Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/libalias/modules/irc/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfsclient/@/amd64/compile/hs32/modules/usr/src/sys/modules/if_gif/@/amd64/compile/hs32/modules/usr/src/sys/modules/syscons/dragon/@/dev/my/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/libalias/modules/irc/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfsclient/@/amd64/compile/hs32/modules/usr/src/sys/modules/if_gif/@/amd64/compile/hs32/modules/usr/src/sys/modules/syscons/dragon/@/dev/my/if_my.c |
/*- * Written by: yen_cw@myson.com.tw * Copyright (c) 2002 Myson Technology Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Myson fast ethernet PCI NIC driver, available at: http://www.myson.com.tw/ */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/my/if_my.c 223624 2011-06-28 08:36:48Z kevlo $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/sockio.h> #include <sys/mbuf.h> #include <sys/malloc.h> #include <sys/kernel.h> #include <sys/socket.h> #include <sys/queue.h> #include <sys/types.h> #include <sys/module.h> #include <sys/lock.h> #include <sys/mutex.h> #define NBPFILTER 1 #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_media.h> #include <net/if_types.h> #include <net/if_dl.h> #include <net/bpf.h> #include <vm/vm.h> /* for vtophys */ #include <vm/pmap.h> /* for vtophys */ #include <machine/bus.h> #include <machine/resource.h> #include <sys/bus.h> #include <sys/rman.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> /* * #define MY_USEIOSPACE */ static int MY_USEIOSPACE = 1; #ifdef MY_USEIOSPACE #define MY_RES SYS_RES_IOPORT #define MY_RID MY_PCI_LOIO #else #define MY_RES SYS_RES_MEMORY #define MY_RID MY_PCI_LOMEM #endif #include <dev/my/if_myreg.h> #ifndef lint static const char rcsid[] = "$Id: if_my.c,v 1.16 2003/04/15 06:37:25 mdodd Exp $"; #endif /* * Various supported device vendors/types and their names. */ struct my_type *my_info_tmp; static struct my_type my_devs[] = { {MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"}, {MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"}, {MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"}, {0, 0, NULL} }; /* * Various supported PHY vendors/types and their names. Note that this driver * will work with pretty much any MII-compliant PHY, so failure to positively * identify the chip is not a fatal error. */ static struct my_type my_phys[] = { {MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"}, {SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"}, {AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"}, {MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"}, {LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"}, {0, 0, "<MII-compliant physical interface>"} }; static int my_probe(device_t); static int my_attach(device_t); static int my_detach(device_t); static int my_newbuf(struct my_softc *, struct my_chain_onefrag *); static int my_encap(struct my_softc *, struct my_chain *, struct mbuf *); static void my_rxeof(struct my_softc *); static void my_txeof(struct my_softc *); static void my_txeoc(struct my_softc *); static void my_intr(void *); static void my_start(struct ifnet *); static void my_start_locked(struct ifnet *); static int my_ioctl(struct ifnet *, u_long, caddr_t); static void my_init(void *); static void my_init_locked(struct my_softc *); static void my_stop(struct my_softc *); static void my_autoneg_timeout(void *); static void my_watchdog(void *); static int my_shutdown(device_t); static int my_ifmedia_upd(struct ifnet *); static void my_ifmedia_sts(struct ifnet *, struct ifmediareq *); static u_int16_t my_phy_readreg(struct my_softc *, int); static void my_phy_writereg(struct my_softc *, int, int); static void my_autoneg_xmit(struct my_softc *); static void my_autoneg_mii(struct my_softc *, int, int); static void my_setmode_mii(struct my_softc *, int); static void my_getmode_mii(struct my_softc *); static void my_setcfg(struct my_softc *, int); static void my_setmulti(struct my_softc *); static void my_reset(struct my_softc *); static int my_list_rx_init(struct my_softc *); static int my_list_tx_init(struct my_softc *); static long my_send_cmd_to_phy(struct my_softc *, int, int); #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) static device_method_t my_methods[] = { /* Device interface */ DEVMETHOD(device_probe, my_probe), DEVMETHOD(device_attach, my_attach), DEVMETHOD(device_detach, my_detach), DEVMETHOD(device_shutdown, my_shutdown), {0, 0} }; static driver_t my_driver = { "my", my_methods, sizeof(struct my_softc) }; static devclass_t my_devclass; DRIVER_MODULE(my, pci, my_driver, my_devclass, 0, 0); MODULE_DEPEND(my, pci, 1, 1, 1); MODULE_DEPEND(my, ether, 1, 1, 1); static long my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad) { long miir; int i; int mask, data; MY_LOCK_ASSERT(sc); /* enable MII output */ miir = CSR_READ_4(sc, MY_MANAGEMENT); miir &= 0xfffffff0; miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO; /* send 32 1's preamble */ for (i = 0; i < 32; i++) { /* low MDC; MDO is already high (miir) */ miir &= ~MY_MASK_MIIR_MII_MDC; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); /* high MDC */ miir |= MY_MASK_MIIR_MII_MDC; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); } /* calculate ST+OP+PHYAD+REGAD+TA */ data = opcode | (sc->my_phy_addr << 7) | (regad << 2); /* sent out */ mask = 0x8000; while (mask) { /* low MDC, prepare MDO */ miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO); if (mask & data) miir |= MY_MASK_MIIR_MII_MDO; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); /* high MDC */ miir |= MY_MASK_MIIR_MII_MDC; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); DELAY(30); /* next */ mask >>= 1; if (mask == 0x2 && opcode == MY_OP_READ) miir &= ~MY_MASK_MIIR_MII_WRITE; } return miir; } static u_int16_t my_phy_readreg(struct my_softc * sc, int reg) { long miir; int mask, data; MY_LOCK_ASSERT(sc); if (sc->my_info->my_did == MTD803ID) data = CSR_READ_2(sc, MY_PHYBASE + reg * 2); else { miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg); /* read data */ mask = 0x8000; data = 0; while (mask) { /* low MDC */ miir &= ~MY_MASK_MIIR_MII_MDC; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); /* read MDI */ miir = CSR_READ_4(sc, MY_MANAGEMENT); if (miir & MY_MASK_MIIR_MII_MDI) data |= mask; /* high MDC, and wait */ miir |= MY_MASK_MIIR_MII_MDC; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); DELAY(30); /* next */ mask >>= 1; } /* low MDC */ miir &= ~MY_MASK_MIIR_MII_MDC; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); } return (u_int16_t) data; } static void my_phy_writereg(struct my_softc * sc, int reg, int data) { long miir; int mask; MY_LOCK_ASSERT(sc); if (sc->my_info->my_did == MTD803ID) CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data); else { miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg); /* write data */ mask = 0x8000; while (mask) { /* low MDC, prepare MDO */ miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO); if (mask & data) miir |= MY_MASK_MIIR_MII_MDO; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); DELAY(1); /* high MDC */ miir |= MY_MASK_MIIR_MII_MDC; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); DELAY(1); /* next */ mask >>= 1; } /* low MDC */ miir &= ~MY_MASK_MIIR_MII_MDC; CSR_WRITE_4(sc, MY_MANAGEMENT, miir); } return; } /* * Program the 64-bit multicast hash filter. */ static void my_setmulti(struct my_softc * sc) { struct ifnet *ifp; int h = 0; u_int32_t hashes[2] = {0, 0}; struct ifmultiaddr *ifma; u_int32_t rxfilt; int mcnt = 0; MY_LOCK_ASSERT(sc); ifp = sc->my_ifp; rxfilt = CSR_READ_4(sc, MY_TCRRCR); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= MY_AM; CSR_WRITE_4(sc, MY_TCRRCR, rxfilt); CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, MY_MAR0, 0); CSR_WRITE_4(sc, MY_MAR1, 0); /* now program new ones */ if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); mcnt++; } if_maddr_runlock(ifp); if (mcnt) rxfilt |= MY_AM; else rxfilt &= ~MY_AM; CSR_WRITE_4(sc, MY_MAR0, hashes[0]); CSR_WRITE_4(sc, MY_MAR1, hashes[1]); CSR_WRITE_4(sc, MY_TCRRCR, rxfilt); return; } /* * Initiate an autonegotiation session. */ static void my_autoneg_xmit(struct my_softc * sc) { u_int16_t phy_sts = 0; MY_LOCK_ASSERT(sc); my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); DELAY(500); while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); phy_sts = my_phy_readreg(sc, PHY_BMCR); phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR; my_phy_writereg(sc, PHY_BMCR, phy_sts); return; } static void my_autoneg_timeout(void *arg) { struct my_softc *sc; sc = arg; MY_LOCK_ASSERT(sc); my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1); } /* * Invoke autonegotiation on a PHY. */ static void my_autoneg_mii(struct my_softc * sc, int flag, int verbose) { u_int16_t phy_sts = 0, media, advert, ability; u_int16_t ability2 = 0; struct ifnet *ifp; struct ifmedia *ifm; MY_LOCK_ASSERT(sc); ifm = &sc->ifmedia; ifp = sc->my_ifp; ifm->ifm_media = IFM_ETHER | IFM_AUTO; #ifndef FORCE_AUTONEG_TFOUR /* * First, see if autoneg is supported. If not, there's no point in * continuing. */ phy_sts = my_phy_readreg(sc, PHY_BMSR); if (!(phy_sts & PHY_BMSR_CANAUTONEG)) { if (verbose) device_printf(sc->my_dev, "autonegotiation not supported\n"); ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX; return; } #endif switch (flag) { case MY_FLAG_FORCEDELAY: /* * XXX Never use this option anywhere but in the probe * routine: making the kernel stop dead in its tracks for * three whole seconds after we've gone multi-user is really * bad manners. */ my_autoneg_xmit(sc); DELAY(5000000); break; case MY_FLAG_SCHEDDELAY: /* * Wait for the transmitter to go idle before starting an * autoneg session, otherwise my_start() may clobber our * timeout, and we don't want to allow transmission during an * autoneg session since that can screw it up. */ if (sc->my_cdata.my_tx_head != NULL) { sc->my_want_auto = 1; MY_UNLOCK(sc); return; } my_autoneg_xmit(sc); callout_reset(&sc->my_autoneg_timer, hz * 5, my_autoneg_timeout, sc); sc->my_autoneg = 1; sc->my_want_auto = 0; return; case MY_FLAG_DELAYTIMEO: callout_stop(&sc->my_autoneg_timer); sc->my_autoneg = 0; break; default: device_printf(sc->my_dev, "invalid autoneg flag: %d\n", flag); return; } if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) { if (verbose) device_printf(sc->my_dev, "autoneg complete, "); phy_sts = my_phy_readreg(sc, PHY_BMSR); } else { if (verbose) device_printf(sc->my_dev, "autoneg not complete, "); } media = my_phy_readreg(sc, PHY_BMCR); /* Link is good. Report modes and set duplex mode. */ if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) { if (verbose) device_printf(sc->my_dev, "link status good. "); advert = my_phy_readreg(sc, PHY_ANAR); ability = my_phy_readreg(sc, PHY_LPAR); if ((sc->my_pinfo->my_vid == MarvellPHYID0) || (sc->my_pinfo->my_vid == LevelOnePHYID0)) { ability2 = my_phy_readreg(sc, PHY_1000SR); if (ability2 & PHY_1000SR_1000BTXFULL) { advert = 0; ability = 0; /* * this version did not support 1000M, * ifm->ifm_media = * IFM_ETHER|IFM_1000_T|IFM_FDX; */ ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX; media &= ~PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_1000; media |= PHY_BMCR_DUPLEX; printf("(full-duplex, 1000Mbps)\n"); } else if (ability2 & PHY_1000SR_1000BTXHALF) { advert = 0; ability = 0; /* * this version did not support 1000M, * ifm->ifm_media = IFM_ETHER|IFM_1000_T; */ ifm->ifm_media = IFM_ETHER | IFM_100_TX; media &= ~PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; media |= PHY_BMCR_1000; printf("(half-duplex, 1000Mbps)\n"); } } if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { ifm->ifm_media = IFM_ETHER | IFM_100_T4; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(100baseT4)\n"); } else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) { ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX; media |= PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; printf("(full-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) { ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(half-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) { ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX; media &= ~PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; printf("(full-duplex, 10Mbps)\n"); } else if (advert) { ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX; media &= ~PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(half-duplex, 10Mbps)\n"); } media &= ~PHY_BMCR_AUTONEGENBL; /* Set ASIC's duplex mode to match the PHY. */ my_phy_writereg(sc, PHY_BMCR, media); my_setcfg(sc, media); } else { if (verbose) device_printf(sc->my_dev, "no carrier\n"); } my_init_locked(sc); if (sc->my_tx_pend) { sc->my_autoneg = 0; sc->my_tx_pend = 0; my_start_locked(ifp); } return; } /* * To get PHY ability. */ static void my_getmode_mii(struct my_softc * sc) { u_int16_t bmsr; struct ifnet *ifp; MY_LOCK_ASSERT(sc); ifp = sc->my_ifp; bmsr = my_phy_readreg(sc, PHY_BMSR); if (bootverbose) device_printf(sc->my_dev, "PHY status word: %x\n", bmsr); /* fallback */ sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX; if (bmsr & PHY_BMSR_10BTHALF) { if (bootverbose) device_printf(sc->my_dev, "10Mbps half-duplex mode supported\n"); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL); } if (bmsr & PHY_BMSR_10BTFULL) { if (bootverbose) device_printf(sc->my_dev, "10Mbps full-duplex mode supported\n"); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX; } if (bmsr & PHY_BMSR_100BTXHALF) { if (bootverbose) device_printf(sc->my_dev, "100Mbps half-duplex mode supported\n"); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX; } if (bmsr & PHY_BMSR_100BTXFULL) { if (bootverbose) device_printf(sc->my_dev, "100Mbps full-duplex mode supported\n"); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX; } /* Some also support 100BaseT4. */ if (bmsr & PHY_BMSR_100BT4) { if (bootverbose) device_printf(sc->my_dev, "100baseT4 mode supported\n"); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4; #ifdef FORCE_AUTONEG_TFOUR if (bootverbose) device_printf(sc->my_dev, "forcing on autoneg support for BT4\n"); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL): sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO; #endif } #if 0 /* this version did not support 1000M, */ if (sc->my_pinfo->my_vid == MarvellPHYID0) { if (bootverbose) device_printf(sc->my_dev, "1000Mbps half-duplex mode supported\n"); ifp->if_baudrate = 1000000000; ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX, 0, NULL); if (bootverbose) device_printf(sc->my_dev, "1000Mbps full-duplex mode supported\n"); ifp->if_baudrate = 1000000000; ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX; } #endif if (bmsr & PHY_BMSR_CANAUTONEG) { if (bootverbose) device_printf(sc->my_dev, "autoneg supported\n"); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO; } return; } /* * Set speed and duplex mode. */ static void my_setmode_mii(struct my_softc * sc, int media) { u_int16_t bmcr; struct ifnet *ifp; MY_LOCK_ASSERT(sc); ifp = sc->my_ifp; /* * If an autoneg session is in progress, stop it. */ if (sc->my_autoneg) { device_printf(sc->my_dev, "canceling autoneg session\n"); callout_stop(&sc->my_autoneg_timer); sc->my_autoneg = sc->my_want_auto = 0; bmcr = my_phy_readreg(sc, PHY_BMCR); bmcr &= ~PHY_BMCR_AUTONEGENBL; my_phy_writereg(sc, PHY_BMCR, bmcr); } device_printf(sc->my_dev, "selecting MII, "); bmcr = my_phy_readreg(sc, PHY_BMCR); bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 | PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK); #if 0 /* this version did not support 1000M, */ if (IFM_SUBTYPE(media) == IFM_1000_T) { printf("1000Mbps/T4, half-duplex\n"); bmcr &= ~PHY_BMCR_SPEEDSEL; bmcr &= ~PHY_BMCR_DUPLEX; bmcr |= PHY_BMCR_1000; } #endif if (IFM_SUBTYPE(media) == IFM_100_T4) { printf("100Mbps/T4, half-duplex\n"); bmcr |= PHY_BMCR_SPEEDSEL; bmcr &= ~PHY_BMCR_DUPLEX; } if (IFM_SUBTYPE(media) == IFM_100_TX) { printf("100Mbps, "); bmcr |= PHY_BMCR_SPEEDSEL; } if (IFM_SUBTYPE(media) == IFM_10_T) { printf("10Mbps, "); bmcr &= ~PHY_BMCR_SPEEDSEL; } if ((media & IFM_GMASK) == IFM_FDX) { printf("full duplex\n"); bmcr |= PHY_BMCR_DUPLEX; } else { printf("half duplex\n"); bmcr &= ~PHY_BMCR_DUPLEX; } my_phy_writereg(sc, PHY_BMCR, bmcr); my_setcfg(sc, bmcr); return; } /* * The Myson manual states that in order to fiddle with the 'full-duplex' and * '100Mbps' bits in the netconfig register, we first have to put the * transmit and/or receive logic in the idle state. */ static void my_setcfg(struct my_softc * sc, int bmcr) { int i, restart = 0; MY_LOCK_ASSERT(sc); if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) { restart = 1; MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE)); for (i = 0; i < MY_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, MY_TCRRCR) & (MY_TXRUN | MY_RXRUN))) break; } if (i == MY_TIMEOUT) device_printf(sc->my_dev, "failed to force tx and rx to idle \n"); } MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000); MY_CLRBIT(sc, MY_TCRRCR, MY_PS10); if (bmcr & PHY_BMCR_1000) MY_SETBIT(sc, MY_TCRRCR, MY_PS1000); else if (!(bmcr & PHY_BMCR_SPEEDSEL)) MY_SETBIT(sc, MY_TCRRCR, MY_PS10); if (bmcr & PHY_BMCR_DUPLEX) MY_SETBIT(sc, MY_TCRRCR, MY_FD); else MY_CLRBIT(sc, MY_TCRRCR, MY_FD); if (restart) MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE); return; } static void my_reset(struct my_softc * sc) { register int i; MY_LOCK_ASSERT(sc); MY_SETBIT(sc, MY_BCR, MY_SWR); for (i = 0; i < MY_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR)) break; } if (i == MY_TIMEOUT) device_printf(sc->my_dev, "reset never completed!\n"); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Probe for a Myson chip. Check the PCI vendor and device IDs against our * list and return a device name if we find a match. */ static int my_probe(device_t dev) { struct my_type *t; t = my_devs; while (t->my_name != NULL) { if ((pci_get_vendor(dev) == t->my_vid) && (pci_get_device(dev) == t->my_did)) { device_set_desc(dev, t->my_name); my_info_tmp = t; return (BUS_PROBE_DEFAULT); } t++; } return (ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia setup and * ethernet/BPF attach. */ static int my_attach(device_t dev) { int i; u_char eaddr[ETHER_ADDR_LEN]; u_int32_t iobase; struct my_softc *sc; struct ifnet *ifp; int media = IFM_ETHER | IFM_100_TX | IFM_FDX; unsigned int round; caddr_t roundptr; struct my_type *p; u_int16_t phy_vid, phy_did, phy_sts = 0; int rid, error = 0; sc = device_get_softc(dev); sc->my_dev = dev; mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->my_autoneg_timer, &sc->my_mtx, 0); callout_init_mtx(&sc->my_watchdog, &sc->my_mtx, 0); /* * Map control/status registers. */ pci_enable_busmaster(dev); if (my_info_tmp->my_did == MTD800ID) { iobase = pci_read_config(dev, MY_PCI_LOIO, 4); if (iobase & 0x300) MY_USEIOSPACE = 0; } rid = MY_RID; sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE); if (sc->my_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto destroy_mutex; } sc->my_btag = rman_get_bustag(sc->my_res); sc->my_bhandle = rman_get_bushandle(sc->my_res); rid = 0; sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->my_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto release_io; } sc->my_info = my_info_tmp; /* Reset the adapter. */ MY_LOCK(sc); my_reset(sc); MY_UNLOCK(sc); /* * Get station address */ for (i = 0; i < ETHER_ADDR_LEN; ++i) eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i); sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8, M_DEVBUF, M_NOWAIT); if (sc->my_ldata_ptr == NULL) { device_printf(dev, "no memory for list buffers!\n"); error = ENXIO; goto release_irq; } sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr; round = (uintptr_t)sc->my_ldata_ptr & 0xF; roundptr = sc->my_ldata_ptr; for (i = 0; i < 8; i++) { if (round % 8) { round++; roundptr++; } else break; } sc->my_ldata = (struct my_list_data *) roundptr; bzero(sc->my_ldata, sizeof(struct my_list_data)); ifp = sc->my_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto free_ldata; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = my_ioctl; ifp->if_start = my_start; ifp->if_init = my_init; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; IFQ_SET_READY(&ifp->if_snd); if (sc->my_info->my_did == MTD803ID) sc->my_pinfo = my_phys; else { if (bootverbose) device_printf(dev, "probing for a PHY\n"); MY_LOCK(sc); for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) { if (bootverbose) device_printf(dev, "checking address: %d\n", i); sc->my_phy_addr = i; phy_sts = my_phy_readreg(sc, PHY_BMSR); if ((phy_sts != 0) && (phy_sts != 0xffff)) break; else phy_sts = 0; } if (phy_sts) { phy_vid = my_phy_readreg(sc, PHY_VENID); phy_did = my_phy_readreg(sc, PHY_DEVID); if (bootverbose) { device_printf(dev, "found PHY at address %d, ", sc->my_phy_addr); printf("vendor id: %x device id: %x\n", phy_vid, phy_did); } p = my_phys; while (p->my_vid) { if (phy_vid == p->my_vid) { sc->my_pinfo = p; break; } p++; } if (sc->my_pinfo == NULL) sc->my_pinfo = &my_phys[PHY_UNKNOWN]; if (bootverbose) device_printf(dev, "PHY type: %s\n", sc->my_pinfo->my_name); } else { MY_UNLOCK(sc); device_printf(dev, "MII without any phy!\n"); error = ENXIO; goto free_if; } MY_UNLOCK(sc); } /* Do ifmedia setup. */ ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts); MY_LOCK(sc); my_getmode_mii(sc); my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1); media = sc->ifmedia.ifm_media; my_stop(sc); MY_UNLOCK(sc); ifmedia_set(&sc->ifmedia, media); ether_ifattach(ifp, eaddr); error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, my_intr, sc, &sc->my_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); goto detach_if; } return (0); detach_if: ether_ifdetach(ifp); free_if: if_free(ifp); free_ldata: free(sc->my_ldata_ptr, M_DEVBUF); release_irq: bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq); release_io: bus_release_resource(dev, MY_RES, MY_RID, sc->my_res); destroy_mutex: mtx_destroy(&sc->my_mtx); return (error); } static int my_detach(device_t dev) { struct my_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->my_ifp; ether_ifdetach(ifp); MY_LOCK(sc); my_stop(sc); MY_UNLOCK(sc); bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand); callout_drain(&sc->my_watchdog); callout_drain(&sc->my_autoneg_timer); if_free(ifp); free(sc->my_ldata_ptr, M_DEVBUF); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq); bus_release_resource(dev, MY_RES, MY_RID, sc->my_res); mtx_destroy(&sc->my_mtx); return (0); } /* * Initialize the transmit descriptors. */ static int my_list_tx_init(struct my_softc * sc) { struct my_chain_data *cd; struct my_list_data *ld; int i; MY_LOCK_ASSERT(sc); cd = &sc->my_cdata; ld = sc->my_ldata; for (i = 0; i < MY_TX_LIST_CNT; i++) { cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i]; if (i == (MY_TX_LIST_CNT - 1)) cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0]; else cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[i + 1]; } cd->my_tx_free = &cd->my_tx_chain[0]; cd->my_tx_tail = cd->my_tx_head = NULL; return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that we * arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int my_list_rx_init(struct my_softc * sc) { struct my_chain_data *cd; struct my_list_data *ld; int i; MY_LOCK_ASSERT(sc); cd = &sc->my_cdata; ld = sc->my_ldata; for (i = 0; i < MY_RX_LIST_CNT; i++) { cd->my_rx_chain[i].my_ptr = (struct my_desc *) & ld->my_rx_list[i]; if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS) { MY_UNLOCK(sc); return (ENOBUFS); } if (i == (MY_RX_LIST_CNT - 1)) { cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0]; ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]); } else { cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[i + 1]; ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[i + 1]); } } cd->my_rx_head = &cd->my_rx_chain[0]; return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c) { struct mbuf *m_new = NULL; MY_LOCK_ASSERT(sc); MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { device_printf(sc->my_dev, "no memory for rx list -- packet dropped!\n"); return (ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { device_printf(sc->my_dev, "no memory for rx list -- packet dropped!\n"); m_freem(m_new); return (ENOBUFS); } c->my_mbuf = m_new; c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t)); c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift; c->my_ptr->my_status = MY_OWNByNIC; return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to the higher * level protocols. */ static void my_rxeof(struct my_softc * sc) { struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct my_chain_onefrag *cur_rx; int total_len = 0; u_int32_t rxstat; MY_LOCK_ASSERT(sc); ifp = sc->my_ifp; while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status) & MY_OWNByNIC)) { cur_rx = sc->my_cdata.my_rx_head; sc->my_cdata.my_rx_head = cur_rx->my_nextdesc; if (rxstat & MY_ES) { /* error summary: give up this rx pkt */ ifp->if_ierrors++; cur_rx->my_ptr->my_status = MY_OWNByNIC; continue; } /* No errors; receive the packet. */ total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift; total_len -= ETHER_CRC_LEN; if (total_len < MINCLSIZE) { m = m_devget(mtod(cur_rx->my_mbuf, char *), total_len, 0, ifp, NULL); cur_rx->my_ptr->my_status = MY_OWNByNIC; if (m == NULL) { ifp->if_ierrors++; continue; } } else { m = cur_rx->my_mbuf; /* * Try to conjure up a new mbuf cluster. If that * fails, it means we have an out of memory condition * and should leave the buffer in place and continue. * This will result in a lost packet, but there's * little else we can do in this situation. */ if (my_newbuf(sc, cur_rx) == ENOBUFS) { ifp->if_ierrors++; cur_rx->my_ptr->my_status = MY_OWNByNIC; continue; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } ifp->if_ipackets++; eh = mtod(m, struct ether_header *); #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's a * broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. */ if (bpf_peers_present(ifp->if_bpf)) { bpf_mtap(ifp->if_bpf, m); if (ifp->if_flags & IFF_PROMISC && (bcmp(eh->ether_dhost, IF_LLADDR(sc->my_ifp), ETHER_ADDR_LEN) && (eh->ether_dhost[0] & 1) == 0)) { m_freem(m); continue; } } #endif MY_UNLOCK(sc); (*ifp->if_input)(ifp, m); MY_LOCK(sc); } return; } /* * A frame was downloaded to the chip. It's safe for us to clean up the list * buffers. */ static void my_txeof(struct my_softc * sc) { struct my_chain *cur_tx; struct ifnet *ifp; MY_LOCK_ASSERT(sc); ifp = sc->my_ifp; /* Clear the timeout timer. */ sc->my_timer = 0; if (sc->my_cdata.my_tx_head == NULL) { return; } /* * Go through our tx list and free mbufs for those frames that have * been transmitted. */ while (sc->my_cdata.my_tx_head->my_mbuf != NULL) { u_int32_t txstat; cur_tx = sc->my_cdata.my_tx_head; txstat = MY_TXSTATUS(cur_tx); if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT) break; if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) { if (txstat & MY_TXERR) { ifp->if_oerrors++; if (txstat & MY_EC) /* excessive collision */ ifp->if_collisions++; if (txstat & MY_LC) /* late collision */ ifp->if_collisions++; } ifp->if_collisions += (txstat & MY_NCRMASK) >> MY_NCRShift; } ifp->if_opackets++; m_freem(cur_tx->my_mbuf); cur_tx->my_mbuf = NULL; if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) { sc->my_cdata.my_tx_head = NULL; sc->my_cdata.my_tx_tail = NULL; break; } sc->my_cdata.my_tx_head = cur_tx->my_nextdesc; } if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) { ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask); } return; } /* * TX 'end of channel' interrupt handler. */ static void my_txeoc(struct my_softc * sc) { struct ifnet *ifp; MY_LOCK_ASSERT(sc); ifp = sc->my_ifp; sc->my_timer = 0; if (sc->my_cdata.my_tx_head == NULL) { ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->my_cdata.my_tx_tail = NULL; if (sc->my_want_auto) my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1); } else { if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) { MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC; sc->my_timer = 5; CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF); } } return; } static void my_intr(void *arg) { struct my_softc *sc; struct ifnet *ifp; u_int32_t status; sc = arg; MY_LOCK(sc); ifp = sc->my_ifp; if (!(ifp->if_flags & IFF_UP)) { MY_UNLOCK(sc); return; } /* Disable interrupts. */ CSR_WRITE_4(sc, MY_IMR, 0x00000000); for (;;) { status = CSR_READ_4(sc, MY_ISR); status &= MY_INTRS; if (status) CSR_WRITE_4(sc, MY_ISR, status); else break; if (status & MY_RI) /* receive interrupt */ my_rxeof(sc); if ((status & MY_RBU) || (status & MY_RxErr)) { /* rx buffer unavailable or rx error */ ifp->if_ierrors++; #ifdef foo my_stop(sc); my_reset(sc); my_init_locked(sc); #endif } if (status & MY_TI) /* tx interrupt */ my_txeof(sc); if (status & MY_ETI) /* tx early interrupt */ my_txeof(sc); if (status & MY_TBU) /* tx buffer unavailable */ my_txeoc(sc); #if 0 /* 90/1/18 delete */ if (status & MY_FBE) { my_reset(sc); my_init_locked(sc); } #endif } /* Re-enable interrupts. */ CSR_WRITE_4(sc, MY_IMR, MY_INTRS); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) my_start_locked(ifp); MY_UNLOCK(sc); return; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head) { struct my_desc *f = NULL; int total_len; struct mbuf *m, *m_new = NULL; MY_LOCK_ASSERT(sc); /* calculate the total tx pkt length */ total_len = 0; for (m = m_head; m != NULL; m = m->m_next) total_len += m->m_len; /* * Start packing the mbufs in this chain into the fragment pointers. * Stop when we run out of fragments or hit the end of the mbuf * chain. */ m = m_head; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { device_printf(sc->my_dev, "no memory for tx list"); return (1); } if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); device_printf(sc->my_dev, "no memory for tx list"); return (1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; f = &c->my_ptr->my_frag[0]; f->my_status = 0; f->my_data = vtophys(mtod(m_new, caddr_t)); total_len = m_new->m_len; f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable; f->my_ctl |= total_len << MY_PKTShift; /* pkt size */ f->my_ctl |= total_len; /* buffer size */ /* 89/12/29 add, for mtd891 *//* [ 89? ] */ if (sc->my_info->my_did == MTD891ID) f->my_ctl |= MY_ETIControl | MY_RetryTxLC; c->my_mbuf = m_head; c->my_lastdesc = 0; MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]); return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void my_start(struct ifnet * ifp) { struct my_softc *sc; sc = ifp->if_softc; MY_LOCK(sc); my_start_locked(ifp); MY_UNLOCK(sc); } static void my_start_locked(struct ifnet * ifp) { struct my_softc *sc; struct mbuf *m_head = NULL; struct my_chain *cur_tx = NULL, *start_tx; sc = ifp->if_softc; MY_LOCK_ASSERT(sc); if (sc->my_autoneg) { sc->my_tx_pend = 1; return; } /* * Check for an available queue slot. If there are none, punt. */ if (sc->my_cdata.my_tx_free->my_mbuf != NULL) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; return; } start_tx = sc->my_cdata.my_tx_free; while (sc->my_cdata.my_tx_free->my_mbuf == NULL) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a descriptor off the free list. */ cur_tx = sc->my_cdata.my_tx_free; sc->my_cdata.my_tx_free = cur_tx->my_nextdesc; /* Pack the data into the descriptor. */ my_encap(sc, cur_tx, m_head); if (cur_tx != start_tx) MY_TXOWN(cur_tx) = MY_OWNByNIC; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame to * him. */ BPF_MTAP(ifp, cur_tx->my_mbuf); #endif } /* * If there are no packets queued, bail. */ if (cur_tx == NULL) { return; } /* * Place the request for the upload interrupt in the last descriptor * in the chain. This way, if we're chaining several packets at once, * we'll only get an interrupt once for the whole chain rather than * once for each packet. */ MY_TXCTL(cur_tx) |= MY_TXIC; cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC; sc->my_cdata.my_tx_tail = cur_tx; if (sc->my_cdata.my_tx_head == NULL) sc->my_cdata.my_tx_head = start_tx; MY_TXOWN(start_tx) = MY_OWNByNIC; CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF); /* tx polling demand */ /* * Set a timeout in case the chip goes out to lunch. */ sc->my_timer = 5; return; } static void my_init(void *xsc) { struct my_softc *sc = xsc; MY_LOCK(sc); my_init_locked(sc); MY_UNLOCK(sc); } static void my_init_locked(struct my_softc *sc) { struct ifnet *ifp = sc->my_ifp; u_int16_t phy_bmcr = 0; MY_LOCK_ASSERT(sc); if (sc->my_autoneg) { return; } if (sc->my_pinfo != NULL) phy_bmcr = my_phy_readreg(sc, PHY_BMCR); /* * Cancel pending I/O and free all RX/TX buffers. */ my_stop(sc); my_reset(sc); /* * Set cache alignment and burst length. */ #if 0 /* 89/9/1 modify, */ CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512); CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF); #endif CSR_WRITE_4(sc, MY_BCR, MY_PBL8); CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512); /* * 89/12/29 add, for mtd891, */ if (sc->my_info->my_did == MTD891ID) { MY_SETBIT(sc, MY_BCR, MY_PROG); MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced); } my_setcfg(sc, phy_bmcr); /* Init circular RX list. */ if (my_list_rx_init(sc) == ENOBUFS) { device_printf(sc->my_dev, "init failed: no memory for rx buffers\n"); my_stop(sc); return; } /* Init TX descriptors. */ my_list_tx_init(sc); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) MY_SETBIT(sc, MY_TCRRCR, MY_PROM); else MY_CLRBIT(sc, MY_TCRRCR, MY_PROM); /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) MY_SETBIT(sc, MY_TCRRCR, MY_AB); else MY_CLRBIT(sc, MY_TCRRCR, MY_AB); /* * Program the multicast filter, if necessary. */ my_setmulti(sc); /* * Load the address of the RX list. */ MY_CLRBIT(sc, MY_TCRRCR, MY_RE); CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0])); /* * Enable interrupts. */ CSR_WRITE_4(sc, MY_IMR, MY_INTRS); CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF); /* Enable receiver and transmitter. */ MY_SETBIT(sc, MY_TCRRCR, MY_RE); MY_CLRBIT(sc, MY_TCRRCR, MY_TE); CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0])); MY_SETBIT(sc, MY_TCRRCR, MY_TE); /* Restore state of BMCR */ if (sc->my_pinfo != NULL) my_phy_writereg(sc, PHY_BMCR, phy_bmcr); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->my_watchdog, hz, my_watchdog, sc); return; } /* * Set media options. */ static int my_ifmedia_upd(struct ifnet * ifp) { struct my_softc *sc; struct ifmedia *ifm; sc = ifp->if_softc; MY_LOCK(sc); ifm = &sc->ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { MY_UNLOCK(sc); return (EINVAL); } if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1); else my_setmode_mii(sc, ifm->ifm_media); MY_UNLOCK(sc); return (0); } /* * Report current media status. */ static void my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr) { struct my_softc *sc; u_int16_t advert = 0, ability = 0; sc = ifp->if_softc; MY_LOCK(sc); ifmr->ifm_active = IFM_ETHER; if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) { #if 0 /* this version did not support 1000M, */ if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000) ifmr->ifm_active = IFM_ETHER | IFM_1000TX; #endif if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL) ifmr->ifm_active = IFM_ETHER | IFM_100_TX; else ifmr->ifm_active = IFM_ETHER | IFM_10_T; if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; MY_UNLOCK(sc); return; } ability = my_phy_readreg(sc, PHY_LPAR); advert = my_phy_readreg(sc, PHY_ANAR); #if 0 /* this version did not support 1000M, */ if (sc->my_pinfo->my_vid = MarvellPHYID0) { ability2 = my_phy_readreg(sc, PHY_1000SR); if (ability2 & PHY_1000SR_1000BTXFULL) { advert = 0; ability = 0; ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_FDX; } else if (ability & PHY_1000SR_1000BTXHALF) { advert = 0; ability = 0; ifmr->ifm_active = IFM_ETHER|IFM_1000_T|IFM_HDX; } } #endif if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) ifmr->ifm_active = IFM_ETHER | IFM_100_T4; else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX; else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX; else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX; else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF) ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX; MY_UNLOCK(sc); return; } static int my_ioctl(struct ifnet * ifp, u_long command, caddr_t data) { struct my_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int error; switch (command) { case SIOCSIFFLAGS: MY_LOCK(sc); if (ifp->if_flags & IFF_UP) my_init_locked(sc); else if (ifp->if_drv_flags & IFF_DRV_RUNNING) my_stop(sc); MY_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: MY_LOCK(sc); my_setmulti(sc); MY_UNLOCK(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void my_watchdog(void *arg) { struct my_softc *sc; struct ifnet *ifp; sc = arg; MY_LOCK_ASSERT(sc); callout_reset(&sc->my_watchdog, hz, my_watchdog, sc); if (sc->my_timer == 0 || --sc->my_timer > 0) return; ifp = sc->my_ifp; ifp->if_oerrors++; if_printf(ifp, "watchdog timeout\n"); if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT)) if_printf(ifp, "no carrier - transceiver cable problem?\n"); my_stop(sc); my_reset(sc); my_init_locked(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) my_start_locked(ifp); } /* * Stop the adapter and free any mbufs allocated to the RX and TX lists. */ static void my_stop(struct my_softc * sc) { register int i; struct ifnet *ifp; MY_LOCK_ASSERT(sc); ifp = sc->my_ifp; callout_stop(&sc->my_autoneg_timer); callout_stop(&sc->my_watchdog); MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE)); CSR_WRITE_4(sc, MY_IMR, 0x00000000); CSR_WRITE_4(sc, MY_TXLBA, 0x00000000); CSR_WRITE_4(sc, MY_RXLBA, 0x00000000); /* * Free data in the RX lists. */ for (i = 0; i < MY_RX_LIST_CNT; i++) { if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) { m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf); sc->my_cdata.my_rx_chain[i].my_mbuf = NULL; } } bzero((char *)&sc->my_ldata->my_rx_list, sizeof(sc->my_ldata->my_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < MY_TX_LIST_CNT; i++) { if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) { m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf); sc->my_cdata.my_tx_chain[i].my_mbuf = NULL; } } bzero((char *)&sc->my_ldata->my_tx_list, sizeof(sc->my_ldata->my_tx_list)); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't get confused * by errant DMAs when rebooting. */ static int my_shutdown(device_t dev) { struct my_softc *sc; sc = device_get_softc(dev); MY_LOCK(sc); my_stop(sc); MY_UNLOCK(sc); return 0; }