Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/ixgbe/@/amd64/amd64/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/ixgbe/@/amd64/amd64/vm_machdep.c |
/*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/amd64/amd64/vm_machdep.c 231979 2012-02-21 20:56:03Z kib $"); #include "opt_isa.h" #include "opt_cpu.h" #include "opt_compat.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/bio.h> #include <sys/buf.h> #include <sys/kernel.h> #include <sys/ktr.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/mutex.h> #include <sys/pioctl.h> #include <sys/proc.h> #include <sys/sf_buf.h> #include <sys/smp.h> #include <sys/sysctl.h> #include <sys/sysent.h> #include <sys/unistd.h> #include <sys/vnode.h> #include <sys/vmmeter.h> #include <machine/cpu.h> #include <machine/md_var.h> #include <machine/pcb.h> #include <machine/smp.h> #include <machine/specialreg.h> #include <machine/tss.h> #include <vm/vm.h> #include <vm/vm_extern.h> #include <vm/vm_kern.h> #include <vm/vm_page.h> #include <vm/vm_map.h> #include <vm/vm_param.h> #include <x86/isa/isa.h> static void cpu_reset_real(void); #ifdef SMP static void cpu_reset_proxy(void); static u_int cpu_reset_proxyid; static volatile u_int cpu_reset_proxy_active; #endif struct savefpu * get_pcb_user_save_td(struct thread *td) { vm_offset_t p; p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - cpu_max_ext_state_size; KASSERT((p % 64) == 0, ("Unaligned pcb_user_save area")); return ((struct savefpu *)p); } struct savefpu * get_pcb_user_save_pcb(struct pcb *pcb) { vm_offset_t p; p = (vm_offset_t)(pcb + 1); return ((struct savefpu *)p); } struct pcb * get_pcb_td(struct thread *td) { vm_offset_t p; p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE - cpu_max_ext_state_size - sizeof(struct pcb); return ((struct pcb *)p); } void * alloc_fpusave(int flags) { struct pcb *res; struct savefpu_ymm *sf; res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags); if (use_xsave) { sf = (struct savefpu_ymm *)res; bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd)); sf->sv_xstate.sx_hd.xstate_bv = xsave_mask; } return (res); } /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(td1, p2, td2, flags) register struct thread *td1; register struct proc *p2; struct thread *td2; int flags; { register struct proc *p1; struct pcb *pcb2; struct mdproc *mdp1, *mdp2; struct proc_ldt *pldt; pmap_t pmap2; p1 = td1->td_proc; if ((flags & RFPROC) == 0) { if ((flags & RFMEM) == 0) { /* unshare user LDT */ mdp1 = &p1->p_md; mtx_lock(&dt_lock); if ((pldt = mdp1->md_ldt) != NULL && pldt->ldt_refcnt > 1 && user_ldt_alloc(p1, 1) == NULL) panic("could not copy LDT"); mtx_unlock(&dt_lock); } return; } /* Ensure that td1's pcb is up to date. */ fpuexit(td1); /* Point the pcb to the top of the stack */ pcb2 = get_pcb_td(td2); td2->td_pcb = pcb2; /* Copy td1's pcb */ bcopy(td1->td_pcb, pcb2, sizeof(*pcb2)); /* Properly initialize pcb_save */ pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2), cpu_max_ext_state_size); /* Point mdproc and then copy over td1's contents */ mdp2 = &p2->p_md; bcopy(&p1->p_md, mdp2, sizeof(*mdp2)); /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies most of the user mode register values. */ td2->td_frame = (struct trapframe *)td2->td_pcb - 1; bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe)); td2->td_frame->tf_rax = 0; /* Child returns zero */ td2->td_frame->tf_rflags &= ~PSL_C; /* success */ td2->td_frame->tf_rdx = 1; /* * If the parent process has the trap bit set (i.e. a debugger had * single stepped the process to the system call), we need to clear * the trap flag from the new frame unless the debugger had set PF_FORK * on the parent. Otherwise, the child will receive a (likely * unexpected) SIGTRAP when it executes the first instruction after * returning to userland. */ if ((p1->p_pfsflags & PF_FORK) == 0) td2->td_frame->tf_rflags &= ~PSL_T; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pmap2 = vmspace_pmap(p2->p_vmspace); pcb2->pcb_cr3 = DMAP_TO_PHYS((vm_offset_t)pmap2->pm_pml4); pcb2->pcb_r12 = (register_t)fork_return; /* fork_trampoline argument */ pcb2->pcb_rbp = 0; pcb2->pcb_rsp = (register_t)td2->td_frame - sizeof(void *); pcb2->pcb_rbx = (register_t)td2; /* fork_trampoline argument */ pcb2->pcb_rip = (register_t)fork_trampoline; /*- * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_[fg]sbase: cloned above */ /* Setup to release spin count in fork_exit(). */ td2->td_md.md_spinlock_count = 1; td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I; /* As an i386, do not copy io permission bitmap. */ pcb2->pcb_tssp = NULL; /* New segment registers. */ set_pcb_flags(pcb2, PCB_FULL_IRET); /* Copy the LDT, if necessary. */ mdp1 = &td1->td_proc->p_md; mdp2 = &p2->p_md; mtx_lock(&dt_lock); if (mdp1->md_ldt != NULL) { if (flags & RFMEM) { mdp1->md_ldt->ldt_refcnt++; mdp2->md_ldt = mdp1->md_ldt; bcopy(&mdp1->md_ldt_sd, &mdp2->md_ldt_sd, sizeof(struct system_segment_descriptor)); } else { mdp2->md_ldt = NULL; mdp2->md_ldt = user_ldt_alloc(p2, 0); if (mdp2->md_ldt == NULL) panic("could not copy LDT"); amd64_set_ldt_data(td2, 0, max_ldt_segment, (struct user_segment_descriptor *) mdp1->md_ldt->ldt_base); } } else mdp2->md_ldt = NULL; mtx_unlock(&dt_lock); /* * Now, cpu_switch() can schedule the new process. * pcb_rsp is loaded pointing to the cpu_switch() stack frame * containing the return address when exiting cpu_switch. * This will normally be to fork_trampoline(), which will have * %ebx loaded with the new proc's pointer. fork_trampoline() * will set up a stack to call fork_return(p, frame); to complete * the return to user-mode. */ } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_set_fork_handler(td, func, arg) struct thread *td; void (*func)(void *); void *arg; { /* * Note that the trap frame follows the args, so the function * is really called like this: func(arg, frame); */ td->td_pcb->pcb_r12 = (long) func; /* function */ td->td_pcb->pcb_rbx = (long) arg; /* first arg */ } void cpu_exit(struct thread *td) { /* * If this process has a custom LDT, release it. */ mtx_lock(&dt_lock); if (td->td_proc->p_md.md_ldt != 0) user_ldt_free(td); else mtx_unlock(&dt_lock); } void cpu_thread_exit(struct thread *td) { struct pcb *pcb; critical_enter(); if (td == PCPU_GET(fpcurthread)) fpudrop(); critical_exit(); pcb = td->td_pcb; /* Disable any hardware breakpoints. */ if (pcb->pcb_flags & PCB_DBREGS) { reset_dbregs(); clear_pcb_flags(pcb, PCB_DBREGS); } } void cpu_thread_clean(struct thread *td) { struct pcb *pcb; pcb = td->td_pcb; /* * Clean TSS/iomap */ if (pcb->pcb_tssp != NULL) { kmem_free(kernel_map, (vm_offset_t)pcb->pcb_tssp, ctob(IOPAGES + 1)); pcb->pcb_tssp = NULL; } } void cpu_thread_swapin(struct thread *td) { } void cpu_thread_swapout(struct thread *td) { } void cpu_thread_alloc(struct thread *td) { struct pcb *pcb; struct xstate_hdr *xhdr; td->td_pcb = pcb = get_pcb_td(td); td->td_frame = (struct trapframe *)pcb - 1; pcb->pcb_save = get_pcb_user_save_pcb(pcb); if (use_xsave) { xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1); bzero(xhdr, sizeof(*xhdr)); xhdr->xstate_bv = xsave_mask; } } void cpu_thread_free(struct thread *td) { cpu_thread_clean(td); } void cpu_set_syscall_retval(struct thread *td, int error) { switch (error) { case 0: td->td_frame->tf_rax = td->td_retval[0]; td->td_frame->tf_rdx = td->td_retval[1]; td->td_frame->tf_rflags &= ~PSL_C; break; case ERESTART: /* * Reconstruct pc, we know that 'syscall' is 2 bytes, * lcall $X,y is 7 bytes, int 0x80 is 2 bytes. * We saved this in tf_err. * %r10 (which was holding the value of %rcx) is restored * for the next iteration. * %r10 restore is only required for freebsd/amd64 processes, * but shall be innocent for any ia32 ABI. */ td->td_frame->tf_rip -= td->td_frame->tf_err; td->td_frame->tf_r10 = td->td_frame->tf_rcx; break; case EJUSTRETURN: break; default: if (td->td_proc->p_sysent->sv_errsize) { if (error >= td->td_proc->p_sysent->sv_errsize) error = -1; /* XXX */ else error = td->td_proc->p_sysent->sv_errtbl[error]; } td->td_frame->tf_rax = error; td->td_frame->tf_rflags |= PSL_C; break; } } /* * Initialize machine state (pcb and trap frame) for a new thread about to * upcall. Put enough state in the new thread's PCB to get it to go back * userret(), where we can intercept it again to set the return (upcall) * Address and stack, along with those from upcals that are from other sources * such as those generated in thread_userret() itself. */ void cpu_set_upcall(struct thread *td, struct thread *td0) { struct pcb *pcb2; /* Point the pcb to the top of the stack. */ pcb2 = td->td_pcb; /* * Copy the upcall pcb. This loads kernel regs. * Those not loaded individually below get their default * values here. */ bcopy(td0->td_pcb, pcb2, sizeof(*pcb2)); clear_pcb_flags(pcb2, PCB_FPUINITDONE | PCB_USERFPUINITDONE); pcb2->pcb_save = get_pcb_user_save_pcb(pcb2); bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save, cpu_max_ext_state_size); set_pcb_flags(pcb2, PCB_FULL_IRET); /* * Create a new fresh stack for the new thread. */ bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe)); /* If the current thread has the trap bit set (i.e. a debugger had * single stepped the process to the system call), we need to clear * the trap flag from the new frame. Otherwise, the new thread will * receive a (likely unexpected) SIGTRAP when it executes the first * instruction after returning to userland. */ td->td_frame->tf_rflags &= ~PSL_T; /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_r12 = (register_t)fork_return; /* trampoline arg */ pcb2->pcb_rbp = 0; pcb2->pcb_rsp = (register_t)td->td_frame - sizeof(void *); /* trampoline arg */ pcb2->pcb_rbx = (register_t)td; /* trampoline arg */ pcb2->pcb_rip = (register_t)fork_trampoline; /* * If we didn't copy the pcb, we'd need to do the following registers: * pcb2->pcb_cr3: cloned above. * pcb2->pcb_dr*: cloned above. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_onfault: cloned above (always NULL here?). * pcb2->pcb_[fg]sbase: cloned above */ /* Setup to release spin count in fork_exit(). */ td->td_md.md_spinlock_count = 1; td->td_md.md_saved_flags = PSL_KERNEL | PSL_I; } /* * Set that machine state for performing an upcall that has to * be done in thread_userret() so that those upcalls generated * in thread_userret() itself can be done as well. */ void cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg, stack_t *stack) { /* * Do any extra cleaning that needs to be done. * The thread may have optional components * that are not present in a fresh thread. * This may be a recycled thread so make it look * as though it's newly allocated. */ cpu_thread_clean(td); #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { /* * Set the trap frame to point at the beginning of the uts * function. */ td->td_frame->tf_rbp = 0; td->td_frame->tf_rsp = (((uintptr_t)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4; td->td_frame->tf_rip = (uintptr_t)entry; /* * Pass the address of the mailbox for this kse to the uts * function as a parameter on the stack. */ suword32((void *)(td->td_frame->tf_rsp + sizeof(int32_t)), (uint32_t)(uintptr_t)arg); return; } #endif /* * Set the trap frame to point at the beginning of the uts * function. */ td->td_frame->tf_rbp = 0; td->td_frame->tf_rsp = ((register_t)stack->ss_sp + stack->ss_size) & ~0x0f; td->td_frame->tf_rsp -= 8; td->td_frame->tf_rip = (register_t)entry; td->td_frame->tf_ds = _udatasel; td->td_frame->tf_es = _udatasel; td->td_frame->tf_fs = _ufssel; td->td_frame->tf_gs = _ugssel; td->td_frame->tf_flags = TF_HASSEGS; /* * Pass the address of the mailbox for this kse to the uts * function as a parameter on the stack. */ td->td_frame->tf_rdi = (register_t)arg; } int cpu_set_user_tls(struct thread *td, void *tls_base) { struct pcb *pcb; if ((u_int64_t)tls_base >= VM_MAXUSER_ADDRESS) return (EINVAL); pcb = td->td_pcb; set_pcb_flags(pcb, PCB_FULL_IRET); #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { pcb->pcb_gsbase = (register_t)tls_base; return (0); } #endif pcb->pcb_fsbase = (register_t)tls_base; return (0); } #ifdef SMP static void cpu_reset_proxy() { cpuset_t tcrp; cpu_reset_proxy_active = 1; while (cpu_reset_proxy_active == 1) ; /* Wait for other cpu to see that we've started */ CPU_SETOF(cpu_reset_proxyid, &tcrp); stop_cpus(tcrp); printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid); DELAY(1000000); cpu_reset_real(); } #endif void cpu_reset() { #ifdef SMP cpuset_t map; u_int cnt; if (smp_active) { map = all_cpus; CPU_CLR(PCPU_GET(cpuid), &map); CPU_NAND(&map, &stopped_cpus); if (!CPU_EMPTY(&map)) { printf("cpu_reset: Stopping other CPUs\n"); stop_cpus(map); } if (PCPU_GET(cpuid) != 0) { cpu_reset_proxyid = PCPU_GET(cpuid); cpustop_restartfunc = cpu_reset_proxy; cpu_reset_proxy_active = 0; printf("cpu_reset: Restarting BSP\n"); /* Restart CPU #0. */ CPU_SETOF(0, &started_cpus); wmb(); cnt = 0; while (cpu_reset_proxy_active == 0 && cnt < 10000000) cnt++; /* Wait for BSP to announce restart */ if (cpu_reset_proxy_active == 0) printf("cpu_reset: Failed to restart BSP\n"); enable_intr(); cpu_reset_proxy_active = 2; while (1); /* NOTREACHED */ } DELAY(1000000); } #endif cpu_reset_real(); /* NOTREACHED */ } static void cpu_reset_real() { struct region_descriptor null_idt; int b; disable_intr(); /* * Attempt to do a CPU reset via the keyboard controller, * do not turn off GateA20, as any machine that fails * to do the reset here would then end up in no man's land. */ outb(IO_KBD + 4, 0xFE); DELAY(500000); /* wait 0.5 sec to see if that did it */ /* * Attempt to force a reset via the Reset Control register at * I/O port 0xcf9. Bit 2 forces a system reset when it * transitions from 0 to 1. Bit 1 selects the type of reset * to attempt: 0 selects a "soft" reset, and 1 selects a * "hard" reset. We try a "hard" reset. The first write sets * bit 1 to select a "hard" reset and clears bit 2. The * second write forces a 0 -> 1 transition in bit 2 to trigger * a reset. */ outb(0xcf9, 0x2); outb(0xcf9, 0x6); DELAY(500000); /* wait 0.5 sec to see if that did it */ /* * Attempt to force a reset via the Fast A20 and Init register * at I/O port 0x92. Bit 1 serves as an alternate A20 gate. * Bit 0 asserts INIT# when set to 1. We are careful to only * preserve bit 1 while setting bit 0. We also must clear bit * 0 before setting it if it isn't already clear. */ b = inb(0x92); if (b != 0xff) { if ((b & 0x1) != 0) outb(0x92, b & 0xfe); outb(0x92, b | 0x1); DELAY(500000); /* wait 0.5 sec to see if that did it */ } printf("No known reset method worked, attempting CPU shutdown\n"); DELAY(1000000); /* wait 1 sec for printf to complete */ /* Wipe the IDT. */ null_idt.rd_limit = 0; null_idt.rd_base = 0; lidt(&null_idt); /* "good night, sweet prince .... <THUNK!>" */ breakpoint(); /* NOTREACHED */ while(1); } /* * Allocate an sf_buf for the given vm_page. On this machine, however, there * is no sf_buf object. Instead, an opaque pointer to the given vm_page is * returned. */ struct sf_buf * sf_buf_alloc(struct vm_page *m, int pri) { return ((struct sf_buf *)m); } /* * Free the sf_buf. In fact, do nothing because there are no resources * associated with the sf_buf. */ void sf_buf_free(struct sf_buf *sf) { } /* * Software interrupt handler for queued VM system processing. */ void swi_vm(void *dummy) { if (busdma_swi_pending != 0) busdma_swi(); } /* * Tell whether this address is in some physical memory region. * Currently used by the kernel coredump code in order to avoid * dumping the ``ISA memory hole'' which could cause indefinite hangs, * or other unpredictable behaviour. */ int is_physical_memory(vm_paddr_t addr) { #ifdef DEV_ISA /* The ISA ``memory hole''. */ if (addr >= 0xa0000 && addr < 0x100000) return 0; #endif /* * stuff other tests for known memory-mapped devices (PCI?) * here */ return 1; }