Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/joy/@/cam/scsi/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/joy/@/cam/scsi/scsi_xpt.c |
/*- * Implementation of the SCSI Transport * * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/cam/scsi/scsi_xpt.c 237327 2012-06-20 16:51:14Z mav $"); #include <sys/param.h> #include <sys/bus.h> #include <sys/systm.h> #include <sys/types.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/time.h> #include <sys/conf.h> #include <sys/fcntl.h> #include <sys/md5.h> #include <sys/interrupt.h> #include <sys/sbuf.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/sysctl.h> #include <cam/cam.h> #include <cam/cam_ccb.h> #include <cam/cam_queue.h> #include <cam/cam_periph.h> #include <cam/cam_sim.h> #include <cam/cam_xpt.h> #include <cam/cam_xpt_sim.h> #include <cam/cam_xpt_periph.h> #include <cam/cam_xpt_internal.h> #include <cam/cam_debug.h> #include <cam/scsi/scsi_all.h> #include <cam/scsi/scsi_message.h> #include <cam/scsi/scsi_pass.h> #include <machine/stdarg.h> /* for xpt_print below */ #include "opt_cam.h" struct scsi_quirk_entry { struct scsi_inquiry_pattern inq_pat; u_int8_t quirks; #define CAM_QUIRK_NOLUNS 0x01 #define CAM_QUIRK_NOVPDS 0x02 #define CAM_QUIRK_HILUNS 0x04 #define CAM_QUIRK_NOHILUNS 0x08 #define CAM_QUIRK_NORPTLUNS 0x10 u_int mintags; u_int maxtags; }; #define SCSI_QUIRK(dev) ((struct scsi_quirk_entry *)((dev)->quirk)) static int cam_srch_hi = 0; TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_cam_search_luns, "I", "allow search above LUN 7 for SCSI3 and greater devices"); #define CAM_SCSI2_MAXLUN 8 #define CAM_CAN_GET_SIMPLE_LUN(x, i) \ ((((x)->luns[i].lundata[0] & RPL_LUNDATA_ATYP_MASK) == \ RPL_LUNDATA_ATYP_PERIPH) || \ (((x)->luns[i].lundata[0] & RPL_LUNDATA_ATYP_MASK) == \ RPL_LUNDATA_ATYP_FLAT)) #define CAM_GET_SIMPLE_LUN(lp, i, lval) \ if (((lp)->luns[(i)].lundata[0] & RPL_LUNDATA_ATYP_MASK) == \ RPL_LUNDATA_ATYP_PERIPH) { \ (lval) = (lp)->luns[(i)].lundata[1]; \ } else { \ (lval) = (lp)->luns[(i)].lundata[0]; \ (lval) &= RPL_LUNDATA_FLAT_LUN_MASK; \ (lval) <<= 8; \ (lval) |= (lp)->luns[(i)].lundata[1]; \ } /* * If we're not quirked to search <= the first 8 luns * and we are either quirked to search above lun 8, * or we're > SCSI-2 and we've enabled hilun searching, * or we're > SCSI-2 and the last lun was a success, * we can look for luns above lun 8. */ #define CAN_SRCH_HI_SPARSE(dv) \ (((SCSI_QUIRK(dv)->quirks & CAM_QUIRK_NOHILUNS) == 0) \ && ((SCSI_QUIRK(dv)->quirks & CAM_QUIRK_HILUNS) \ || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) #define CAN_SRCH_HI_DENSE(dv) \ (((SCSI_QUIRK(dv)->quirks & CAM_QUIRK_NOHILUNS) == 0) \ && ((SCSI_QUIRK(dv)->quirks & CAM_QUIRK_HILUNS) \ || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) static periph_init_t probe_periph_init; static struct periph_driver probe_driver = { probe_periph_init, "probe", TAILQ_HEAD_INITIALIZER(probe_driver.units), /* generation */ 0, CAM_PERIPH_DRV_EARLY }; PERIPHDRIVER_DECLARE(probe, probe_driver); typedef enum { PROBE_TUR, PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */ PROBE_FULL_INQUIRY, PROBE_REPORT_LUNS, PROBE_MODE_SENSE, PROBE_SUPPORTED_VPD_LIST, PROBE_DEVICE_ID, PROBE_SERIAL_NUM, PROBE_TUR_FOR_NEGOTIATION, PROBE_INQUIRY_BASIC_DV1, PROBE_INQUIRY_BASIC_DV2, PROBE_DV_EXIT, PROBE_DONE, PROBE_INVALID } probe_action; static char *probe_action_text[] = { "PROBE_TUR", "PROBE_INQUIRY", "PROBE_FULL_INQUIRY", "PROBE_REPORT_LUNS", "PROBE_MODE_SENSE", "PROBE_SUPPORTED_VPD_LIST", "PROBE_DEVICE_ID", "PROBE_SERIAL_NUM", "PROBE_TUR_FOR_NEGOTIATION", "PROBE_INQUIRY_BASIC_DV1", "PROBE_INQUIRY_BASIC_DV2", "PROBE_DV_EXIT", "PROBE_DONE", "PROBE_INVALID" }; #define PROBE_SET_ACTION(softc, newaction) \ do { \ char **text; \ text = probe_action_text; \ CAM_DEBUG((softc)->periph->path, CAM_DEBUG_PROBE, \ ("Probe %s to %s\n", text[(softc)->action], \ text[(newaction)])); \ (softc)->action = (newaction); \ } while(0) typedef enum { PROBE_INQUIRY_CKSUM = 0x01, PROBE_SERIAL_CKSUM = 0x02, PROBE_NO_ANNOUNCE = 0x04 } probe_flags; typedef struct { TAILQ_HEAD(, ccb_hdr) request_ccbs; probe_action action; union ccb saved_ccb; probe_flags flags; MD5_CTX context; u_int8_t digest[16]; struct cam_periph *periph; } probe_softc; static const char quantum[] = "QUANTUM"; static const char sony[] = "SONY"; static const char west_digital[] = "WDIGTL"; static const char samsung[] = "SAMSUNG"; static const char seagate[] = "SEAGATE"; static const char microp[] = "MICROP"; static struct scsi_quirk_entry scsi_quirk_table[] = { { /* Reports QUEUE FULL for temporary resource shortages */ { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, /*quirks*/0, /*mintags*/24, /*maxtags*/32 }, { /* Reports QUEUE FULL for temporary resource shortages */ { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, /*quirks*/0, /*mintags*/24, /*maxtags*/32 }, { /* Reports QUEUE FULL for temporary resource shortages */ { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, /*quirks*/0, /*mintags*/24, /*maxtags*/32 }, { /* Broken tagged queuing drive */ { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, { /* Broken tagged queuing drive */ { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, { /* Broken tagged queuing drive */ { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, { /* * Unfortunately, the Quantum Atlas III has the same * problem as the Atlas II drives above. * Reported by: "Johan Granlund" <johan@granlund.nu> * * For future reference, the drive with the problem was: * QUANTUM QM39100TD-SW N1B0 * * It's possible that Quantum will fix the problem in later * firmware revisions. If that happens, the quirk entry * will need to be made specific to the firmware revisions * with the problem. * */ /* Reports QUEUE FULL for temporary resource shortages */ { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, /*quirks*/0, /*mintags*/24, /*maxtags*/32 }, { /* * 18 Gig Atlas III, same problem as the 9G version. * Reported by: Andre Albsmeier * <andre.albsmeier@mchp.siemens.de> * * For future reference, the drive with the problem was: * QUANTUM QM318000TD-S N491 */ /* Reports QUEUE FULL for temporary resource shortages */ { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, /*quirks*/0, /*mintags*/24, /*maxtags*/32 }, { /* * Broken tagged queuing drive * Reported by: Bret Ford <bford@uop.cs.uop.edu> * and: Martin Renters <martin@tdc.on.ca> */ { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, /* * The Seagate Medalist Pro drives have very poor write * performance with anything more than 2 tags. * * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> * Drive: <SEAGATE ST36530N 1444> * * Reported by: Jeremy Lea <reg@shale.csir.co.za> * Drive: <SEAGATE ST34520W 1281> * * No one has actually reported that the 9G version * (ST39140*) of the Medalist Pro has the same problem, but * we're assuming that it does because the 4G and 6.5G * versions of the drive are broken. */ { { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, /*quirks*/0, /*mintags*/2, /*maxtags*/2 }, { { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, /*quirks*/0, /*mintags*/2, /*maxtags*/2 }, { { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, /*quirks*/0, /*mintags*/2, /*maxtags*/2 }, { /* * Experiences command timeouts under load with a * tag count higher than 55. */ { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST3146855LW", "*"}, /*quirks*/0, /*mintags*/2, /*maxtags*/55 }, { /* * Slow when tagged queueing is enabled. Write performance * steadily drops off with more and more concurrent * transactions. Best sequential write performance with * tagged queueing turned off and write caching turned on. * * PR: kern/10398 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> * Drive: DCAS-34330 w/ "S65A" firmware. * * The drive with the problem had the "S65A" firmware * revision, and has also been reported (by Stephen J. * Roznowski <sjr@home.net>) for a drive with the "S61A" * firmware revision. * * Although no one has reported problems with the 2 gig * version of the DCAS drive, the assumption is that it * has the same problems as the 4 gig version. Therefore * this quirk entries disables tagged queueing for all * DCAS drives. */ { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, { /* Broken tagged queuing drive */ { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, { /* Broken tagged queuing drive */ { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, { /* This does not support other than LUN 0 */ { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 }, { /* * Broken tagged queuing drive. * Submitted by: * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> * in PR kern/9535 */ { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, { /* * Slow when tagged queueing is enabled. (1.5MB/sec versus * 8MB/sec.) * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> * Best performance with these drives is achieved with * tagged queueing turned off, and write caching turned on. */ { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, { /* * Slow when tagged queueing is enabled. (1.5MB/sec versus * 8MB/sec.) * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> * Best performance with these drives is achieved with * tagged queueing turned off, and write caching turned on. */ { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, /*quirks*/0, /*mintags*/0, /*maxtags*/0 }, { /* * Doesn't handle queue full condition correctly, * so we need to limit maxtags to what the device * can handle instead of determining this automatically. */ { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, /*quirks*/0, /*mintags*/2, /*maxtags*/32 }, { /* Really only one LUN */ { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* I can't believe we need a quirk for DPT volumes. */ { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/255 }, { /* * Many Sony CDROM drives don't like multi-LUN probing. */ { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* * This drive doesn't like multiple LUN probing. * Submitted by: Parag Patel <parag@cgt.com> */ { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* * The 8200 doesn't like multi-lun probing, and probably * don't like serial number requests either. */ { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", "EXB-8200*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* * Let's try the same as above, but for a drive that says * it's an IPL-6860 but is actually an EXB 8200. */ { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", "IPL-6860*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* * These Hitachi drives don't like multi-lun probing. * The PR submitter has a DK319H, but says that the Linux * kernel has a similar work-around for the DK312 and DK314, * so all DK31* drives are quirked here. * PR: misc/18793 * Submitted by: Paul Haddad <paul@pth.com> */ { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 }, { /* * The Hitachi CJ series with J8A8 firmware apparantly has * problems with tagged commands. * PR: 23536 * Reported by: amagai@nue.org */ { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* * These are the large storage arrays. * Submitted by: William Carrel <william.carrel@infospace.com> */ { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, CAM_QUIRK_HILUNS, 2, 1024 }, { /* * This old revision of the TDC3600 is also SCSI-1, and * hangs upon serial number probing. */ { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", " TDC 3600", "U07:" }, CAM_QUIRK_NOVPDS, /*mintags*/0, /*maxtags*/0 }, { /* * Would repond to all LUNs if asked for. */ { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", "CP150", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* * Would repond to all LUNs if asked for. */ { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", "96X2*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* Submitted by: Matthew Dodd <winter@jurai.net> */ { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* Submitted by: Matthew Dodd <winter@jurai.net> */ { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* TeraSolutions special settings for TRC-22 RAID */ { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, /*quirks*/0, /*mintags*/55, /*maxtags*/255 }, { /* Veritas Storage Appliance */ { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 }, { /* * Would respond to all LUNs. Device type and removable * flag are jumper-selectable. */ { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", "Tahiti 1", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { /* EasyRAID E5A aka. areca ARC-6010 */ { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 }, { { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" }, CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 }, { { T_DIRECT, SIP_MEDIA_REMOVABLE, "Garmin", "*", "*" }, CAM_QUIRK_NORPTLUNS, /*mintags*/2, /*maxtags*/255 }, { /* Default tagged queuing parameters for all devices */ { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, /*vendor*/"*", /*product*/"*", /*revision*/"*" }, /*quirks*/0, /*mintags*/2, /*maxtags*/255 }, }; static const int scsi_quirk_table_size = sizeof(scsi_quirk_table) / sizeof(*scsi_quirk_table); static cam_status proberegister(struct cam_periph *periph, void *arg); static void probeschedule(struct cam_periph *probe_periph); static int device_has_vpd(struct cam_ed *device, uint8_t page_id); static void probestart(struct cam_periph *periph, union ccb *start_ccb); static void proberequestdefaultnegotiation(struct cam_periph *periph); static int proberequestbackoff(struct cam_periph *periph, struct cam_ed *device); static void probedone(struct cam_periph *periph, union ccb *done_ccb); static int probe_strange_rpl_data(struct scsi_report_luns_data *rp, uint32_t maxlun); static void probe_purge_old(struct cam_path *path, struct scsi_report_luns_data *new); static void probecleanup(struct cam_periph *periph); static void scsi_find_quirk(struct cam_ed *device); static void scsi_scan_bus(struct cam_periph *periph, union ccb *ccb); static void scsi_scan_lun(struct cam_periph *periph, struct cam_path *path, cam_flags flags, union ccb *ccb); static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); static struct cam_ed * scsi_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id); static void scsi_devise_transport(struct cam_path *path); static void scsi_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, int async_update); static void scsi_toggle_tags(struct cam_path *path); static void scsi_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg); static void scsi_action(union ccb *start_ccb); static void scsi_announce_periph(struct cam_periph *periph); static struct xpt_xport scsi_xport = { .alloc_device = scsi_alloc_device, .action = scsi_action, .async = scsi_dev_async, .announce = scsi_announce_periph, }; struct xpt_xport * scsi_get_xport(void) { return (&scsi_xport); } static void probe_periph_init() { } static cam_status proberegister(struct cam_periph *periph, void *arg) { union ccb *request_ccb; /* CCB representing the probe request */ cam_status status; probe_softc *softc; request_ccb = (union ccb *)arg; if (periph == NULL) { printf("proberegister: periph was NULL!!\n"); return(CAM_REQ_CMP_ERR); } if (request_ccb == NULL) { printf("proberegister: no probe CCB, " "can't register device\n"); return(CAM_REQ_CMP_ERR); } softc = (probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_NOWAIT); if (softc == NULL) { printf("proberegister: Unable to probe new device. " "Unable to allocate softc\n"); return(CAM_REQ_CMP_ERR); } TAILQ_INIT(&softc->request_ccbs); TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, periph_links.tqe); softc->flags = 0; periph->softc = softc; softc->periph = periph; softc->action = PROBE_INVALID; status = cam_periph_acquire(periph); if (status != CAM_REQ_CMP) { return (status); } CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("Probe started\n")); /* * Ensure we've waited at least a bus settle * delay before attempting to probe the device. * For HBAs that don't do bus resets, this won't make a difference. */ cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, scsi_delay); /* * Ensure nobody slip in until probe finish. */ cam_freeze_devq_arg(periph->path, RELSIM_RELEASE_RUNLEVEL, CAM_RL_XPT + 1); probeschedule(periph); return(CAM_REQ_CMP); } static void probeschedule(struct cam_periph *periph) { struct ccb_pathinq cpi; union ccb *ccb; probe_softc *softc; softc = (probe_softc *)periph->softc; ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NONE); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); /* * If a device has gone away and another device, or the same one, * is back in the same place, it should have a unit attention * condition pending. It will not report the unit attention in * response to an inquiry, which may leave invalid transfer * negotiations in effect. The TUR will reveal the unit attention * condition. Only send the TUR for lun 0, since some devices * will get confused by commands other than inquiry to non-existent * luns. If you think a device has gone away start your scan from * lun 0. This will insure that any bogus transfer settings are * invalidated. * * If we haven't seen the device before and the controller supports * some kind of transfer negotiation, negotiate with the first * sent command if no bus reset was performed at startup. This * ensures that the device is not confused by transfer negotiation * settings left over by loader or BIOS action. */ if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) && (ccb->ccb_h.target_lun == 0)) { PROBE_SET_ACTION(softc, PROBE_TUR); } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { proberequestdefaultnegotiation(periph); PROBE_SET_ACTION(softc, PROBE_INQUIRY); } else { PROBE_SET_ACTION(softc, PROBE_INQUIRY); } if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) softc->flags |= PROBE_NO_ANNOUNCE; else softc->flags &= ~PROBE_NO_ANNOUNCE; xpt_schedule(periph, CAM_PRIORITY_XPT); } static int device_has_vpd(struct cam_ed *device, uint8_t page_id) { int i, num_pages; struct scsi_vpd_supported_pages *vpds; vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; num_pages = device->supported_vpds_len - SVPD_SUPPORTED_PAGES_HDR_LEN; for (i = 0;i < num_pages;i++) if (vpds->page_list[i] == page_id) return 1; return 0; } static void probestart(struct cam_periph *periph, union ccb *start_ccb) { /* Probe the device that our peripheral driver points to */ struct ccb_scsiio *csio; probe_softc *softc; CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); softc = (probe_softc *)periph->softc; csio = &start_ccb->csio; again: switch (softc->action) { case PROBE_TUR: case PROBE_TUR_FOR_NEGOTIATION: case PROBE_DV_EXIT: { scsi_test_unit_ready(csio, /*retries*/4, probedone, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, /*timeout*/60000); break; } case PROBE_INQUIRY: case PROBE_FULL_INQUIRY: case PROBE_INQUIRY_BASIC_DV1: case PROBE_INQUIRY_BASIC_DV2: { u_int inquiry_len; struct scsi_inquiry_data *inq_buf; inq_buf = &periph->path->device->inq_data; /* * If the device is currently configured, we calculate an * MD5 checksum of the inquiry data, and if the serial number * length is greater than 0, add the serial number data * into the checksum as well. Once the inquiry and the * serial number check finish, we attempt to figure out * whether we still have the same device. */ if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { MD5Init(&softc->context); MD5Update(&softc->context, (unsigned char *)inq_buf, sizeof(struct scsi_inquiry_data)); softc->flags |= PROBE_INQUIRY_CKSUM; if (periph->path->device->serial_num_len > 0) { MD5Update(&softc->context, periph->path->device->serial_num, periph->path->device->serial_num_len); softc->flags |= PROBE_SERIAL_CKSUM; } MD5Final(softc->digest, &softc->context); } if (softc->action == PROBE_INQUIRY) inquiry_len = SHORT_INQUIRY_LENGTH; else inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf); /* * Some parallel SCSI devices fail to send an * ignore wide residue message when dealing with * odd length inquiry requests. Round up to be * safe. */ inquiry_len = roundup2(inquiry_len, 2); if (softc->action == PROBE_INQUIRY_BASIC_DV1 || softc->action == PROBE_INQUIRY_BASIC_DV2) { inq_buf = malloc(inquiry_len, M_CAMXPT, M_NOWAIT); } if (inq_buf == NULL) { xpt_print(periph->path, "malloc failure- skipping Basic" "Domain Validation\n"); PROBE_SET_ACTION(softc, PROBE_DV_EXIT); scsi_test_unit_ready(csio, /*retries*/4, probedone, MSG_SIMPLE_Q_TAG, SSD_FULL_SIZE, /*timeout*/60000); break; } scsi_inquiry(csio, /*retries*/4, probedone, MSG_SIMPLE_Q_TAG, (u_int8_t *)inq_buf, inquiry_len, /*evpd*/FALSE, /*page_code*/0, SSD_MIN_SIZE, /*timeout*/60 * 1000); break; } case PROBE_REPORT_LUNS: { void *rp; rp = malloc(periph->path->target->rpl_size, M_CAMXPT, M_NOWAIT | M_ZERO); if (rp == NULL) { struct scsi_inquiry_data *inq_buf; inq_buf = &periph->path->device->inq_data; xpt_print(periph->path, "Unable to alloc report luns storage\n"); if (INQ_DATA_TQ_ENABLED(inq_buf)) PROBE_SET_ACTION(softc, PROBE_MODE_SENSE); else PROBE_SET_ACTION(softc, PROBE_SUPPORTED_VPD_LIST); goto again; } scsi_report_luns(csio, 5, probedone, MSG_SIMPLE_Q_TAG, RPL_REPORT_DEFAULT, rp, periph->path->target->rpl_size, SSD_FULL_SIZE, 60000); break; break; } case PROBE_MODE_SENSE: { void *mode_buf; int mode_buf_len; mode_buf_len = sizeof(struct scsi_mode_header_6) + sizeof(struct scsi_mode_blk_desc) + sizeof(struct scsi_control_page); mode_buf = malloc(mode_buf_len, M_CAMXPT, M_NOWAIT); if (mode_buf != NULL) { scsi_mode_sense(csio, /*retries*/4, probedone, MSG_SIMPLE_Q_TAG, /*dbd*/FALSE, SMS_PAGE_CTRL_CURRENT, SMS_CONTROL_MODE_PAGE, mode_buf, mode_buf_len, SSD_FULL_SIZE, /*timeout*/60000); break; } xpt_print(periph->path, "Unable to mode sense control page - " "malloc failure\n"); PROBE_SET_ACTION(softc, PROBE_SUPPORTED_VPD_LIST); } /* FALLTHROUGH */ case PROBE_SUPPORTED_VPD_LIST: { struct scsi_vpd_supported_page_list *vpd_list; struct cam_ed *device; vpd_list = NULL; device = periph->path->device; if ((SCSI_QUIRK(device)->quirks & CAM_QUIRK_NOVPDS) == 0) vpd_list = malloc(sizeof(*vpd_list), M_CAMXPT, M_NOWAIT | M_ZERO); if (vpd_list != NULL) { scsi_inquiry(csio, /*retries*/4, probedone, MSG_SIMPLE_Q_TAG, (u_int8_t *)vpd_list, sizeof(*vpd_list), /*evpd*/TRUE, SVPD_SUPPORTED_PAGE_LIST, SSD_MIN_SIZE, /*timeout*/60 * 1000); break; } /* * We'll have to do without, let our probedone * routine finish up for us. */ start_ccb->csio.data_ptr = NULL; probedone(periph, start_ccb); return; } case PROBE_DEVICE_ID: { struct scsi_vpd_device_id *devid; struct cam_ed *device; devid = NULL; device = periph->path->device; if (device_has_vpd(device, SVPD_DEVICE_ID)) devid = malloc(SVPD_DEVICE_ID_MAX_SIZE, M_CAMXPT, M_NOWAIT | M_ZERO); if (devid != NULL) { scsi_inquiry(csio, /*retries*/4, probedone, MSG_SIMPLE_Q_TAG, (uint8_t *)devid, SVPD_DEVICE_ID_MAX_SIZE, /*evpd*/TRUE, SVPD_DEVICE_ID, SSD_MIN_SIZE, /*timeout*/60 * 1000); break; } /* * We'll have to do without, let our probedone * routine finish up for us. */ start_ccb->csio.data_ptr = NULL; probedone(periph, start_ccb); return; } case PROBE_SERIAL_NUM: { struct scsi_vpd_unit_serial_number *serial_buf; struct cam_ed* device; serial_buf = NULL; device = periph->path->device; if (device->serial_num != NULL) { free(device->serial_num, M_CAMXPT); device->serial_num = NULL; device->serial_num_len = 0; } if (device_has_vpd(device, SVPD_UNIT_SERIAL_NUMBER)) serial_buf = (struct scsi_vpd_unit_serial_number *) malloc(sizeof(*serial_buf), M_CAMXPT, M_NOWAIT|M_ZERO); if (serial_buf != NULL) { scsi_inquiry(csio, /*retries*/4, probedone, MSG_SIMPLE_Q_TAG, (u_int8_t *)serial_buf, sizeof(*serial_buf), /*evpd*/TRUE, SVPD_UNIT_SERIAL_NUMBER, SSD_MIN_SIZE, /*timeout*/60 * 1000); break; } /* * We'll have to do without, let our probedone * routine finish up for us. */ start_ccb->csio.data_ptr = NULL; probedone(periph, start_ccb); return; } default: panic("probestart: invalid action state 0x%x\n", softc->action); } xpt_action(start_ccb); } static void proberequestdefaultnegotiation(struct cam_periph *periph) { struct ccb_trans_settings cts; xpt_setup_ccb(&cts.ccb_h, periph->path, CAM_PRIORITY_NONE); cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; cts.type = CTS_TYPE_USER_SETTINGS; xpt_action((union ccb *)&cts); if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { return; } cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; cts.type = CTS_TYPE_CURRENT_SETTINGS; xpt_action((union ccb *)&cts); } /* * Backoff Negotiation Code- only pertinent for SPI devices. */ static int proberequestbackoff(struct cam_periph *periph, struct cam_ed *device) { struct ccb_trans_settings cts; struct ccb_trans_settings_spi *spi; memset(&cts, 0, sizeof (cts)); xpt_setup_ccb(&cts.ccb_h, periph->path, CAM_PRIORITY_NONE); cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; cts.type = CTS_TYPE_CURRENT_SETTINGS; xpt_action((union ccb *)&cts); if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (bootverbose) { xpt_print(periph->path, "failed to get current device settings\n"); } return (0); } if (cts.transport != XPORT_SPI) { if (bootverbose) { xpt_print(periph->path, "not SPI transport\n"); } return (0); } spi = &cts.xport_specific.spi; /* * We cannot renegotiate sync rate if we don't have one. */ if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) { if (bootverbose) { xpt_print(periph->path, "no sync rate known\n"); } return (0); } /* * We'll assert that we don't have to touch PPR options- the * SIM will see what we do with period and offset and adjust * the PPR options as appropriate. */ /* * A sync rate with unknown or zero offset is nonsensical. * A sync period of zero means Async. */ if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0 || spi->sync_offset == 0 || spi->sync_period == 0) { if (bootverbose) { xpt_print(periph->path, "no sync rate available\n"); } return (0); } if (device->flags & CAM_DEV_DV_HIT_BOTTOM) { CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("hit async: giving up on DV\n")); return (0); } /* * Jump sync_period up by one, but stop at 5MHz and fall back to Async. * We don't try to remember 'last' settings to see if the SIM actually * gets into the speed we want to set. We check on the SIM telling * us that a requested speed is bad, but otherwise don't try and * check the speed due to the asynchronous and handshake nature * of speed setting. */ spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET; for (;;) { spi->sync_period++; if (spi->sync_period >= 0xf) { spi->sync_period = 0; spi->sync_offset = 0; CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("setting to async for DV\n")); /* * Once we hit async, we don't want to try * any more settings. */ device->flags |= CAM_DEV_DV_HIT_BOTTOM; } else if (bootverbose) { CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("DV: period 0x%x\n", spi->sync_period)); printf("setting period to 0x%x\n", spi->sync_period); } cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; cts.type = CTS_TYPE_CURRENT_SETTINGS; xpt_action((union ccb *)&cts); if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { break; } CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("DV: failed to set period 0x%x\n", spi->sync_period)); if (spi->sync_period == 0) { return (0); } } return (1); } #define CCB_COMPLETED_OK(ccb) (((ccb).status & CAM_STATUS_MASK) == CAM_REQ_CMP) static void probedone(struct cam_periph *periph, union ccb *done_ccb) { probe_softc *softc; struct cam_path *path; u_int32_t priority; CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); softc = (probe_softc *)periph->softc; path = done_ccb->ccb_h.path; priority = done_ccb->ccb_h.pinfo.priority; switch (softc->action) { case PROBE_TUR: { if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (cam_periph_error(done_ccb, 0, SF_NO_PRINT, NULL) == ERESTART) return; else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) /* Don't wedge the queue */ xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, /*run_queue*/TRUE); } PROBE_SET_ACTION(softc, PROBE_INQUIRY); xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } case PROBE_INQUIRY: case PROBE_FULL_INQUIRY: { if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { struct scsi_inquiry_data *inq_buf; u_int8_t periph_qual; path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; inq_buf = &path->device->inq_data; periph_qual = SID_QUAL(inq_buf); if (periph_qual == SID_QUAL_LU_CONNECTED) { u_int8_t len; /* * We conservatively request only * SHORT_INQUIRY_LEN bytes of inquiry * information during our first try * at sending an INQUIRY. If the device * has more information to give, * perform a second request specifying * the amount of information the device * is willing to give. */ len = inq_buf->additional_length + offsetof(struct scsi_inquiry_data, additional_length) + 1; if (softc->action == PROBE_INQUIRY && len > SHORT_INQUIRY_LENGTH) { PROBE_SET_ACTION(softc, PROBE_FULL_INQUIRY); xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } scsi_find_quirk(path->device); scsi_devise_transport(path); if (path->device->lun_id == 0 && SID_ANSI_REV(inq_buf) > SCSI_REV_SPC2 && (SCSI_QUIRK(path->device)->quirks & CAM_QUIRK_NORPTLUNS) == 0) { PROBE_SET_ACTION(softc, PROBE_REPORT_LUNS); /* * Start with room for *one* lun. */ periph->path->target->rpl_size = 16; } else if (INQ_DATA_TQ_ENABLED(inq_buf)) PROBE_SET_ACTION(softc, PROBE_MODE_SENSE); else PROBE_SET_ACTION(softc, PROBE_SUPPORTED_VPD_LIST); if (path->device->flags & CAM_DEV_UNCONFIGURED) { path->device->flags &= ~CAM_DEV_UNCONFIGURED; xpt_acquire_device(path->device); } xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } else if (path->device->lun_id == 0 && SID_ANSI_REV(inq_buf) > SCSI_REV_SPC2 && (SCSI_QUIRK(path->device)->quirks & CAM_QUIRK_NORPTLUNS) == 0) { if (path->device->flags & CAM_DEV_UNCONFIGURED) { path->device->flags &= ~CAM_DEV_UNCONFIGURED; xpt_acquire_device(path->device); } PROBE_SET_ACTION(softc, PROBE_REPORT_LUNS); periph->path->target->rpl_size = 16; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } } else if (cam_periph_error(done_ccb, 0, done_ccb->ccb_h.target_lun > 0 ? SF_RETRY_UA|SF_QUIET_IR : SF_RETRY_UA, &softc->saved_ccb) == ERESTART) { return; } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge the queue */ xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, /*run_queue*/TRUE); } /* * If we get to this point, we got an error status back * from the inquiry and the error status doesn't require * automatically retrying the command. Therefore, the * inquiry failed. If we had inquiry information before * for this device, but this latest inquiry command failed, * the device has probably gone away. If this device isn't * already marked unconfigured, notify the peripheral * drivers that this device is no more. */ if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) /* Send the async notification. */ xpt_async(AC_LOST_DEVICE, path, NULL); PROBE_SET_ACTION(softc, PROBE_INVALID); xpt_release_ccb(done_ccb); break; } case PROBE_REPORT_LUNS: { struct ccb_scsiio *csio; struct scsi_report_luns_data *lp; u_int nlun, maxlun; csio = &done_ccb->csio; lp = (struct scsi_report_luns_data *)csio->data_ptr; nlun = scsi_4btoul(lp->length) / 8; maxlun = (csio->dxfer_len / 8) - 1; if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { if (cam_periph_error(done_ccb, 0, done_ccb->ccb_h.target_lun > 0 ? SF_RETRY_UA|SF_QUIET_IR : SF_RETRY_UA, &softc->saved_ccb) == ERESTART) { return; } if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { xpt_release_devq(done_ccb->ccb_h.path, 1, TRUE); } free(lp, M_CAMXPT); lp = NULL; } else if (nlun > maxlun) { /* * Reallocate and retry to cover all luns */ CAM_DEBUG(path, CAM_DEBUG_PROBE, ("Probe: reallocating REPORT_LUNS for %u luns\n", nlun)); free(lp, M_CAMXPT); path->target->rpl_size = (nlun << 3) + 8; xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } else if (nlun == 0) { /* * If there don't appear to be any luns, bail. */ free(lp, M_CAMXPT); lp = NULL; } else if (probe_strange_rpl_data(lp, maxlun)) { /* * If we can't understand the lun format * of any entry, bail. */ free(lp, M_CAMXPT); lp = NULL; } else { lun_id_t lun; int idx; CAM_DEBUG(path, CAM_DEBUG_PROBE, ("Probe: %u lun(s) reported\n", nlun)); CAM_GET_SIMPLE_LUN(lp, 0, lun); /* * If the first lun is not lun 0, then either there * is no lun 0 in the list, or the list is unsorted. */ if (lun != 0) { for (idx = 0; idx < nlun; idx++) { CAM_GET_SIMPLE_LUN(lp, idx, lun); if (lun == 0) { break; } } if (idx != nlun) { uint8_t tlun[8]; memcpy(tlun, lp->luns[0].lundata, 8); memcpy(lp->luns[0].lundata, lp->luns[idx].lundata, 8); memcpy(lp->luns[idx].lundata, tlun, 8); CAM_DEBUG(path, CAM_DEBUG_PROBE, ("lun 0 in position %u\n", idx)); } else { /* * There is no lun 0 in our list. Destroy * the validity of the inquiry data so we * bail here and now. */ path->device->flags &= ~CAM_DEV_INQUIRY_DATA_VALID; } } /* * If we have an old lun list, We can either * retest luns that appear to have been dropped, * or just nuke them. We'll opt for the latter. * This function will also install the new list * in the target structure. */ probe_purge_old(path, lp); lp = NULL; } if (path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) { struct scsi_inquiry_data *inq_buf; inq_buf = &path->device->inq_data; if (INQ_DATA_TQ_ENABLED(inq_buf)) PROBE_SET_ACTION(softc, PROBE_MODE_SENSE); else PROBE_SET_ACTION(softc, PROBE_SUPPORTED_VPD_LIST); xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } if (lp) { free(lp, M_CAMXPT); } break; } case PROBE_MODE_SENSE: { struct ccb_scsiio *csio; struct scsi_mode_header_6 *mode_hdr; csio = &done_ccb->csio; mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { struct scsi_control_page *page; u_int8_t *offset; offset = ((u_int8_t *)&mode_hdr[1]) + mode_hdr->blk_desc_len; page = (struct scsi_control_page *)offset; path->device->queue_flags = page->queue_flags; } else if (cam_periph_error(done_ccb, 0, SF_RETRY_UA|SF_NO_PRINT, &softc->saved_ccb) == ERESTART) { return; } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge the queue */ xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, /*run_queue*/TRUE); } xpt_release_ccb(done_ccb); free(mode_hdr, M_CAMXPT); PROBE_SET_ACTION(softc, PROBE_SUPPORTED_VPD_LIST); xpt_schedule(periph, priority); return; } case PROBE_SUPPORTED_VPD_LIST: { struct ccb_scsiio *csio; struct scsi_vpd_supported_page_list *page_list; csio = &done_ccb->csio; page_list = (struct scsi_vpd_supported_page_list *)csio->data_ptr; if (path->device->supported_vpds != NULL) { free(path->device->supported_vpds, M_CAMXPT); path->device->supported_vpds = NULL; path->device->supported_vpds_len = 0; } if (page_list == NULL) { /* * Don't process the command as it was never sent */ } else if (CCB_COMPLETED_OK(csio->ccb_h)) { /* Got vpd list */ path->device->supported_vpds_len = page_list->length + SVPD_SUPPORTED_PAGES_HDR_LEN; path->device->supported_vpds = (uint8_t *)page_list; xpt_release_ccb(done_ccb); PROBE_SET_ACTION(softc, PROBE_DEVICE_ID); xpt_schedule(periph, priority); return; } else if (cam_periph_error(done_ccb, 0, SF_RETRY_UA|SF_NO_PRINT, &softc->saved_ccb) == ERESTART) { return; } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge the queue */ xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, /*run_queue*/TRUE); } if (page_list) free(page_list, M_CAMXPT); /* No VPDs available, skip to device check. */ csio->data_ptr = NULL; goto probe_device_check; } case PROBE_DEVICE_ID: { struct scsi_vpd_device_id *devid; struct ccb_scsiio *csio; uint32_t length = 0; csio = &done_ccb->csio; devid = (struct scsi_vpd_device_id *)csio->data_ptr; /* Clean up from previous instance of this device */ if (path->device->device_id != NULL) { path->device->device_id_len = 0; free(path->device->device_id, M_CAMXPT); path->device->device_id = NULL; } if (devid == NULL) { /* Don't process the command as it was never sent */ } else if (CCB_COMPLETED_OK(csio->ccb_h)) { length = scsi_2btoul(devid->length); if (length != 0) { /* * NB: device_id_len is actual response * size, not buffer size. */ path->device->device_id_len = length + SVPD_DEVICE_ID_HDR_LEN; path->device->device_id = (uint8_t *)devid; } } else if (cam_periph_error(done_ccb, 0, SF_RETRY_UA, &softc->saved_ccb) == ERESTART) { return; } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge the queue */ xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, /*run_queue*/TRUE); } /* Free the device id space if we don't use it */ if (devid && length == 0) free(devid, M_CAMXPT); xpt_release_ccb(done_ccb); PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM); xpt_schedule(periph, priority); return; } probe_device_check: case PROBE_SERIAL_NUM: { struct ccb_scsiio *csio; struct scsi_vpd_unit_serial_number *serial_buf; u_int32_t priority; int changed; int have_serialnum; changed = 1; have_serialnum = 0; csio = &done_ccb->csio; priority = done_ccb->ccb_h.pinfo.priority; serial_buf = (struct scsi_vpd_unit_serial_number *)csio->data_ptr; if (serial_buf == NULL) { /* * Don't process the command as it was never sent */ } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP && (serial_buf->length > 0)) { have_serialnum = 1; path->device->serial_num = (u_int8_t *)malloc((serial_buf->length + 1), M_CAMXPT, M_NOWAIT); if (path->device->serial_num != NULL) { memcpy(path->device->serial_num, serial_buf->serial_num, serial_buf->length); path->device->serial_num_len = serial_buf->length; path->device->serial_num[serial_buf->length] = '\0'; } } else if (cam_periph_error(done_ccb, 0, SF_RETRY_UA|SF_NO_PRINT, &softc->saved_ccb) == ERESTART) { return; } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge the queue */ xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, /*run_queue*/TRUE); } /* * Let's see if we have seen this device before. */ if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { MD5_CTX context; u_int8_t digest[16]; MD5Init(&context); MD5Update(&context, (unsigned char *)&path->device->inq_data, sizeof(struct scsi_inquiry_data)); if (have_serialnum) MD5Update(&context, serial_buf->serial_num, serial_buf->length); MD5Final(digest, &context); if (bcmp(softc->digest, digest, 16) == 0) changed = 0; /* * XXX Do we need to do a TUR in order to ensure * that the device really hasn't changed??? */ if ((changed != 0) && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) xpt_async(AC_LOST_DEVICE, path, NULL); } if (serial_buf != NULL) free(serial_buf, M_CAMXPT); if (changed != 0) { /* * Now that we have all the necessary * information to safely perform transfer * negotiations... Controllers don't perform * any negotiation or tagged queuing until * after the first XPT_SET_TRAN_SETTINGS ccb is * received. So, on a new device, just retrieve * the user settings, and set them as the current * settings to set the device up. */ proberequestdefaultnegotiation(periph); xpt_release_ccb(done_ccb); /* * Perform a TUR to allow the controller to * perform any necessary transfer negotiation. */ PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION); xpt_schedule(periph, priority); return; } xpt_release_ccb(done_ccb); break; } case PROBE_TUR_FOR_NEGOTIATION: case PROBE_DV_EXIT: if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_periph_error(done_ccb, 0, SF_NO_PRINT | SF_NO_RECOVERY | SF_NO_RETRY, NULL); } if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge the queue */ xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, /*run_queue*/TRUE); } /* * Do Domain Validation for lun 0 on devices that claim * to support Synchronous Transfer modes. */ if (softc->action == PROBE_TUR_FOR_NEGOTIATION && done_ccb->ccb_h.target_lun == 0 && (path->device->inq_data.flags & SID_Sync) != 0 && (path->device->flags & CAM_DEV_IN_DV) == 0) { CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("Begin Domain Validation\n")); path->device->flags |= CAM_DEV_IN_DV; xpt_release_ccb(done_ccb); PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1); xpt_schedule(periph, priority); return; } if (softc->action == PROBE_DV_EXIT) { CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("Leave Domain Validation\n")); } if (path->device->flags & CAM_DEV_UNCONFIGURED) { path->device->flags &= ~CAM_DEV_UNCONFIGURED; xpt_acquire_device(path->device); } path->device->flags &= ~(CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { /* Inform the XPT that a new device has been found */ done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; xpt_action(done_ccb); xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, done_ccb); } PROBE_SET_ACTION(softc, PROBE_DONE); xpt_release_ccb(done_ccb); break; case PROBE_INQUIRY_BASIC_DV1: case PROBE_INQUIRY_BASIC_DV2: { struct scsi_inquiry_data *nbuf; struct ccb_scsiio *csio; if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { cam_periph_error(done_ccb, 0, SF_NO_PRINT | SF_NO_RECOVERY | SF_NO_RETRY, NULL); } if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { /* Don't wedge the queue */ xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, /*run_queue*/TRUE); } csio = &done_ccb->csio; nbuf = (struct scsi_inquiry_data *)csio->data_ptr; if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) { xpt_print(path, "inquiry data fails comparison at DV%d step\n", softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2); if (proberequestbackoff(periph, path->device)) { path->device->flags &= ~CAM_DEV_IN_DV; PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION); } else { /* give up */ PROBE_SET_ACTION(softc, PROBE_DV_EXIT); } free(nbuf, M_CAMXPT); xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } free(nbuf, M_CAMXPT); if (softc->action == PROBE_INQUIRY_BASIC_DV1) { PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2); xpt_release_ccb(done_ccb); xpt_schedule(periph, priority); return; } if (softc->action == PROBE_INQUIRY_BASIC_DV2) { CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("Leave Domain Validation Successfully\n")); } if (path->device->flags & CAM_DEV_UNCONFIGURED) { path->device->flags &= ~CAM_DEV_UNCONFIGURED; xpt_acquire_device(path->device); } path->device->flags &= ~(CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { /* Inform the XPT that a new device has been found */ done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; xpt_action(done_ccb); xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, done_ccb); } PROBE_SET_ACTION(softc, PROBE_DONE); xpt_release_ccb(done_ccb); break; } default: panic("probedone: invalid action state 0x%x\n", softc->action); } done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); done_ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(done_ccb); if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { CAM_DEBUG(periph->path, CAM_DEBUG_PROBE, ("Probe completed\n")); cam_periph_invalidate(periph); cam_release_devq(periph->path, RELSIM_RELEASE_RUNLEVEL, 0, CAM_RL_XPT + 1, FALSE); cam_periph_release_locked(periph); } else { probeschedule(periph); } } static int probe_strange_rpl_data(struct scsi_report_luns_data *rp, uint32_t maxlun) { uint32_t idx; uint32_t nlun = MIN(maxlun, (scsi_4btoul(rp->length) / 8)); for (idx = 0; idx < nlun; idx++) { if (!CAM_CAN_GET_SIMPLE_LUN(rp, idx)) { return (-1); } } return (0); } static void probe_purge_old(struct cam_path *path, struct scsi_report_luns_data *new) { struct cam_path *tp; struct scsi_report_luns_data *old; u_int idx1, idx2, nlun_old, nlun_new, this_lun; u_int8_t *ol, *nl; if (path->target == NULL) { return; } if (path->target->luns == NULL) { path->target->luns = new; return; } old = path->target->luns; nlun_old = scsi_4btoul(old->length) / 8; nlun_new = scsi_4btoul(new->length) / 8; /* * We are not going to assume sorted lists. Deal. */ for (idx1 = 0; idx1 < nlun_old; idx1++) { ol = old->luns[idx1].lundata; for (idx2 = 0; idx2 < nlun_new; idx2++) { nl = new->luns[idx2].lundata; if (memcmp(nl, ol, 8) == 0) { break; } } if (idx2 < nlun_new) { continue; } /* * An 'old' item not in the 'new' list. * Nuke it. Except that if it is lun 0, * that would be what the probe state * machine is currently working on, * so we won't do that. * * We also cannot nuke it if it is * not in a lun format we understand. */ if (!CAM_CAN_GET_SIMPLE_LUN(old, idx1)) { continue; } CAM_GET_SIMPLE_LUN(old, idx1, this_lun); if (this_lun == 0) { continue; } if (xpt_create_path(&tp, NULL, xpt_path_path_id(path), xpt_path_target_id(path), this_lun) == CAM_REQ_CMP) { xpt_async(AC_LOST_DEVICE, tp, NULL); xpt_free_path(tp); } } free(old, M_CAMXPT); path->target->luns = new; } static void probecleanup(struct cam_periph *periph) { free(periph->softc, M_CAMXPT); } static void scsi_find_quirk(struct cam_ed *device) { struct scsi_quirk_entry *quirk; caddr_t match; match = cam_quirkmatch((caddr_t)&device->inq_data, (caddr_t)scsi_quirk_table, sizeof(scsi_quirk_table) / sizeof(*scsi_quirk_table), sizeof(*scsi_quirk_table), scsi_inquiry_match); if (match == NULL) panic("xpt_find_quirk: device didn't match wildcard entry!!"); quirk = (struct scsi_quirk_entry *)match; device->quirk = quirk; device->mintags = quirk->mintags; device->maxtags = quirk->maxtags; } static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) { int error, val; val = cam_srch_hi; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val == 0 || val == 1) { cam_srch_hi = val; return (0); } else { return (EINVAL); } } typedef struct { union ccb *request_ccb; struct ccb_pathinq *cpi; int counter; int lunindex[0]; } scsi_scan_bus_info; /* * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. * As the scan progresses, scsi_scan_bus is used as the * callback on completion function. */ static void scsi_scan_bus(struct cam_periph *periph, union ccb *request_ccb) { CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("scsi_scan_bus\n")); switch (request_ccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_SCAN_TGT: { scsi_scan_bus_info *scan_info; union ccb *work_ccb, *reset_ccb; struct cam_path *path; u_int i; u_int low_target, max_target; u_int initiator_id; /* Find out the characteristics of the bus */ work_ccb = xpt_alloc_ccb_nowait(); if (work_ccb == NULL) { request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; xpt_done(request_ccb); return; } xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, request_ccb->ccb_h.pinfo.priority); work_ccb->ccb_h.func_code = XPT_PATH_INQ; xpt_action(work_ccb); if (work_ccb->ccb_h.status != CAM_REQ_CMP) { request_ccb->ccb_h.status = work_ccb->ccb_h.status; xpt_free_ccb(work_ccb); xpt_done(request_ccb); return; } if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { /* * Can't scan the bus on an adapter that * cannot perform the initiator role. */ request_ccb->ccb_h.status = CAM_REQ_CMP; xpt_free_ccb(work_ccb); xpt_done(request_ccb); return; } /* We may need to reset bus first, if we haven't done it yet. */ if ((work_ccb->cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) && !(work_ccb->cpi.hba_misc & PIM_NOBUSRESET) && !timevalisset(&request_ccb->ccb_h.path->bus->last_reset)) { reset_ccb = xpt_alloc_ccb_nowait(); xpt_setup_ccb(&reset_ccb->ccb_h, request_ccb->ccb_h.path, CAM_PRIORITY_NONE); reset_ccb->ccb_h.func_code = XPT_RESET_BUS; xpt_action(reset_ccb); if (reset_ccb->ccb_h.status != CAM_REQ_CMP) { request_ccb->ccb_h.status = reset_ccb->ccb_h.status; xpt_free_ccb(reset_ccb); xpt_free_ccb(work_ccb); xpt_done(request_ccb); return; } xpt_free_ccb(reset_ccb); } /* Save some state for use while we probe for devices */ scan_info = (scsi_scan_bus_info *) malloc(sizeof(scsi_scan_bus_info) + (work_ccb->cpi.max_target * sizeof (u_int)), M_CAMXPT, M_ZERO|M_NOWAIT); if (scan_info == NULL) { request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; xpt_done(request_ccb); return; } CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("SCAN start for %p\n", scan_info)); scan_info->request_ccb = request_ccb; scan_info->cpi = &work_ccb->cpi; /* Cache on our stack so we can work asynchronously */ max_target = scan_info->cpi->max_target; low_target = 0; initiator_id = scan_info->cpi->initiator_id; /* * We can scan all targets in parallel, or do it sequentially. */ if (request_ccb->ccb_h.func_code == XPT_SCAN_TGT) { max_target = low_target = request_ccb->ccb_h.target_id; scan_info->counter = 0; } else if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { max_target = 0; scan_info->counter = 0; } else { scan_info->counter = scan_info->cpi->max_target + 1; if (scan_info->cpi->initiator_id < scan_info->counter) { scan_info->counter--; } } for (i = low_target; i <= max_target; i++) { cam_status status; if (i == initiator_id) continue; status = xpt_create_path(&path, xpt_periph, request_ccb->ccb_h.path_id, i, 0); if (status != CAM_REQ_CMP) { printf("scsi_scan_bus: xpt_create_path failed" " with status %#x, bus scan halted\n", status); free(scan_info, M_CAMXPT); request_ccb->ccb_h.status = status; xpt_free_ccb(work_ccb); xpt_done(request_ccb); break; } work_ccb = xpt_alloc_ccb_nowait(); if (work_ccb == NULL) { xpt_free_ccb((union ccb *)scan_info->cpi); free(scan_info, M_CAMXPT); xpt_free_path(path); request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; xpt_done(request_ccb); break; } xpt_setup_ccb(&work_ccb->ccb_h, path, request_ccb->ccb_h.pinfo.priority); work_ccb->ccb_h.func_code = XPT_SCAN_LUN; work_ccb->ccb_h.cbfcnp = scsi_scan_bus; work_ccb->ccb_h.ppriv_ptr0 = scan_info; work_ccb->crcn.flags = request_ccb->crcn.flags; xpt_action(work_ccb); } break; } case XPT_SCAN_LUN: { cam_status status; struct cam_path *path, *oldpath; scsi_scan_bus_info *scan_info; struct cam_et *target; struct cam_ed *device; int next_target; path_id_t path_id; target_id_t target_id; lun_id_t lun_id; oldpath = request_ccb->ccb_h.path; status = request_ccb->ccb_h.status & CAM_STATUS_MASK; /* Reuse the same CCB to query if a device was really found */ scan_info = (scsi_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, request_ccb->ccb_h.pinfo.priority); request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; path_id = request_ccb->ccb_h.path_id; target_id = request_ccb->ccb_h.target_id; lun_id = request_ccb->ccb_h.target_lun; xpt_action(request_ccb); target = request_ccb->ccb_h.path->target; next_target = 1; if (target->luns) { uint32_t first; u_int nluns = scsi_4btoul(target->luns->length) / 8; /* * Make sure we skip over lun 0 if it's the first member * of the list as we've actually just finished probing * it. */ CAM_GET_SIMPLE_LUN(target->luns, 0, first); if (first == 0 && scan_info->lunindex[target_id] == 0) { scan_info->lunindex[target_id]++; } if (scan_info->lunindex[target_id] < nluns) { CAM_GET_SIMPLE_LUN(target->luns, scan_info->lunindex[target_id], lun_id); next_target = 0; CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_PROBE, ("next lun to try at index %u is %u\n", scan_info->lunindex[target_id], lun_id)); scan_info->lunindex[target_id]++; } else { /* * We're done with scanning all luns. * * Nuke the bogus device for lun 0 if lun 0 * wasn't on the list. */ if (first != 0) { TAILQ_FOREACH(device, &target->ed_entries, links) { if (device->lun_id == 0) { break; } } if (device) { xpt_release_device(device); } } } } else if (request_ccb->ccb_h.status != CAM_REQ_CMP) { int phl; /* * If we already probed lun 0 successfully, or * we have additional configured luns on this * target that might have "gone away", go onto * the next lun. */ /* * We may touch devices that we don't * hold references too, so ensure they * don't disappear out from under us. * The target above is referenced by the * path in the request ccb. */ phl = 0; device = TAILQ_FIRST(&target->ed_entries); if (device != NULL) { phl = CAN_SRCH_HI_SPARSE(device); if (device->lun_id == 0) device = TAILQ_NEXT(device, links); } if ((lun_id != 0) || (device != NULL)) { if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) { lun_id++; next_target = 0; } } if (lun_id == request_ccb->ccb_h.target_lun || lun_id > scan_info->cpi->max_lun) next_target = 1; } else { device = request_ccb->ccb_h.path->device; if ((SCSI_QUIRK(device)->quirks & CAM_QUIRK_NOLUNS) == 0) { /* Try the next lun */ if (lun_id < (CAM_SCSI2_MAXLUN-1) || CAN_SRCH_HI_DENSE(device)) { lun_id++; next_target = 0; } } if (lun_id == request_ccb->ccb_h.target_lun || lun_id > scan_info->cpi->max_lun) next_target = 1; } /* * Check to see if we scan any further luns. */ if (next_target) { int done; /* * Free the current request path- we're done with it. */ xpt_free_path(oldpath); hop_again: done = 0; if (scan_info->request_ccb->ccb_h.func_code == XPT_SCAN_TGT) { done = 1; } else if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { scan_info->counter++; if (scan_info->counter == scan_info->cpi->initiator_id) { scan_info->counter++; } if (scan_info->counter >= scan_info->cpi->max_target+1) { done = 1; } } else { scan_info->counter--; if (scan_info->counter == 0) { done = 1; } } if (done) { xpt_free_ccb(request_ccb); xpt_free_ccb((union ccb *)scan_info->cpi); request_ccb = scan_info->request_ccb; CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("SCAN done for %p\n", scan_info)); free(scan_info, M_CAMXPT); request_ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(request_ccb); break; } if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) { xpt_free_ccb(request_ccb); break; } status = xpt_create_path(&path, xpt_periph, scan_info->request_ccb->ccb_h.path_id, scan_info->counter, 0); if (status != CAM_REQ_CMP) { printf("scsi_scan_bus: xpt_create_path failed" " with status %#x, bus scan halted\n", status); xpt_free_ccb(request_ccb); xpt_free_ccb((union ccb *)scan_info->cpi); request_ccb = scan_info->request_ccb; free(scan_info, M_CAMXPT); request_ccb->ccb_h.status = status; xpt_done(request_ccb); break; } xpt_setup_ccb(&request_ccb->ccb_h, path, request_ccb->ccb_h.pinfo.priority); request_ccb->ccb_h.func_code = XPT_SCAN_LUN; request_ccb->ccb_h.cbfcnp = scsi_scan_bus; request_ccb->ccb_h.ppriv_ptr0 = scan_info; request_ccb->crcn.flags = scan_info->request_ccb->crcn.flags; } else { status = xpt_create_path(&path, xpt_periph, path_id, target_id, lun_id); /* * Free the old request path- we're done with it. We * do this *after* creating the new path so that * we don't remove a target that has our lun list * in the case that lun 0 is not present. */ xpt_free_path(oldpath); if (status != CAM_REQ_CMP) { printf("scsi_scan_bus: xpt_create_path failed " "with status %#x, halting LUN scan\n", status); goto hop_again; } xpt_setup_ccb(&request_ccb->ccb_h, path, request_ccb->ccb_h.pinfo.priority); request_ccb->ccb_h.func_code = XPT_SCAN_LUN; request_ccb->ccb_h.cbfcnp = scsi_scan_bus; request_ccb->ccb_h.ppriv_ptr0 = scan_info; request_ccb->crcn.flags = scan_info->request_ccb->crcn.flags; } xpt_action(request_ccb); break; } default: break; } } static void scsi_scan_lun(struct cam_periph *periph, struct cam_path *path, cam_flags flags, union ccb *request_ccb) { struct ccb_pathinq cpi; cam_status status; struct cam_path *new_path; struct cam_periph *old_periph; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("scsi_scan_lun\n")); xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NONE); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); if (cpi.ccb_h.status != CAM_REQ_CMP) { if (request_ccb != NULL) { request_ccb->ccb_h.status = cpi.ccb_h.status; xpt_done(request_ccb); } return; } if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { /* * Can't scan the bus on an adapter that * cannot perform the initiator role. */ if (request_ccb != NULL) { request_ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(request_ccb); } return; } if (request_ccb == NULL) { request_ccb = malloc(sizeof(union ccb), M_CAMXPT, M_NOWAIT); if (request_ccb == NULL) { xpt_print(path, "scsi_scan_lun: can't allocate CCB, " "can't continue\n"); return; } new_path = malloc(sizeof(*new_path), M_CAMXPT, M_NOWAIT); if (new_path == NULL) { xpt_print(path, "scsi_scan_lun: can't allocate path, " "can't continue\n"); free(request_ccb, M_CAMXPT); return; } status = xpt_compile_path(new_path, xpt_periph, path->bus->path_id, path->target->target_id, path->device->lun_id); if (status != CAM_REQ_CMP) { xpt_print(path, "scsi_scan_lun: can't compile path, " "can't continue\n"); free(request_ccb, M_CAMXPT); free(new_path, M_CAMXPT); return; } xpt_setup_ccb(&request_ccb->ccb_h, new_path, CAM_PRIORITY_XPT); request_ccb->ccb_h.cbfcnp = xptscandone; request_ccb->ccb_h.func_code = XPT_SCAN_LUN; request_ccb->crcn.flags = flags; } if ((old_periph = cam_periph_find(path, "probe")) != NULL) { if ((old_periph->flags & CAM_PERIPH_INVALID) == 0) { probe_softc *softc; softc = (probe_softc *)old_periph->softc; TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, periph_links.tqe); } else { request_ccb->ccb_h.status = CAM_REQ_CMP_ERR; xpt_done(request_ccb); } } else { status = cam_periph_alloc(proberegister, NULL, probecleanup, probestart, "probe", CAM_PERIPH_BIO, request_ccb->ccb_h.path, NULL, 0, request_ccb); if (status != CAM_REQ_CMP) { xpt_print(path, "scsi_scan_lun: cam_alloc_periph " "returned an error, can't continue probe\n"); request_ccb->ccb_h.status = status; xpt_done(request_ccb); } } } static void xptscandone(struct cam_periph *periph, union ccb *done_ccb) { xpt_release_path(done_ccb->ccb_h.path); free(done_ccb->ccb_h.path, M_CAMXPT); free(done_ccb, M_CAMXPT); } static struct cam_ed * scsi_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_path path; struct scsi_quirk_entry *quirk; struct cam_ed *device; struct cam_ed *cur_device; device = xpt_alloc_device(bus, target, lun_id); if (device == NULL) return (NULL); /* * Take the default quirk entry until we have inquiry * data and can determine a better quirk to use. */ quirk = &scsi_quirk_table[scsi_quirk_table_size - 1]; device->quirk = (void *)quirk; device->mintags = quirk->mintags; device->maxtags = quirk->maxtags; bzero(&device->inq_data, sizeof(device->inq_data)); device->inq_flags = 0; device->queue_flags = 0; device->serial_num = NULL; device->serial_num_len = 0; device->device_id = NULL; device->device_id_len = 0; device->supported_vpds = NULL; device->supported_vpds_len = 0; /* * XXX should be limited by number of CCBs this bus can * do. */ bus->sim->max_ccbs += device->ccbq.devq_openings; /* Insertion sort into our target's device list */ cur_device = TAILQ_FIRST(&target->ed_entries); while (cur_device != NULL && cur_device->lun_id < lun_id) cur_device = TAILQ_NEXT(cur_device, links); if (cur_device != NULL) { TAILQ_INSERT_BEFORE(cur_device, device, links); } else { TAILQ_INSERT_TAIL(&target->ed_entries, device, links); } target->generation++; if (lun_id != CAM_LUN_WILDCARD) { xpt_compile_path(&path, NULL, bus->path_id, target->target_id, lun_id); scsi_devise_transport(&path); xpt_release_path(&path); } return (device); } static void scsi_devise_transport(struct cam_path *path) { struct ccb_pathinq cpi; struct ccb_trans_settings cts; struct scsi_inquiry_data *inq_buf; /* Get transport information from the SIM */ xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NONE); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); inq_buf = NULL; if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) inq_buf = &path->device->inq_data; path->device->protocol = PROTO_SCSI; path->device->protocol_version = inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; path->device->transport = cpi.transport; path->device->transport_version = cpi.transport_version; /* * Any device not using SPI3 features should * be considered SPI2 or lower. */ if (inq_buf != NULL) { if (path->device->transport == XPORT_SPI && (inq_buf->spi3data & SID_SPI_MASK) == 0 && path->device->transport_version > 2) path->device->transport_version = 2; } else { struct cam_ed* otherdev; for (otherdev = TAILQ_FIRST(&path->target->ed_entries); otherdev != NULL; otherdev = TAILQ_NEXT(otherdev, links)) { if (otherdev != path->device) break; } if (otherdev != NULL) { /* * Initially assume the same versioning as * prior luns for this target. */ path->device->protocol_version = otherdev->protocol_version; path->device->transport_version = otherdev->transport_version; } else { /* Until we know better, opt for safty */ path->device->protocol_version = 2; if (path->device->transport == XPORT_SPI) path->device->transport_version = 2; else path->device->transport_version = 0; } } /* * XXX * For a device compliant with SPC-2 we should be able * to determine the transport version supported by * scrutinizing the version descriptors in the * inquiry buffer. */ /* Tell the controller what we think */ xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NONE); cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; cts.type = CTS_TYPE_CURRENT_SETTINGS; cts.transport = path->device->transport; cts.transport_version = path->device->transport_version; cts.protocol = path->device->protocol; cts.protocol_version = path->device->protocol_version; cts.proto_specific.valid = 0; cts.xport_specific.valid = 0; xpt_action((union ccb *)&cts); } static void scsi_dev_advinfo(union ccb *start_ccb) { struct cam_ed *device; struct ccb_dev_advinfo *cdai; off_t amt; start_ccb->ccb_h.status = CAM_REQ_INVALID; device = start_ccb->ccb_h.path->device; cdai = &start_ccb->cdai; switch(cdai->buftype) { case CDAI_TYPE_SCSI_DEVID: if (cdai->flags & CDAI_FLAG_STORE) return; cdai->provsiz = device->device_id_len; if (device->device_id_len == 0) break; amt = device->device_id_len; if (cdai->provsiz > cdai->bufsiz) amt = cdai->bufsiz; memcpy(cdai->buf, device->device_id, amt); break; case CDAI_TYPE_SERIAL_NUM: if (cdai->flags & CDAI_FLAG_STORE) return; cdai->provsiz = device->serial_num_len; if (device->serial_num_len == 0) break; amt = device->serial_num_len; if (cdai->provsiz > cdai->bufsiz) amt = cdai->bufsiz; memcpy(cdai->buf, device->serial_num, amt); break; case CDAI_TYPE_PHYS_PATH: if (cdai->flags & CDAI_FLAG_STORE) { if (device->physpath != NULL) free(device->physpath, M_CAMXPT); device->physpath_len = cdai->bufsiz; /* Clear existing buffer if zero length */ if (cdai->bufsiz == 0) break; device->physpath = malloc(cdai->bufsiz, M_CAMXPT, M_NOWAIT); if (device->physpath == NULL) { start_ccb->ccb_h.status = CAM_REQ_ABORTED; return; } memcpy(device->physpath, cdai->buf, cdai->bufsiz); } else { cdai->provsiz = device->physpath_len; if (device->physpath_len == 0) break; amt = device->physpath_len; if (cdai->provsiz > cdai->bufsiz) amt = cdai->bufsiz; memcpy(cdai->buf, device->physpath, amt); } break; default: return; } start_ccb->ccb_h.status = CAM_REQ_CMP; if (cdai->flags & CDAI_FLAG_STORE) { int owned; owned = mtx_owned(start_ccb->ccb_h.path->bus->sim->mtx); if (owned == 0) mtx_lock(start_ccb->ccb_h.path->bus->sim->mtx); xpt_async(AC_ADVINFO_CHANGED, start_ccb->ccb_h.path, (void *)(uintptr_t)cdai->buftype); if (owned == 0) mtx_unlock(start_ccb->ccb_h.path->bus->sim->mtx); } } static void scsi_action(union ccb *start_ccb) { switch (start_ccb->ccb_h.func_code) { case XPT_SET_TRAN_SETTINGS: { scsi_set_transfer_settings(&start_ccb->cts, start_ccb->ccb_h.path->device, /*async_update*/FALSE); break; } case XPT_SCAN_BUS: case XPT_SCAN_TGT: scsi_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); break; case XPT_SCAN_LUN: scsi_scan_lun(start_ccb->ccb_h.path->periph, start_ccb->ccb_h.path, start_ccb->crcn.flags, start_ccb); break; case XPT_GET_TRAN_SETTINGS: { struct cam_sim *sim; sim = start_ccb->ccb_h.path->bus->sim; (*(sim->sim_action))(sim, start_ccb); break; } case XPT_DEV_ADVINFO: { scsi_dev_advinfo(start_ccb); break; } default: xpt_action_default(start_ccb); break; } } static void scsi_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, int async_update) { struct ccb_pathinq cpi; struct ccb_trans_settings cur_cts; struct ccb_trans_settings_scsi *scsi; struct ccb_trans_settings_scsi *cur_scsi; struct cam_sim *sim; struct scsi_inquiry_data *inq_data; if (device == NULL) { cts->ccb_h.status = CAM_PATH_INVALID; xpt_done((union ccb *)cts); return; } if (cts->protocol == PROTO_UNKNOWN || cts->protocol == PROTO_UNSPECIFIED) { cts->protocol = device->protocol; cts->protocol_version = device->protocol_version; } if (cts->protocol_version == PROTO_VERSION_UNKNOWN || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) cts->protocol_version = device->protocol_version; if (cts->protocol != device->protocol) { xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n", cts->protocol, device->protocol); cts->protocol = device->protocol; } if (cts->protocol_version > device->protocol_version) { if (bootverbose) { xpt_print(cts->ccb_h.path, "Down reving Protocol " "Version from %d to %d?\n", cts->protocol_version, device->protocol_version); } cts->protocol_version = device->protocol_version; } if (cts->transport == XPORT_UNKNOWN || cts->transport == XPORT_UNSPECIFIED) { cts->transport = device->transport; cts->transport_version = device->transport_version; } if (cts->transport_version == XPORT_VERSION_UNKNOWN || cts->transport_version == XPORT_VERSION_UNSPECIFIED) cts->transport_version = device->transport_version; if (cts->transport != device->transport) { xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n", cts->transport, device->transport); cts->transport = device->transport; } if (cts->transport_version > device->transport_version) { if (bootverbose) { xpt_print(cts->ccb_h.path, "Down reving Transport " "Version from %d to %d?\n", cts->transport_version, device->transport_version); } cts->transport_version = device->transport_version; } sim = cts->ccb_h.path->bus->sim; /* * Nothing more of interest to do unless * this is a device connected via the * SCSI protocol. */ if (cts->protocol != PROTO_SCSI) { if (async_update == FALSE) (*(sim->sim_action))(sim, (union ccb *)cts); return; } inq_data = &device->inq_data; scsi = &cts->proto_specific.scsi; xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, CAM_PRIORITY_NONE); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); /* SCSI specific sanity checking */ if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 || (device->mintags == 0)) { /* * Can't tag on hardware that doesn't support tags, * doesn't have it enabled, or has broken tag support. */ scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; } if (async_update == FALSE) { /* * Perform sanity checking against what the * controller and device can do. */ xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, CAM_PRIORITY_NONE); cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; cur_cts.type = cts->type; xpt_action((union ccb *)&cur_cts); if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { return; } cur_scsi = &cur_cts.proto_specific.scsi; if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; } if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; } /* SPI specific sanity checking */ if (cts->transport == XPORT_SPI && async_update == FALSE) { u_int spi3caps; struct ccb_trans_settings_spi *spi; struct ccb_trans_settings_spi *cur_spi; spi = &cts->xport_specific.spi; cur_spi = &cur_cts.xport_specific.spi; /* Fill in any gaps in what the user gave us */ if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) spi->sync_period = cur_spi->sync_period; if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) spi->sync_period = 0; if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) spi->sync_offset = cur_spi->sync_offset; if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) spi->sync_offset = 0; if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) spi->ppr_options = cur_spi->ppr_options; if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) spi->ppr_options = 0; if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) spi->bus_width = cur_spi->bus_width; if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) spi->bus_width = 0; if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; } if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 && (inq_data->flags & SID_Sync) == 0 && cts->type == CTS_TYPE_CURRENT_SETTINGS) || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)) { /* Force async */ spi->sync_period = 0; spi->sync_offset = 0; } switch (spi->bus_width) { case MSG_EXT_WDTR_BUS_32_BIT: if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 || (inq_data->flags & SID_WBus32) != 0 || cts->type == CTS_TYPE_USER_SETTINGS) && (cpi.hba_inquiry & PI_WIDE_32) != 0) break; /* Fall Through to 16-bit */ case MSG_EXT_WDTR_BUS_16_BIT: if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 || (inq_data->flags & SID_WBus16) != 0 || cts->type == CTS_TYPE_USER_SETTINGS) && (cpi.hba_inquiry & PI_WIDE_16) != 0) { spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; break; } /* Fall Through to 8-bit */ default: /* New bus width?? */ case MSG_EXT_WDTR_BUS_8_BIT: /* All targets can do this */ spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; break; } spi3caps = cpi.xport_specific.spi.ppr_options; if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 && cts->type == CTS_TYPE_CURRENT_SETTINGS) spi3caps &= inq_data->spi3data; if ((spi3caps & SID_SPI_CLOCK_DT) == 0) spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; if ((spi3caps & SID_SPI_IUS) == 0) spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; if ((spi3caps & SID_SPI_QAS) == 0) spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; /* No SPI Transfer settings are allowed unless we are wide */ if (spi->bus_width == 0) spi->ppr_options = 0; if ((spi->valid & CTS_SPI_VALID_DISC) && ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) { /* * Can't tag queue without disconnection. */ scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; scsi->valid |= CTS_SCSI_VALID_TQ; } /* * If we are currently performing tagged transactions to * this device and want to change its negotiation parameters, * go non-tagged for a bit to give the controller a chance to * negotiate unhampered by tag messages. */ if (cts->type == CTS_TYPE_CURRENT_SETTINGS && (device->inq_flags & SID_CmdQue) != 0 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| CTS_SPI_VALID_SYNC_OFFSET| CTS_SPI_VALID_BUS_WIDTH)) != 0) scsi_toggle_tags(cts->ccb_h.path); } if (cts->type == CTS_TYPE_CURRENT_SETTINGS && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { int device_tagenb; /* * If we are transitioning from tags to no-tags or * vice-versa, we need to carefully freeze and restart * the queue so that we don't overlap tagged and non-tagged * commands. We also temporarily stop tags if there is * a change in transfer negotiation settings to allow * "tag-less" negotiation. */ if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 || (device->inq_flags & SID_CmdQue) != 0) device_tagenb = TRUE; else device_tagenb = FALSE; if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 && device_tagenb == FALSE) || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 && device_tagenb == TRUE)) { if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { /* * Delay change to use tags until after a * few commands have gone to this device so * the controller has time to perform transfer * negotiations without tagged messages getting * in the way. */ device->tag_delay_count = CAM_TAG_DELAY_COUNT; device->flags |= CAM_DEV_TAG_AFTER_COUNT; } else { xpt_stop_tags(cts->ccb_h.path); } } } if (async_update == FALSE) (*(sim->sim_action))(sim, (union ccb *)cts); } static void scsi_toggle_tags(struct cam_path *path) { struct cam_ed *dev; /* * Give controllers a chance to renegotiate * before starting tag operations. We * "toggle" tagged queuing off then on * which causes the tag enable command delay * counter to come into effect. */ dev = path->device; if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 || ((dev->inq_flags & SID_CmdQue) != 0 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { struct ccb_trans_settings cts; xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NONE); cts.protocol = PROTO_SCSI; cts.protocol_version = PROTO_VERSION_UNSPECIFIED; cts.transport = XPORT_UNSPECIFIED; cts.transport_version = XPORT_VERSION_UNSPECIFIED; cts.proto_specific.scsi.flags = 0; cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; scsi_set_transfer_settings(&cts, path->device, /*async_update*/TRUE); cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; scsi_set_transfer_settings(&cts, path->device, /*async_update*/TRUE); } } /* * Handle any per-device event notifications that require action by the XPT. */ static void scsi_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg) { cam_status status; struct cam_path newpath; /* * We only need to handle events for real devices. */ if (target->target_id == CAM_TARGET_WILDCARD || device->lun_id == CAM_LUN_WILDCARD) return; /* * We need our own path with wildcards expanded to * handle certain types of events. */ if ((async_code == AC_SENT_BDR) || (async_code == AC_BUS_RESET) || (async_code == AC_INQ_CHANGED)) status = xpt_compile_path(&newpath, NULL, bus->path_id, target->target_id, device->lun_id); else status = CAM_REQ_CMP_ERR; if (status == CAM_REQ_CMP) { /* * Allow transfer negotiation to occur in a * tag free environment and after settle delay. */ if (async_code == AC_SENT_BDR || async_code == AC_BUS_RESET) { cam_freeze_devq(&newpath); cam_release_devq(&newpath, RELSIM_RELEASE_AFTER_TIMEOUT, /*reduction*/0, /*timeout*/scsi_delay, /*getcount_only*/0); scsi_toggle_tags(&newpath); } if (async_code == AC_INQ_CHANGED) { /* * We've sent a start unit command, or * something similar to a device that * may have caused its inquiry data to * change. So we re-scan the device to * refresh the inquiry data for it. */ scsi_scan_lun(newpath.periph, &newpath, CAM_EXPECT_INQ_CHANGE, NULL); } xpt_release_path(&newpath); } else if (async_code == AC_LOST_DEVICE && (device->flags & CAM_DEV_UNCONFIGURED) == 0) { device->flags |= CAM_DEV_UNCONFIGURED; xpt_release_device(device); } else if (async_code == AC_TRANSFER_NEG) { struct ccb_trans_settings *settings; settings = (struct ccb_trans_settings *)async_arg; scsi_set_transfer_settings(settings, device, /*async_update*/TRUE); } } static void scsi_announce_periph(struct cam_periph *periph) { struct ccb_pathinq cpi; struct ccb_trans_settings cts; struct cam_path *path = periph->path; u_int speed; u_int freq; u_int mb; mtx_assert(periph->sim->mtx, MA_OWNED); xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NORMAL); cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; cts.type = CTS_TYPE_CURRENT_SETTINGS; xpt_action((union ccb*)&cts); if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) return; /* Ask the SIM for its base transfer speed */ xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); /* Report connection speed */ speed = cpi.base_transfer_speed; freq = 0; if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { struct ccb_trans_settings_spi *spi = &cts.xport_specific.spi; if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 && spi->sync_offset != 0) { freq = scsi_calc_syncsrate(spi->sync_period); speed = freq; } if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) speed *= (0x01 << spi->bus_width); } if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; if (fc->valid & CTS_FC_VALID_SPEED) speed = fc->bitrate; } if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas; if (sas->valid & CTS_SAS_VALID_SPEED) speed = sas->bitrate; } mb = speed / 1000; if (mb > 0) printf("%s%d: %d.%03dMB/s transfers", periph->periph_name, periph->unit_number, mb, speed % 1000); else printf("%s%d: %dKB/s transfers", periph->periph_name, periph->unit_number, speed); /* Report additional information about SPI connections */ if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { struct ccb_trans_settings_spi *spi; spi = &cts.xport_specific.spi; if (freq != 0) { printf(" (%d.%03dMHz%s, offset %d", freq / 1000, freq % 1000, (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 ? " DT" : "", spi->sync_offset); } if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 && spi->bus_width > 0) { if (freq != 0) { printf(", "); } else { printf(" ("); } printf("%dbit)", 8 * (0x01 << spi->bus_width)); } else if (freq != 0) { printf(")"); } } if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { struct ccb_trans_settings_fc *fc; fc = &cts.xport_specific.fc; if (fc->valid & CTS_FC_VALID_WWNN) printf(" WWNN 0x%llx", (long long) fc->wwnn); if (fc->valid & CTS_FC_VALID_WWPN) printf(" WWPN 0x%llx", (long long) fc->wwpn); if (fc->valid & CTS_FC_VALID_PORT) printf(" PortID 0x%x", fc->port); } printf("\n"); }