd_id = MD_YM0020; name = yamaha; } break; case 0x83: /* CS4236 */ case 0x03: /* CS4236 on Intel PR440FX motherboard XXX */ name = "CS4236"; mss->bd_id = MD_CS42XX; break; default: /* Assume CS4231 */ BVDDB(printf("unknown id 0x%02x, assuming CS4231\n", id);) mss->bd_id = MD_CS42XX; } } ad_write(mss, 25, tmp1); /* Restore bits */ gotit: BVDDB(printf("mss_detect() - Detected %s\n", name)); device_set_desc(dev, name); device_set_flags(dev, ((device_get_flags(dev) & ~DV_F_DEV_MASK) | ((mss->bd_id << DV_F_DEV_SHIFT) & DV_F_DEV_MASK))); return 0; no: return ENXIO; } #ifndef PC98 static int opti_detect(device_t dev, struct mss_info *mss) { int c; static const struct opticard { int boardid; int passwdreg; int password; int base; int indir_reg; } cards[] = { { MD_OPTI930, 0, 0xe4, 0xf8f, 0xe0e }, /* 930 */ { MD_OPTI924, 3, 0xe5, 0xf8c, 0, }, /* 924 */ { 0 }, }; mss->conf_rid = 3; mss->indir_rid = 4; for (c = 0; cards[c].base; c++) { mss->optibase = cards[c].base; mss->password = cards[c].password; mss->passwdreg = cards[c].passwdreg; mss->bd_id = cards[c].boardid; if (cards[c].indir_reg) mss->indir = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->indir_rid, cards[c].indir_reg, cards[c].indir_reg+1, 1, RF_ACTIVE); mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->conf_rid, mss->optibase, mss->optibase+9, 9, RF_ACTIVE); if (opti_read(mss, 1) != 0xff) { return 1; } else { if (mss->indir) bus_release_resource(dev, SYS_RES_IOPORT, mss->indir_rid, mss->indir); mss->indir = NULL; if (mss->conf_base) bus_release_resource(dev, SYS_RES_IOPORT, mss->conf_rid, mss->conf_base); mss->conf_base = NULL; } } return 0; } #endif static char * ymf_test(device_t dev, struct mss_info *mss) { static int ports[] = {0x370, 0x310, 0x538}; int p, i, j, version; static char *chipset[] = { NULL, /* 0 */ "OPL3-SA2 (YMF711)", /* 1 */ "OPL3-SA3 (YMF715)", /* 2 */ "OPL3-SA3 (YMF715)", /* 3 */ "OPL3-SAx (YMF719)", /* 4 */ "OPL3-SAx (YMF719)", /* 5 */ "OPL3-SAx (YMF719)", /* 6 */ "OPL3-SAx (YMF719)", /* 7 */ }; for (p = 0; p < 3; p++) { mss->conf_rid = 1; mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->conf_rid, ports[p], ports[p] + 1, 2, RF_ACTIVE); if (!mss->conf_base) return 0; /* Test the index port of the config registers */ i = port_rd(mss->conf_base, 0); port_wr(mss->conf_base, 0, OPL3SAx_DMACONF); j = (port_rd(mss->conf_base, 0) == OPL3SAx_DMACONF)? 1 : 0; port_wr(mss->conf_base, 0, i); if (!j) { bus_release_resource(dev, SYS_RES_IOPORT, mss->conf_rid, mss->conf_base); #ifdef PC98 /* PC98 need this. I don't know reason why. */ bus_delete_resource(dev, SYS_RES_IOPORT, mss->conf_rid); #endif mss->conf_base = 0; continue; } version = conf_rd(mss, OPL3SAx_MISC) & 0x07; return chipset[version]; } return NULL; } static int mss_doattach(device_t dev, struct mss_info *mss) { int pdma, rdma, flags = device_get_flags(dev); char status[SND_STATUSLEN], status2[SND_STATUSLEN]; mss->lock = snd_mtxcreate(device_get_nameunit(dev), "snd_mss softc"); mss->bufsize = pcm_getbuffersize(dev, 4096, MSS_DEFAULT_BUFSZ, 65536); if (!mss_alloc_resources(mss, dev)) goto no; mss_init(mss, dev); pdma = rman_get_start(mss->drq1); rdma = rman_get_start(mss->drq2); if (flags & DV_F_TRUE_MSS) { /* has IRQ/DMA registers, set IRQ and DMA addr */ #ifdef PC98 /* CS423[12] in PC98 can use IRQ3,5,10,12 */ static char interrupt_bits[13] = {-1, -1, -1, 0x08, -1, 0x10, -1, -1, -1, -1, 0x18, -1, 0x20}; #else static char interrupt_bits[12] = {-1, -1, -1, -1, -1, 0x28, -1, 0x08, -1, 0x10, 0x18, 0x20}; #endif static char pdma_bits[4] = {1, 2, -1, 3}; static char valid_rdma[4] = {1, 0, -1, 0}; char bits; if (!mss->irq || (bits = interrupt_bits[rman_get_start(mss->irq)]) == -1) goto no; #ifndef PC98 /* CS423[12] in PC98 don't support this. */ io_wr(mss, 0, bits | 0x40); /* config port */ if ((io_rd(mss, 3) & 0x40) == 0) device_printf(dev, "IRQ Conflict?\n"); #endif /* Write IRQ+DMA setup */ if (pdma_bits[pdma] == -1) goto no; bits |= pdma_bits[pdma]; if (pdma != rdma) { if (rdma == valid_rdma[pdma]) bits |= 4; else { printf("invalid dual dma config %d:%d\n", pdma, rdma); goto no; } } io_wr(mss, 0, bits); printf("drq/irq conf %x\n", io_rd(mss, 0)); } mixer_init(dev, (mss->bd_id == MD_YM0020)? &ymmix_mixer_class : &mssmix_mixer_class, mss); switch (mss->bd_id) { case MD_OPTI931: snd_setup_intr(dev, mss->irq, 0, opti931_intr, mss, &mss->ih); break; default: snd_setup_intr(dev, mss->irq, 0, mss_intr, mss, &mss->ih); } if (pdma == rdma) pcm_setflags(dev, pcm_getflags(dev) | SD_F_SIMPLEX); if (bus_dma_tag_create(/*parent*/bus_get_dma_tag(dev), /*alignment*/2, /*boundary*/0, /*lowaddr*/BUS_SPACE_MAXADDR_24BIT, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, /*maxsize*/mss->bufsize, /*nsegments*/1, /*maxsegz*/0x3ffff, /*flags*/0, /*lockfunc*/busdma_lock_mutex, /*lockarg*/&Giant, &mss->parent_dmat) != 0) { device_printf(dev, "unable to create dma tag\n"); goto no; } if (pdma != rdma) snprintf(status2, SND_STATUSLEN, ":%d", rdma); else status2[0] = '\0'; snprintf(status, SND_STATUSLEN, "at io 0x%lx irq %ld drq %d%s bufsz %u", rman_get_start(mss->io_base), rman_get_start(mss->irq), pdma, status2, mss->bufsize); if (pcm_register(dev, mss, 1, 1)) goto no; pcm_addchan(dev, PCMDIR_REC, &msschan_class, mss); pcm_addchan(dev, PCMDIR_PLAY, &msschan_class, mss); pcm_setstatus(dev, status); return 0; no: mss_release_resources(mss, dev); return ENXIO; } static int mss_detach(device_t dev) { int r; struct mss_info *mss; r = pcm_unregister(dev); if (r) return r; mss = pcm_getdevinfo(dev); mss_release_resources(mss, dev); return 0; } static int mss_attach(device_t dev) { struct mss_info *mss; int flags = device_get_flags(dev); mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO); if (!mss) return ENXIO; mss->io_rid = 0; mss->conf_rid = -1; mss->irq_rid = 0; mss->drq1_rid = 0; mss->drq2_rid = -1; if (flags & DV_F_DUAL_DMA) { bus_set_resource(dev, SYS_RES_DRQ, 1, flags & DV_F_DRQ_MASK, 1); mss->drq2_rid = 1; } mss->bd_id = (device_get_flags(dev) & DV_F_DEV_MASK) >> DV_F_DEV_SHIFT; if (mss->bd_id == MD_YM0020) ymf_test(dev, mss); return mss_doattach(dev, mss); } /* * mss_resume() is the code to allow a laptop to resume using the sound * card. * * This routine re-sets the state of the board to the state before going * to sleep. According to the yamaha docs this is the right thing to do, * but getting DMA restarted appears to be a bit of a trick, so the device * has to be closed and re-opened to be re-used, but there is no skipping * problem, and volume, bass/treble and most other things are restored * properly. * */ static int mss_resume(device_t dev) { /* * Restore the state taken below. */ struct mss_info *mss; int i; mss = pcm_getdevinfo(dev); if(mss->bd_id == MD_YM0020 || mss->bd_id == MD_CS423X) { /* This works on a Toshiba Libretto 100CT. */ for (i = 0; i < MSS_INDEXED_REGS; i++) ad_write(mss, i, mss->mss_indexed_regs[i]); for (i = 0; i < OPL_INDEXED_REGS; i++) conf_wr(mss, i, mss->opl_indexed_regs[i]); mss_intr(mss); } if (mss->bd_id == MD_CS423X) { /* Needed on IBM Thinkpad 600E */ mss_lock(mss); mss_format(&mss->pch, mss->pch.channel->format); mss_speed(&mss->pch, mss->pch.channel->speed); mss_unlock(mss); } return 0; } /* * mss_suspend() is the code that gets called right before a laptop * suspends. * * This code saves the state of the sound card right before shutdown * so it can be restored above. * */ static int mss_suspend(device_t dev) { int i; struct mss_info *mss; mss = pcm_getdevinfo(dev); if(mss->bd_id == MD_YM0020 || mss->bd_id == MD_CS423X) { /* this stops playback. */ conf_wr(mss, 0x12, 0x0c); for(i = 0; i < MSS_INDEXED_REGS; i++) mss->mss_indexed_regs[i] = ad_read(mss, i); for(i = 0; i < OPL_INDEXED_REGS; i++) mss->opl_indexed_regs[i] = conf_rd(mss, i); mss->opl_indexed_regs[0x12] = 0x0; } return 0; } static device_method_t mss_methods[] = { /* Device interface */ DEVMETHOD(device_probe, mss_probe), DEVMETHOD(device_attach, mss_attach), DEVMETHOD(device_detach, mss_detach), DEVMETHOD(device_suspend, mss_suspend), DEVMETHOD(device_resume, mss_resume), { 0, 0 } }; static driver_t mss_driver = { "pcm", mss_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(snd_mss, isa, mss_driver, pcm_devclass, 0, 0); MODULE_DEPEND(snd_mss, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(snd_mss, 1); static int azt2320_mss_mode(struct mss_info *mss, device_t dev) { struct resource *sbport; int i, ret, rid; rid = 0; ret = -1; sbport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (sbport) { for (i = 0; i < 1000; i++) { if ((port_rd(sbport, SBDSP_STATUS) & 0x80)) DELAY((i > 100) ? 1000 : 10); else { port_wr(sbport, SBDSP_CMD, 0x09); break; } } for (i = 0; i < 1000; i++) { if ((port_rd(sbport, SBDSP_STATUS) & 0x80)) DELAY((i > 100) ? 1000 : 10); else { port_wr(sbport, SBDSP_CMD, 0x00); ret = 0; break; } } DELAY(1000); bus_release_resource(dev, SYS_RES_IOPORT, rid, sbport); } return ret; } static struct isa_pnp_id pnpmss_ids[] = { {0x0000630e, "CS423x"}, /* CSC0000 */ {0x0001630e, "CS423x-PCI"}, /* CSC0100 */ {0x01000000, "CMI8330"}, /* @@@0001 */ {0x2100a865, "Yamaha OPL-SAx"}, /* YMH0021 */ {0x1110d315, "ENSONIQ SoundscapeVIVO"}, /* ENS1011 */ {0x1093143e, "OPTi931"}, /* OPT9310 */ {0x5092143e, "OPTi925"}, /* OPT9250 XXX guess */ {0x0000143e, "OPTi924"}, /* OPT0924 */ {0x1022b839, "Neomagic 256AV (non-ac97)"}, /* NMX2210 */ {0x01005407, "Aztech 2320"}, /* AZT0001 */ #if 0 {0x0000561e, "GusPnP"}, /* GRV0000 */ #endif {0}, }; static int pnpmss_probe(device_t dev) { u_int32_t lid, vid; lid = isa_get_logicalid(dev); vid = isa_get_vendorid(dev); if (lid == 0x01000000 && vid != 0x0100a90d) /* CMI0001 */ return ENXIO; return ISA_PNP_PROBE(device_get_parent(dev), dev, pnpmss_ids); } static int pnpmss_attach(device_t dev) { struct mss_info *mss; mss = malloc(sizeof(*mss), M_DEVBUF, M_WAITOK | M_ZERO); mss->io_rid = 0; mss->conf_rid = -1; mss->irq_rid = 0; mss->drq1_rid = 0; mss->drq2_rid = 1; mss->bd_id = MD_CS42XX; switch (isa_get_logicalid(dev)) { case 0x0000630e: /* CSC0000 */ case 0x0001630e: /* CSC0100 */ mss->bd_flags |= BD_F_MSS_OFFSET; mss->bd_id = MD_CS423X; break; case 0x2100a865: /* YHM0021 */ mss->io_rid = 1; mss->conf_rid = 4; mss->bd_id = MD_YM0020; break; case 0x1110d315: /* ENS1011 */ mss->io_rid = 1; mss->bd_id = MD_VIVO; break; case 0x1093143e: /* OPT9310 */ mss->bd_flags |= BD_F_MSS_OFFSET; mss->conf_rid = 3; mss->bd_id = MD_OPTI931; break; case 0x5092143e: /* OPT9250 XXX guess */ mss->io_rid = 1; mss->conf_rid = 3; mss->bd_id = MD_OPTI925; break; case 0x0000143e: /* OPT0924 */ mss->password = 0xe5; mss->passwdreg = 3; mss->optibase = 0xf0c; mss->io_rid = 2; mss->conf_rid = 3; mss->bd_id = MD_OPTI924; mss->bd_flags |= BD_F_924PNP; if(opti_init(dev, mss) != 0) { free(mss, M_DEVBUF); return ENXIO; } break; case 0x1022b839: /* NMX2210 */ mss->io_rid = 1; break; case 0x01005407: /* AZT0001 */ /* put into MSS mode first (snatched from NetBSD) */ if (azt2320_mss_mode(mss, dev) == -1) { free(mss, M_DEVBUF); return ENXIO; } mss->bd_flags |= BD_F_MSS_OFFSET; mss->io_rid = 2; break; #if 0 case 0x0000561e: /* GRV0000 */ mss->bd_flags |= BD_F_MSS_OFFSET; mss->io_rid = 2; mss->conf_rid = 1; mss->drq1_rid = 1; mss->drq2_rid = 0; mss->bd_id = MD_GUSPNP; break; #endif case 0x01000000: /* @@@0001 */ mss->drq2_rid = -1; break; /* Unknown MSS default. We could let the CSC0000 stuff match too */ default: mss->bd_flags |= BD_F_MSS_OFFSET; break; } return mss_doattach(dev, mss); } static int opti_init(device_t dev, struct mss_info *mss) { int flags = device_get_flags(dev); int basebits = 0; if (!mss->conf_base) { bus_set_resource(dev, SYS_RES_IOPORT, mss->conf_rid, mss->optibase, 0x9); mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->conf_rid, mss->optibase, mss->optibase+0x9, 0x9, RF_ACTIVE); } if (!mss->conf_base) return ENXIO; if (!mss->io_base) mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->io_rid, 0, ~0, 8, RF_ACTIVE); if (!mss->io_base) /* No hint specified, use 0x530 */ mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->io_rid, 0x530, 0x537, 8, RF_ACTIVE); if (!mss->io_base) return ENXIO; switch (rman_get_start(mss->io_base)) { case 0x530: basebits = 0x0; break; case 0xe80: basebits = 0x10; break; case 0xf40: basebits = 0x20; break; case 0x604: basebits = 0x30; break; default: printf("opti_init: invalid MSS base address!\n"); return ENXIO; } switch (mss->bd_id) { case MD_OPTI924: opti_write(mss, 1, 0x80 | basebits); /* MSS mode */ opti_write(mss, 2, 0x00); /* Disable CD */ opti_write(mss, 3, 0xf0); /* Disable SB IRQ */ opti_write(mss, 4, 0xf0); opti_write(mss, 5, 0x00); opti_write(mss, 6, 0x02); /* MPU stuff */ break; case MD_OPTI930: opti_write(mss, 1, 0x00 | basebits); opti_write(mss, 3, 0x00); /* Disable SB IRQ/DMA */ opti_write(mss, 4, 0x52); /* Empty FIFO */ opti_write(mss, 5, 0x3c); /* Mode 2 */ opti_write(mss, 6, 0x02); /* Enable MSS */ break; } if (mss->bd_flags & BD_F_924PNP) { u_int32_t irq = isa_get_irq(dev); u_int32_t drq = isa_get_drq(dev); bus_set_resource(dev, SYS_RES_IRQ, 0, irq, 1); bus_set_resource(dev, SYS_RES_DRQ, mss->drq1_rid, drq, 1); if (flags & DV_F_DUAL_DMA) { bus_set_resource(dev, SYS_RES_DRQ, 1, flags & DV_F_DRQ_MASK, 1); mss->drq2_rid = 1; } } /* OPTixxx has I/DRQ registers */ device_set_flags(dev, device_get_flags(dev) | DV_F_TRUE_MSS); return 0; } static void opti_write(struct mss_info *mss, u_char reg, u_char val) { port_wr(mss->conf_base, mss->passwdreg, mss->password); switch(mss->bd_id) { case MD_OPTI924: if (reg > 7) { /* Indirect register */ port_wr(mss->conf_base, mss->passwdreg, reg); port_wr(mss->conf_base, mss->passwdreg, mss->password); port_wr(mss->conf_base, 9, val); return; } port_wr(mss->conf_base, reg, val); break; case MD_OPTI930: port_wr(mss->indir, 0, reg); port_wr(mss->conf_base, mss->passwdreg, mss->password); port_wr(mss->indir, 1, val); break; } } #ifndef PC98 u_char opti_read(struct mss_info *mss, u_char reg) { port_wr(mss->conf_base, mss->passwdreg, mss->password); switch(mss->bd_id) { case MD_OPTI924: if (reg > 7) { /* Indirect register */ port_wr(mss->conf_base, mss->passwdreg, reg); port_wr(mss->conf_base, mss->passwdreg, mss->password); return(port_rd(mss->conf_base, 9)); } return(port_rd(mss->conf_base, reg)); break; case MD_OPTI930: port_wr(mss->indir, 0, reg); port_wr(mss->conf_base, mss->passwdreg, mss->password); return port_rd(mss->indir, 1); break; } return -1; } #endif static device_method_t pnpmss_methods[] = { /* Device interface */ DEVMETHOD(device_probe, pnpmss_probe), DEVMETHOD(device_attach, pnpmss_attach), DEVMETHOD(device_detach, mss_detach), DEVMETHOD(device_suspend, mss_suspend), DEVMETHOD(device_resume, mss_resume), { 0, 0 } }; static driver_t pnpmss_driver = { "pcm", pnpmss_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(snd_pnpmss, isa, pnpmss_driver, pcm_devclass, 0, 0); DRIVER_MODULE(snd_pnpmss, acpi, pnpmss_driver, pcm_devclass, 0, 0); MODULE_DEPEND(snd_pnpmss, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(snd_pnpmss, 1); static int guspcm_probe(device_t dev) { struct sndcard_func *func; func = device_get_ivars(dev); if (func == NULL || func->func != SCF_PCM) return ENXIO; device_set_desc(dev, "GUS CS4231"); return 0; } static int guspcm_attach(device_t dev) { device_t parent = device_get_parent(dev); struct mss_info *mss; int base, flags; unsigned char ctl; mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO); if (mss == NULL) return ENOMEM; mss->bd_flags = BD_F_MSS_OFFSET; mss->io_rid = 2; mss->conf_rid = 1; mss->irq_rid = 0; mss->drq1_rid = 1; mss->drq2_rid = -1; if (isa_get_logicalid(parent) == 0) mss->bd_id = MD_GUSMAX; else { mss->bd_id = MD_GUSPNP; mss->drq2_rid = 0; goto skip_setup; } flags = device_get_flags(parent); if (flags & DV_F_DUAL_DMA) mss->drq2_rid = 0; mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->conf_rid, 0, ~0, 8, RF_ACTIVE); if (mss->conf_base == NULL) { mss_release_resources(mss, dev); return ENXIO; } base = isa_get_port(parent); ctl = 0x40; /* CS4231 enable */ if (isa_get_drq(dev) > 3) ctl |= 0x10; /* 16-bit dma channel 1 */ if ((flags & DV_F_DUAL_DMA) != 0 && (flags & DV_F_DRQ_MASK) > 3) ctl |= 0x20; /* 16-bit dma channel 2 */ ctl |= (base >> 4) & 0x0f; /* 2X0 -> 3XC */ port_wr(mss->conf_base, 6, ctl); skip_setup: return mss_doattach(dev, mss); } static device_method_t guspcm_methods[] = { DEVMETHOD(device_probe, guspcm_probe), DEVMETHOD(device_attach, guspcm_attach), DEVMETHOD(device_detach, mss_detach), { 0, 0 } }; static driver_t guspcm_driver = { "pcm", guspcm_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(snd_guspcm, gusc, guspcm_driver, pcm_devclass, 0, 0); MODULE_DEPEND(snd_guspcm, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(snd_guspcm, 1);