Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/libalias/modules/irc/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfsclient/@/amd64/compile/hs32/modules/usr/src/sys/modules/if_gif/@/amd64/compile/hs32/modules/usr/src/sys/modules/vx/@/dev/usb/wlan/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/libalias/modules/irc/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfsclient/@/amd64/compile/hs32/modules/usr/src/sys/modules/if_gif/@/amd64/compile/hs32/modules/usr/src/sys/modules/vx/@/dev/usb/wlan/if_upgt.c |
/* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */ /* $FreeBSD: release/9.1.0/sys/dev/usb/wlan/if_upgt.c 235000 2012-05-04 15:05:30Z hselasky $ */ /* * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/endian.h> #include <sys/firmware.h> #include <sys/linker.h> #include <sys/mbuf.h> #include <sys/malloc.h> #include <sys/module.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/sysctl.h> #include <net/if.h> #include <net/if_arp.h> #include <net/ethernet.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_types.h> #include <sys/bus.h> #include <machine/bus.h> #include <net80211/ieee80211_var.h> #include <net80211/ieee80211_phy.h> #include <net80211/ieee80211_radiotap.h> #include <net80211/ieee80211_regdomain.h> #include <net/bpf.h> #include <dev/usb/usb.h> #include <dev/usb/usbdi.h> #include "usbdevs.h" #include <dev/usb/wlan/if_upgtvar.h> /* * Driver for the USB PrismGT devices. * * For now just USB 2.0 devices with the GW3887 chipset are supported. * The driver has been written based on the firmware version 2.13.1.0_LM87. * * TODO's: * - MONITOR mode test. * - Add HOSTAP mode. * - Add IBSS mode. * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). * * Parts of this driver has been influenced by reading the p54u driver * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and * Sebastien Bourdeauducq <lekernel@prism54.org>. */ SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0, "USB PrismGT GW3887 driver parameters"); #ifdef UPGT_DEBUG int upgt_debug = 0; SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW, &upgt_debug, 0, "control debugging printfs"); TUNABLE_INT("hw.upgt.debug", &upgt_debug); enum { UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */ UPGT_DEBUG_RESET = 0x00000004, /* reset processing */ UPGT_DEBUG_INTR = 0x00000008, /* INTR */ UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ UPGT_DEBUG_STAT = 0x00000080, /* statistic */ UPGT_DEBUG_FW = 0x00000100, /* firmware */ UPGT_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->sc_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, m, fmt, ...) do { \ (void) sc; \ } while (0) #endif /* * Prototypes. */ static device_probe_t upgt_match; static device_attach_t upgt_attach; static device_detach_t upgt_detach; static int upgt_alloc_tx(struct upgt_softc *); static int upgt_alloc_rx(struct upgt_softc *); static int upgt_device_reset(struct upgt_softc *); static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *); static int upgt_fw_verify(struct upgt_softc *); static int upgt_mem_init(struct upgt_softc *); static int upgt_fw_load(struct upgt_softc *); static int upgt_fw_copy(const uint8_t *, char *, int); static uint32_t upgt_crc32_le(const void *, size_t); static struct mbuf * upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *); static struct mbuf * upgt_rx(struct upgt_softc *, uint8_t *, int, int *); static void upgt_txeof(struct usb_xfer *, struct upgt_data *); static int upgt_eeprom_read(struct upgt_softc *); static int upgt_eeprom_parse(struct upgt_softc *); static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); static uint32_t upgt_chksum_le(const uint32_t *, size_t); static void upgt_tx_done(struct upgt_softc *, uint8_t *); static void upgt_init(void *); static void upgt_init_locked(struct upgt_softc *); static int upgt_ioctl(struct ifnet *, u_long, caddr_t); static void upgt_start(struct ifnet *); static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void upgt_scan_start(struct ieee80211com *); static void upgt_scan_end(struct ieee80211com *); static void upgt_set_channel(struct ieee80211com *); static struct ieee80211vap *upgt_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void upgt_vap_delete(struct ieee80211vap *); static void upgt_update_mcast(struct ifnet *); static uint8_t upgt_rx_rate(struct upgt_softc *, const int); static void upgt_set_multi(void *); static void upgt_stop(struct upgt_softc *); static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *); static int upgt_set_macfilter(struct upgt_softc *, uint8_t); static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *); static void upgt_set_led(struct upgt_softc *, int); static void upgt_set_led_blink(void *); static void upgt_get_stats(struct upgt_softc *); static void upgt_mem_free(struct upgt_softc *, uint32_t); static uint32_t upgt_mem_alloc(struct upgt_softc *); static void upgt_free_tx(struct upgt_softc *); static void upgt_free_rx(struct upgt_softc *); static void upgt_watchdog(void *); static void upgt_abort_xfers(struct upgt_softc *); static void upgt_abort_xfers_locked(struct upgt_softc *); static void upgt_sysctl_node(struct upgt_softc *); static struct upgt_data * upgt_getbuf(struct upgt_softc *); static struct upgt_data * upgt_gettxbuf(struct upgt_softc *); static int upgt_tx_start(struct upgt_softc *, struct mbuf *, struct ieee80211_node *, struct upgt_data *); static const char *upgt_fwname = "upgt-gw3887"; static const STRUCT_USB_HOST_ID upgt_devs[] = { #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } /* version 2 devices */ UPGT_DEV(ACCTON, PRISM_GT), UPGT_DEV(BELKIN, F5D7050), UPGT_DEV(CISCOLINKSYS, WUSB54AG), UPGT_DEV(CONCEPTRONIC, PRISM_GT), UPGT_DEV(DELL, PRISM_GT_1), UPGT_DEV(DELL, PRISM_GT_2), UPGT_DEV(FSC, E5400), UPGT_DEV(GLOBESPAN, PRISM_GT_1), UPGT_DEV(GLOBESPAN, PRISM_GT_2), UPGT_DEV(NETGEAR, WG111V2_2), UPGT_DEV(INTERSIL, PRISM_GT), UPGT_DEV(SMC, 2862WG), UPGT_DEV(USR, USR5422), UPGT_DEV(WISTRONNEWEB, UR045G), UPGT_DEV(XYRATEX, PRISM_GT_1), UPGT_DEV(XYRATEX, PRISM_GT_2), UPGT_DEV(ZCOM, XG703A), UPGT_DEV(ZCOM, XM142) }; static usb_callback_t upgt_bulk_rx_callback; static usb_callback_t upgt_bulk_tx_callback; static const struct usb_config upgt_config[UPGT_N_XFERS] = { [UPGT_BULK_TX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = MCLBYTES, .flags = { .ext_buffer = 1, .force_short_xfer = 1, .pipe_bof = 1 }, .callback = upgt_bulk_tx_callback, .timeout = UPGT_USB_TIMEOUT, /* ms */ }, [UPGT_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = MCLBYTES, .flags = { .ext_buffer = 1, .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = upgt_bulk_rx_callback, }, }; static int upgt_match(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa)); } static int upgt_attach(device_t dev) { int error; struct ieee80211com *ic; struct ifnet *ifp; struct upgt_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); uint8_t bands, iface_index = UPGT_IFACE_INDEX; sc->sc_dev = dev; sc->sc_udev = uaa->device; #ifdef UPGT_DEBUG sc->sc_debug = upgt_debug; #endif device_set_usb_desc(dev); mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init(&sc->sc_led_ch, 0); callout_init(&sc->sc_watchdog_ch, 0); /* Allocate TX and RX xfers. */ error = upgt_alloc_tx(sc); if (error) goto fail1; error = upgt_alloc_rx(sc); if (error) goto fail2; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx); if (error) { device_printf(dev, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto fail3; } ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); goto fail4; } /* Initialize the device. */ error = upgt_device_reset(sc); if (error) goto fail5; /* Verify the firmware. */ error = upgt_fw_verify(sc); if (error) goto fail5; /* Calculate device memory space. */ if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { device_printf(dev, "could not find memory space addresses on FW\n"); error = EIO; goto fail5; } sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n", sc->sc_memaddr_frame_start); DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n", sc->sc_memaddr_frame_end); DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n", sc->sc_memaddr_rx_start); upgt_mem_init(sc); /* Load the firmware. */ error = upgt_fw_load(sc); if (error) goto fail5; /* Read the whole EEPROM content and parse it. */ error = upgt_eeprom_read(sc); if (error) goto fail5; error = upgt_eeprom_parse(sc); if (error) goto fail5; /* all works related with the device have done here. */ upgt_abort_xfers(sc); /* Setup the 802.11 device. */ ifp->if_softc = sc; if_initname(ifp, "upgt", device_get_unit(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = upgt_init; ifp->if_ioctl = upgt_ioctl; ifp->if_start = upgt_start; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); IFQ_SET_READY(&ifp->if_snd); ic = ifp->if_l2com; ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_WPA /* 802.11i */ ; bands = 0; setbit(&bands, IEEE80211_MODE_11B); setbit(&bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, &bands); ieee80211_ifattach(ic, sc->sc_myaddr); ic->ic_raw_xmit = upgt_raw_xmit; ic->ic_scan_start = upgt_scan_start; ic->ic_scan_end = upgt_scan_end; ic->ic_set_channel = upgt_set_channel; ic->ic_vap_create = upgt_vap_create; ic->ic_vap_delete = upgt_vap_delete; ic->ic_update_mcast = upgt_update_mcast; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), UPGT_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), UPGT_RX_RADIOTAP_PRESENT); upgt_sysctl_node(sc); if (bootverbose) ieee80211_announce(ic); return (0); fail5: if_free(ifp); fail4: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); fail3: upgt_free_rx(sc); fail2: upgt_free_tx(sc); fail1: mtx_destroy(&sc->sc_mtx); return (error); } static void upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data) { struct upgt_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = sc->sc_ifp; struct mbuf *m; UPGT_ASSERT_LOCKED(sc); /* * Do any tx complete callback. Note this must be done before releasing * the node reference. */ if (data->m) { m = data->m; if (m->m_flags & M_TXCB) { /* XXX status? */ ieee80211_process_callback(data->ni, m, 0); } m_freem(m); data->m = NULL; } if (data->ni) { ieee80211_free_node(data->ni); data->ni = NULL; } ifp->if_opackets++; } static void upgt_get_stats(struct upgt_softc *sc) { struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_stats *stats; data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__); return; } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); stats = (struct upgt_lmac_stats *)(mem + 1); stats->header1.flags = 0; stats->header1.type = UPGT_H1_TYPE_CTRL; stats->header1.len = htole16( sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header)); stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); stats->header2.type = htole16(UPGT_H2_TYPE_STATS); stats->header2.flags = 0; data_cmd->buflen = sizeof(*mem) + sizeof(*stats); mem->chksum = upgt_chksum_le((uint32_t *)stats, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); } static int upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct upgt_softc *sc = ifp->if_softc; struct ieee80211com *ic = ifp->if_l2com; struct ifreq *ifr = (struct ifreq *) data; int error = 0, startall = 0; switch (cmd) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) upgt_set_multi(sc); } else { upgt_init(sc); startall = 1; } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) upgt_stop(sc); } sc->sc_if_flags = ifp->if_flags; if (startall) ieee80211_start_all(ic); break; case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); break; case SIOCGIFADDR: error = ether_ioctl(ifp, cmd, data); break; default: error = EINVAL; break; } return error; } static void upgt_stop_locked(struct upgt_softc *sc) { struct ifnet *ifp = sc->sc_ifp; UPGT_ASSERT_LOCKED(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) upgt_set_macfilter(sc, IEEE80211_S_INIT); upgt_abort_xfers_locked(sc); } static void upgt_stop(struct upgt_softc *sc) { struct ifnet *ifp = sc->sc_ifp; UPGT_LOCK(sc); upgt_stop_locked(sc); UPGT_UNLOCK(sc); /* device down */ sc->sc_tx_timer = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->sc_flags &= ~UPGT_FLAG_INITDONE; } static void upgt_set_led(struct upgt_softc *sc, int action) { struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_led *led; data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); return; } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); led = (struct upgt_lmac_led *)(mem + 1); led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; led->header1.type = UPGT_H1_TYPE_CTRL; led->header1.len = htole16( sizeof(struct upgt_lmac_led) - sizeof(struct upgt_lmac_header)); led->header2.reqid = htole32(sc->sc_memaddr_frame_start); led->header2.type = htole16(UPGT_H2_TYPE_LED); led->header2.flags = 0; switch (action) { case UPGT_LED_OFF: led->mode = htole16(UPGT_LED_MODE_SET); led->action_fix = 0; led->action_tmp = htole16(UPGT_LED_ACTION_OFF); led->action_tmp_dur = 0; break; case UPGT_LED_ON: led->mode = htole16(UPGT_LED_MODE_SET); led->action_fix = 0; led->action_tmp = htole16(UPGT_LED_ACTION_ON); led->action_tmp_dur = 0; break; case UPGT_LED_BLINK: if (sc->sc_state != IEEE80211_S_RUN) { STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); return; } if (sc->sc_led_blink) { /* previous blink was not finished */ STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); return; } led->mode = htole16(UPGT_LED_MODE_SET); led->action_fix = htole16(UPGT_LED_ACTION_OFF); led->action_tmp = htole16(UPGT_LED_ACTION_ON); led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); /* lock blink */ sc->sc_led_blink = 1; callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc); break; default: STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); return; } data_cmd->buflen = sizeof(*mem) + sizeof(*led); mem->chksum = upgt_chksum_le((uint32_t *)led, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); } static void upgt_set_led_blink(void *arg) { struct upgt_softc *sc = arg; /* blink finished, we are ready for a next one */ sc->sc_led_blink = 0; } static void upgt_init(void *priv) { struct upgt_softc *sc = priv; struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; UPGT_LOCK(sc); upgt_init_locked(sc); UPGT_UNLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } static void upgt_init_locked(struct upgt_softc *sc) { struct ifnet *ifp = sc->sc_ifp; UPGT_ASSERT_LOCKED(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) upgt_stop_locked(sc); usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->sc_flags |= UPGT_FLAG_INITDONE; callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); } static int upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_filter *filter; uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; UPGT_ASSERT_LOCKED(sc); data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { device_printf(sc->sc_dev, "out of TX buffers.\n"); return (ENOBUFS); } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); filter = (struct upgt_lmac_filter *)(mem + 1); filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; filter->header1.type = UPGT_H1_TYPE_CTRL; filter->header1.len = htole16( sizeof(struct upgt_lmac_filter) - sizeof(struct upgt_lmac_header)); filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); filter->header2.flags = 0; switch (state) { case IEEE80211_S_INIT: DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n", __func__); filter->type = htole16(UPGT_FILTER_TYPE_RESET); break; case IEEE80211_S_SCAN: DPRINTF(sc, UPGT_DEBUG_STATE, "set MAC filter to SCAN (bssid %s)\n", ether_sprintf(broadcast)); filter->type = htole16(UPGT_FILTER_TYPE_NONE); IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); IEEE80211_ADDR_COPY(filter->src, broadcast); filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); filter->rxaddr = htole32(sc->sc_memaddr_rx_start); filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); filter->rxhw = htole32(sc->sc_eeprom_hwrx); filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); break; case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); /* XXX monitor mode isn't tested yet. */ if (vap->iv_opmode == IEEE80211_M_MONITOR) { filter->type = htole16(UPGT_FILTER_TYPE_MONITOR); IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1); filter->rxaddr = htole32(sc->sc_memaddr_rx_start); filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2); filter->rxhw = htole32(sc->sc_eeprom_hwrx); filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3); } else { DPRINTF(sc, UPGT_DEBUG_STATE, "set MAC filter to RUN (bssid %s)\n", ether_sprintf(ni->ni_bssid)); filter->type = htole16(UPGT_FILTER_TYPE_STA); IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr); IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); filter->rxaddr = htole32(sc->sc_memaddr_rx_start); filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); filter->rxhw = htole32(sc->sc_eeprom_hwrx); filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); } ieee80211_free_node(ni); break; default: device_printf(sc->sc_dev, "MAC filter does not know that state\n"); break; } data_cmd->buflen = sizeof(*mem) + sizeof(*filter); mem->chksum = upgt_chksum_le((uint32_t *)filter, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); return (0); } static void upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct upgt_softc *sc = ifp->if_softc; const struct ieee80211_txparam *tp; /* * 0x01 = OFMD6 0x10 = DS1 * 0x04 = OFDM9 0x11 = DS2 * 0x06 = OFDM12 0x12 = DS5 * 0x07 = OFDM18 0x13 = DS11 * 0x08 = OFDM24 * 0x09 = OFDM36 * 0x0a = OFDM48 * 0x0b = OFDM54 */ const uint8_t rateset_auto_11b[] = { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; const uint8_t rateset_auto_11g[] = { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; const uint8_t rateset_fix_11bg[] = { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b }; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; /* XXX */ if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { /* * Automatic rate control is done by the device. * We just pass the rateset from which the device * will pickup a rate. */ if (ic->ic_curmode == IEEE80211_MODE_11B) memcpy(sc->sc_cur_rateset, rateset_auto_11b, sizeof(sc->sc_cur_rateset)); if (ic->ic_curmode == IEEE80211_MODE_11G || ic->ic_curmode == IEEE80211_MODE_AUTO) memcpy(sc->sc_cur_rateset, rateset_auto_11g, sizeof(sc->sc_cur_rateset)); } else { /* set a fixed rate */ memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate], sizeof(sc->sc_cur_rateset)); } } static void upgt_set_multi(void *arg) { struct upgt_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; if (!(ifp->if_flags & IFF_UP)) return; /* * XXX don't know how to set a device. Lack of docs. Just try to set * IFF_ALLMULTI flag here. */ ifp->if_flags |= IFF_ALLMULTI; } static void upgt_start(struct ifnet *ifp) { struct upgt_softc *sc = ifp->if_softc; struct upgt_data *data_tx; struct ieee80211_node *ni; struct mbuf *m; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; UPGT_LOCK(sc); for (;;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; data_tx = upgt_gettxbuf(sc); if (data_tx == NULL) { IFQ_DRV_PREPEND(&ifp->if_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; if (upgt_tx_start(sc, m, ni, data_tx) != 0) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); UPGT_STAT_INC(sc, st_tx_inactive); ieee80211_free_node(ni); ifp->if_oerrors++; continue; } sc->sc_tx_timer = 5; } UPGT_UNLOCK(sc); } static int upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct upgt_softc *sc = ifp->if_softc; struct upgt_data *data_tx = NULL; /* prevent management frames from being sent if we're not ready */ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { m_freem(m); ieee80211_free_node(ni); return ENETDOWN; } UPGT_LOCK(sc); data_tx = upgt_gettxbuf(sc); if (data_tx == NULL) { ieee80211_free_node(ni); m_freem(m); UPGT_UNLOCK(sc); return (ENOBUFS); } if (upgt_tx_start(sc, m, ni, data_tx) != 0) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); UPGT_STAT_INC(sc, st_tx_inactive); ieee80211_free_node(ni); ifp->if_oerrors++; UPGT_UNLOCK(sc); return (EIO); } UPGT_UNLOCK(sc); sc->sc_tx_timer = 5; return (0); } static void upgt_watchdog(void *arg) { struct upgt_softc *sc = arg; struct ifnet *ifp = sc->sc_ifp; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "watchdog timeout\n"); /* upgt_init(ifp); XXX needs a process context ? */ ifp->if_oerrors++; return; } callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); } } static uint32_t upgt_mem_alloc(struct upgt_softc *sc) { int i; for (i = 0; i < sc->sc_memory.pages; i++) { if (sc->sc_memory.page[i].used == 0) { sc->sc_memory.page[i].used = 1; return (sc->sc_memory.page[i].addr); } } return (0); } static void upgt_scan_start(struct ieee80211com *ic) { /* do nothing. */ } static void upgt_scan_end(struct ieee80211com *ic) { /* do nothing. */ } static void upgt_set_channel(struct ieee80211com *ic) { struct upgt_softc *sc = ic->ic_ifp->if_softc; UPGT_LOCK(sc); upgt_set_chan(sc, ic->ic_curchan); UPGT_UNLOCK(sc); } static void upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_channel *chan; int channel; UPGT_ASSERT_LOCKED(sc); channel = ieee80211_chan2ieee(ic, c); if (channel == 0 || channel == IEEE80211_CHAN_ANY) { /* XXX should NEVER happen */ device_printf(sc->sc_dev, "%s: invalid channel %x\n", __func__, channel); return; } DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel); data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); return; } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); chan = (struct upgt_lmac_channel *)(mem + 1); chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; chan->header1.type = UPGT_H1_TYPE_CTRL; chan->header1.len = htole16( sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header)); chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); chan->header2.flags = 0; chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); chan->freq6 = sc->sc_eeprom_freq6[channel]; chan->settings = sc->sc_eeprom_freq6_settings; chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, sizeof(chan->freq3_1)); memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], sizeof(sc->sc_eeprom_freq4[channel])); memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, sizeof(chan->freq3_2)); data_cmd->buflen = sizeof(*mem) + sizeof(*chan); mem->chksum = upgt_chksum_le((uint32_t *)chan, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); } static struct ieee80211vap * upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct upgt_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap), M_80211_VAP, M_NOWAIT | M_ZERO); if (uvp == NULL) return NULL; vap = &uvp->vap; /* enable s/w bmiss handling for sta mode */ ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid, mac); /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = upgt_newstate; /* setup device rates */ upgt_setup_rates(vap, ic); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); ic->ic_opmode = opmode; return vap; } static int upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct upgt_vap *uvp = UPGT_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct upgt_softc *sc = ic->ic_ifp->if_softc; /* do it in a process context */ sc->sc_state = nstate; IEEE80211_UNLOCK(ic); UPGT_LOCK(sc); callout_stop(&sc->sc_led_ch); callout_stop(&sc->sc_watchdog_ch); switch (nstate) { case IEEE80211_S_INIT: /* do not accept any frames if the device is down */ (void)upgt_set_macfilter(sc, sc->sc_state); upgt_set_led(sc, UPGT_LED_OFF); break; case IEEE80211_S_SCAN: upgt_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_AUTH: upgt_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_ASSOC: break; case IEEE80211_S_RUN: upgt_set_macfilter(sc, sc->sc_state); upgt_set_led(sc, UPGT_LED_ON); break; default: break; } UPGT_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } static void upgt_vap_delete(struct ieee80211vap *vap) { struct upgt_vap *uvp = UPGT_VAP(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static void upgt_update_mcast(struct ifnet *ifp) { struct upgt_softc *sc = ifp->if_softc; upgt_set_multi(sc); } static int upgt_eeprom_parse(struct upgt_softc *sc) { struct upgt_eeprom_header *eeprom_header; struct upgt_eeprom_option *eeprom_option; uint16_t option_len; uint16_t option_type; uint16_t preamble_len; int option_end = 0; /* calculate eeprom options start offset */ eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; preamble_len = le16toh(eeprom_header->preamble_len); eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + (sizeof(struct upgt_eeprom_header) + preamble_len)); while (!option_end) { /* the eeprom option length is stored in words */ option_len = (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); option_type = le16toh(eeprom_option->type); switch (option_type) { case UPGT_EEPROM_TYPE_NAME: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM name len=%d\n", option_len); break; case UPGT_EEPROM_TYPE_SERIAL: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM serial len=%d\n", option_len); break; case UPGT_EEPROM_TYPE_MAC: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM mac len=%d\n", option_len); IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data); break; case UPGT_EEPROM_TYPE_HWRX: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM hwrx len=%d\n", option_len); upgt_eeprom_parse_hwrx(sc, eeprom_option->data); break; case UPGT_EEPROM_TYPE_CHIP: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM chip len=%d\n", option_len); break; case UPGT_EEPROM_TYPE_FREQ3: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM freq3 len=%d\n", option_len); upgt_eeprom_parse_freq3(sc, eeprom_option->data, option_len); break; case UPGT_EEPROM_TYPE_FREQ4: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM freq4 len=%d\n", option_len); upgt_eeprom_parse_freq4(sc, eeprom_option->data, option_len); break; case UPGT_EEPROM_TYPE_FREQ5: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM freq5 len=%d\n", option_len); break; case UPGT_EEPROM_TYPE_FREQ6: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM freq6 len=%d\n", option_len); upgt_eeprom_parse_freq6(sc, eeprom_option->data, option_len); break; case UPGT_EEPROM_TYPE_END: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM end len=%d\n", option_len); option_end = 1; break; case UPGT_EEPROM_TYPE_OFF: DPRINTF(sc, UPGT_DEBUG_FW, "%s: EEPROM off without end option\n", __func__); return (EIO); default: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM unknown type 0x%04x len=%d\n", option_type, option_len); break; } /* jump to next EEPROM option */ eeprom_option = (struct upgt_eeprom_option *) (eeprom_option->data + option_len); } return (0); } static void upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) { struct upgt_eeprom_freq3_header *freq3_header; struct upgt_lmac_freq3 *freq3; int i, elements, flags; unsigned channel; freq3_header = (struct upgt_eeprom_freq3_header *)data; freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); flags = freq3_header->flags; elements = freq3_header->elements; DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n", flags, elements); for (i = 0; i < elements; i++) { channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); if (channel >= IEEE80211_CHAN_MAX) continue; sc->sc_eeprom_freq3[channel] = freq3[i]; DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", le16toh(sc->sc_eeprom_freq3[channel].freq), channel); } } void upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) { struct upgt_eeprom_freq4_header *freq4_header; struct upgt_eeprom_freq4_1 *freq4_1; struct upgt_eeprom_freq4_2 *freq4_2; int i, j, elements, settings, flags; unsigned channel; freq4_header = (struct upgt_eeprom_freq4_header *)data; freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); flags = freq4_header->flags; elements = freq4_header->elements; settings = freq4_header->settings; /* we need this value later */ sc->sc_eeprom_freq6_settings = freq4_header->settings; DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n", flags, elements, settings); for (i = 0; i < elements; i++) { channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); if (channel >= IEEE80211_CHAN_MAX) continue; freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; for (j = 0; j < settings; j++) { sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; sc->sc_eeprom_freq4[channel][j].pad = 0; } DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", le16toh(freq4_1[i].freq), channel); } } void upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) { struct upgt_lmac_freq6 *freq6; int i, elements; unsigned channel; freq6 = (struct upgt_lmac_freq6 *)data; elements = len / sizeof(struct upgt_lmac_freq6); DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements); for (i = 0; i < elements; i++) { channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); if (channel >= IEEE80211_CHAN_MAX) continue; sc->sc_eeprom_freq6[channel] = freq6[i]; DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", le16toh(sc->sc_eeprom_freq6[channel].freq), channel); } } static void upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) { struct upgt_eeprom_option_hwrx *option_hwrx; option_hwrx = (struct upgt_eeprom_option_hwrx *)data; sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n", sc->sc_eeprom_hwrx); } static int upgt_eeprom_read(struct upgt_softc *sc) { struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_eeprom *eeprom; int block, error, offset; UPGT_LOCK(sc); usb_pause_mtx(&sc->sc_mtx, 100); offset = 0; block = UPGT_EEPROM_BLOCK_SIZE; while (offset < UPGT_EEPROM_SIZE) { DPRINTF(sc, UPGT_DEBUG_FW, "request EEPROM block (offset=%d, len=%d)\n", offset, block); data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { UPGT_UNLOCK(sc); return (ENOBUFS); } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); eeprom = (struct upgt_lmac_eeprom *)(mem + 1); eeprom->header1.flags = 0; eeprom->header1.type = UPGT_H1_TYPE_CTRL; eeprom->header1.len = htole16(( sizeof(struct upgt_lmac_eeprom) - sizeof(struct upgt_lmac_header)) + block); eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); eeprom->header2.flags = 0; eeprom->offset = htole16(offset); eeprom->len = htole16(block); data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block; mem->chksum = upgt_chksum_le((uint32_t *)eeprom, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz); if (error != 0) { device_printf(sc->sc_dev, "timeout while waiting for EEPROM data\n"); UPGT_UNLOCK(sc); return (EIO); } offset += block; if (UPGT_EEPROM_SIZE - offset < block) block = UPGT_EEPROM_SIZE - offset; } UPGT_UNLOCK(sc); return (0); } /* * When a rx data came in the function returns a mbuf and a rssi values. */ static struct mbuf * upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi) { struct mbuf *m = NULL; struct upgt_softc *sc = usbd_xfer_softc(xfer); struct upgt_lmac_header *header; struct upgt_lmac_eeprom *eeprom; uint8_t h1_type; uint16_t h2_type; int actlen, sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); UPGT_ASSERT_LOCKED(sc); if (actlen < 1) return (NULL); /* Check only at the very beginning. */ if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) && (memcmp(data->buf, "OK", 2) == 0)) { sc->sc_flags |= UPGT_FLAG_FWLOADED; wakeup_one(sc); return (NULL); } if (actlen < (int)UPGT_RX_MINSZ) return (NULL); /* * Check what type of frame came in. */ header = (struct upgt_lmac_header *)(data->buf + 4); h1_type = header->header1.type; h2_type = le16toh(header->header2.type); if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) { eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4); uint16_t eeprom_offset = le16toh(eeprom->offset); uint16_t eeprom_len = le16toh(eeprom->len); DPRINTF(sc, UPGT_DEBUG_FW, "received EEPROM block (offset=%d, len=%d)\n", eeprom_offset, eeprom_len); memcpy(sc->sc_eeprom + eeprom_offset, data->buf + sizeof(struct upgt_lmac_eeprom) + 4, eeprom_len); /* EEPROM data has arrived in time, wakeup. */ wakeup(sc); } else if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_TX_DONE) { DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n", __func__); upgt_tx_done(sc, data->buf + 4); } else if (h1_type == UPGT_H1_TYPE_RX_DATA || h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n", __func__); m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len), rssi); } else if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_STATS) { DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n", __func__); /* TODO: what could we do with the statistic data? */ } else { /* ignore unknown frame types */ DPRINTF(sc, UPGT_DEBUG_INTR, "received unknown frame type 0x%02x\n", header->header1.type); } return (m); } /* * The firmware awaits a checksum for each frame we send to it. * The algorithm used therefor is uncommon but somehow similar to CRC32. */ static uint32_t upgt_chksum_le(const uint32_t *buf, size_t size) { size_t i; uint32_t crc = 0; for (i = 0; i < size; i += sizeof(uint32_t)) { crc = htole32(crc ^ *buf++); crc = htole32((crc >> 5) ^ (crc << 3)); } return (crc); } static struct mbuf * upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct upgt_lmac_rx_desc *rxdesc; struct mbuf *m; /* * don't pass packets to the ieee80211 framework if the driver isn't * RUNNING. */ if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) return (NULL); /* access RX packet descriptor */ rxdesc = (struct upgt_lmac_rx_desc *)data; /* create mbuf which is suitable for strict alignment archs */ KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES, ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN)); m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { device_printf(sc->sc_dev, "could not create RX mbuf\n"); return (NULL); } m_adj(m, ETHER_ALIGN); memcpy(mtod(m, char *), rxdesc->data, pkglen); /* trim FCS */ m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN; m->m_pkthdr.rcvif = ifp; if (ieee80211_radiotap_active(ic)) { struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); tap->wr_antsignal = rxdesc->rssi; } ifp->if_ipackets++; DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__); *rssi = rxdesc->rssi; return (m); } static uint8_t upgt_rx_rate(struct upgt_softc *sc, const int rate) { struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 }; static const uint8_t ofdm_upgt2rate[12] = { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; if (ic->ic_curmode == IEEE80211_MODE_11B && !(rate < 0 || rate > 3)) return cck_upgt2rate[rate & 0xf]; if (ic->ic_curmode == IEEE80211_MODE_11G && !(rate < 0 || rate > 11)) return ofdm_upgt2rate[rate & 0xf]; return (0); } static void upgt_tx_done(struct upgt_softc *sc, uint8_t *data) { struct ifnet *ifp = sc->sc_ifp; struct upgt_lmac_tx_done_desc *desc; int i, freed = 0; UPGT_ASSERT_LOCKED(sc); desc = (struct upgt_lmac_tx_done_desc *)data; for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { struct upgt_data *data_tx = &sc->sc_tx_data[i]; if (data_tx->addr == le32toh(desc->header2.reqid)) { upgt_mem_free(sc, data_tx->addr); data_tx->ni = NULL; data_tx->addr = 0; data_tx->m = NULL; data_tx->use = 0; DPRINTF(sc, UPGT_DEBUG_TX_PROC, "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ", le32toh(desc->header2.reqid), le16toh(desc->status), le16toh(desc->rssi)); DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n", le16toh(desc->seq)); freed++; } } if (freed != 0) { sc->sc_tx_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; UPGT_UNLOCK(sc); upgt_start(ifp); UPGT_LOCK(sc); } } static void upgt_mem_free(struct upgt_softc *sc, uint32_t addr) { int i; for (i = 0; i < sc->sc_memory.pages; i++) { if (sc->sc_memory.page[i].addr == addr) { sc->sc_memory.page[i].used = 0; return; } } device_printf(sc->sc_dev, "could not free memory address 0x%08x\n", addr); } static int upgt_fw_load(struct upgt_softc *sc) { const struct firmware *fw; struct upgt_data *data_cmd; struct upgt_fw_x2_header *x2; char start_fwload_cmd[] = { 0x3c, 0x0d }; int error = 0; size_t offset; int bsize; int n; uint32_t crc32; fw = firmware_get(upgt_fwname); if (fw == NULL) { device_printf(sc->sc_dev, "could not read microcode %s\n", upgt_fwname); return (EIO); } UPGT_LOCK(sc); /* send firmware start load command */ data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { error = ENOBUFS; goto fail; } data_cmd->buflen = sizeof(start_fwload_cmd); memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen); upgt_bulk_tx(sc, data_cmd); /* send X2 header */ data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { error = ENOBUFS; goto fail; } data_cmd->buflen = sizeof(struct upgt_fw_x2_header); x2 = (struct upgt_fw_x2_header *)data_cmd->buf; memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); x2->len = htole32(fw->datasize); x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - sizeof(uint32_t)); upgt_bulk_tx(sc, data_cmd); /* download firmware */ for (offset = 0; offset < fw->datasize; offset += bsize) { if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE) bsize = UPGT_FW_BLOCK_SIZE; else bsize = fw->datasize - offset; data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { error = ENOBUFS; goto fail; } n = upgt_fw_copy((const uint8_t *)fw->data + offset, data_cmd->buf, bsize); data_cmd->buflen = bsize; upgt_bulk_tx(sc, data_cmd); DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n", offset, n, bsize); bsize = n; } DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__); /* load firmware */ data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { error = ENOBUFS; goto fail; } crc32 = upgt_crc32_le(fw->data, fw->datasize); *((uint32_t *)(data_cmd->buf) ) = crc32; *((uint8_t *)(data_cmd->buf) + 4) = 'g'; *((uint8_t *)(data_cmd->buf) + 5) = '\r'; data_cmd->buflen = 6; upgt_bulk_tx(sc, data_cmd); /* waiting 'OK' response. */ usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz); if (error != 0) { device_printf(sc->sc_dev, "firmware load failed\n"); error = EIO; } DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__); fail: UPGT_UNLOCK(sc); firmware_put(fw, FIRMWARE_UNLOAD); return (error); } static uint32_t upgt_crc32_le(const void *buf, size_t size) { uint32_t crc; crc = ether_crc32_le(buf, size); /* apply final XOR value as common for CRC-32 */ crc = htole32(crc ^ 0xffffffffU); return (crc); } /* * While copying the version 2 firmware, we need to replace two characters: * * 0x7e -> 0x7d 0x5e * 0x7d -> 0x7d 0x5d */ static int upgt_fw_copy(const uint8_t *src, char *dst, int size) { int i, j; for (i = 0, j = 0; i < size && j < size; i++) { switch (src[i]) { case 0x7e: dst[j] = 0x7d; j++; dst[j] = 0x5e; j++; break; case 0x7d: dst[j] = 0x7d; j++; dst[j] = 0x5d; j++; break; default: dst[j] = src[i]; j++; break; } } return (i); } static int upgt_mem_init(struct upgt_softc *sc) { int i; for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { sc->sc_memory.page[i].used = 0; if (i == 0) { /* * The first memory page is always reserved for * command data. */ sc->sc_memory.page[i].addr = sc->sc_memaddr_frame_start + MCLBYTES; } else { sc->sc_memory.page[i].addr = sc->sc_memory.page[i - 1].addr + MCLBYTES; } if (sc->sc_memory.page[i].addr + MCLBYTES >= sc->sc_memaddr_frame_end) break; DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n", i, sc->sc_memory.page[i].addr); } sc->sc_memory.pages = i; DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages); return (0); } static int upgt_fw_verify(struct upgt_softc *sc) { const struct firmware *fw; const struct upgt_fw_bra_option *bra_opt; const struct upgt_fw_bra_descr *descr; const uint8_t *p; const uint32_t *uc; uint32_t bra_option_type, bra_option_len; size_t offset; int bra_end = 0; int error = 0; fw = firmware_get(upgt_fwname); if (fw == NULL) { device_printf(sc->sc_dev, "could not read microcode %s\n", upgt_fwname); return EIO; } /* * Seek to beginning of Boot Record Area (BRA). */ for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) { uc = (const uint32_t *)((const uint8_t *)fw->data + offset); if (*uc == 0) break; } for (; offset < fw->datasize; offset += sizeof(*uc)) { uc = (const uint32_t *)((const uint8_t *)fw->data + offset); if (*uc != 0) break; } if (offset == fw->datasize) { device_printf(sc->sc_dev, "firmware Boot Record Area not found\n"); error = EIO; goto fail; } DPRINTF(sc, UPGT_DEBUG_FW, "firmware Boot Record Area found at offset %d\n", offset); /* * Parse Boot Record Area (BRA) options. */ while (offset < fw->datasize && bra_end == 0) { /* get current BRA option */ p = (const uint8_t *)fw->data + offset; bra_opt = (const struct upgt_fw_bra_option *)p; bra_option_type = le32toh(bra_opt->type); bra_option_len = le32toh(bra_opt->len) * sizeof(*uc); switch (bra_option_type) { case UPGT_BRA_TYPE_FW: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n", bra_option_len); if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { device_printf(sc->sc_dev, "wrong UPGT_BRA_TYPE_FW len\n"); error = EIO; goto fail; } if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data, bra_option_len) == 0) { sc->sc_fw_type = UPGT_FWTYPE_LM86; break; } if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data, bra_option_len) == 0) { sc->sc_fw_type = UPGT_FWTYPE_LM87; break; } device_printf(sc->sc_dev, "unsupported firmware type\n"); error = EIO; goto fail; case UPGT_BRA_TYPE_VERSION: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len); break; case UPGT_BRA_TYPE_DEPIF: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len); break; case UPGT_BRA_TYPE_EXPIF: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len); break; case UPGT_BRA_TYPE_DESCR: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len); descr = (const struct upgt_fw_bra_descr *)bra_opt->data; sc->sc_memaddr_frame_start = le32toh(descr->memaddr_space_start); sc->sc_memaddr_frame_end = le32toh(descr->memaddr_space_end); DPRINTF(sc, UPGT_DEBUG_FW, "memory address space start=0x%08x\n", sc->sc_memaddr_frame_start); DPRINTF(sc, UPGT_DEBUG_FW, "memory address space end=0x%08x\n", sc->sc_memaddr_frame_end); break; case UPGT_BRA_TYPE_END: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n", bra_option_len); bra_end = 1; break; default: DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n", bra_option_len); error = EIO; goto fail; } /* jump to next BRA option */ offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; } DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__); fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } static void upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data) { UPGT_ASSERT_LOCKED(sc); STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); UPGT_STAT_INC(sc, st_tx_pending); usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]); } static int upgt_device_reset(struct upgt_softc *sc) { struct upgt_data *data; char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; UPGT_LOCK(sc); data = upgt_getbuf(sc); if (data == NULL) { UPGT_UNLOCK(sc); return (ENOBUFS); } memcpy(data->buf, init_cmd, sizeof(init_cmd)); data->buflen = sizeof(init_cmd); upgt_bulk_tx(sc, data); usb_pause_mtx(&sc->sc_mtx, 100); UPGT_UNLOCK(sc); DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__); return (0); } static int upgt_alloc_tx(struct upgt_softc *sc) { int i; STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { struct upgt_data *data = &sc->sc_tx_data[i]; data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO); if (data->buf == NULL) { device_printf(sc->sc_dev, "could not allocate TX buffer\n"); return (ENOMEM); } STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); UPGT_STAT_INC(sc, st_tx_inactive); } return (0); } static int upgt_alloc_rx(struct upgt_softc *sc) { int i; STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { struct upgt_data *data = &sc->sc_rx_data[i]; data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO); if (data->buf == NULL) { device_printf(sc->sc_dev, "could not allocate RX buffer\n"); return (ENOMEM); } STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } return (0); } static int upgt_detach(device_t dev) { struct upgt_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; if (!device_is_attached(dev)) return 0; upgt_stop(sc); callout_drain(&sc->sc_led_ch); callout_drain(&sc->sc_watchdog_ch); usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); ieee80211_ifdetach(ic); upgt_free_rx(sc); upgt_free_tx(sc); if_free(ifp); mtx_destroy(&sc->sc_mtx); return (0); } static void upgt_free_rx(struct upgt_softc *sc) { int i; for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { struct upgt_data *data = &sc->sc_rx_data[i]; free(data->buf, M_USBDEV); data->ni = NULL; } } static void upgt_free_tx(struct upgt_softc *sc) { int i; for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { struct upgt_data *data = &sc->sc_tx_data[i]; free(data->buf, M_USBDEV); data->ni = NULL; } } static void upgt_abort_xfers_locked(struct upgt_softc *sc) { int i; UPGT_ASSERT_LOCKED(sc); /* abort any pending transfers */ for (i = 0; i < UPGT_N_XFERS; i++) usbd_transfer_stop(sc->sc_xfer[i]); } static void upgt_abort_xfers(struct upgt_softc *sc) { UPGT_LOCK(sc); upgt_abort_xfers_locked(sc); UPGT_UNLOCK(sc); } #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) static void upgt_sysctl_node(struct upgt_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child; struct sysctl_oid *tree; struct upgt_stat *stats; stats = &sc->sc_stat; ctx = device_get_sysctl_ctx(sc->sc_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "UPGT statistics"); child = SYSCTL_CHILDREN(tree); UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active", &stats->st_tx_active, "Active numbers in TX queue"); UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", &stats->st_tx_inactive, "Inactive numbers in TX queue"); UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", &stats->st_tx_pending, "Pending numbers in TX queue"); } #undef UPGT_SYSCTL_STAT_ADD32 static struct upgt_data * _upgt_getbuf(struct upgt_softc *sc) { struct upgt_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); UPGT_STAT_DEC(sc, st_tx_inactive); } else bf = NULL; if (bf == NULL) DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__, "out of xmit buffers"); return (bf); } static struct upgt_data * upgt_getbuf(struct upgt_softc *sc) { struct upgt_data *bf; UPGT_ASSERT_LOCKED(sc); bf = _upgt_getbuf(sc); if (bf == NULL) { struct ifnet *ifp = sc->sc_ifp; DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__); ifp->if_drv_flags |= IFF_DRV_OACTIVE; } return (bf); } static struct upgt_data * upgt_gettxbuf(struct upgt_softc *sc) { struct upgt_data *bf; UPGT_ASSERT_LOCKED(sc); bf = upgt_getbuf(sc); if (bf == NULL) return (NULL); bf->addr = upgt_mem_alloc(sc); if (bf->addr == 0) { struct ifnet *ifp = sc->sc_ifp; DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n", __func__); STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); UPGT_STAT_INC(sc, st_tx_inactive); if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE)) ifp->if_drv_flags |= IFF_DRV_OACTIVE; return (NULL); } return (bf); } static int upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni, struct upgt_data *data) { struct ieee80211vap *vap = ni->ni_vap; int error = 0, len; struct ieee80211_frame *wh; struct ieee80211_key *k; struct ifnet *ifp = sc->sc_ifp; struct upgt_lmac_mem *mem; struct upgt_lmac_tx_desc *txdesc; UPGT_ASSERT_LOCKED(sc); upgt_set_led(sc, UPGT_LED_BLINK); /* * Software crypto. */ wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ni, m); if (k == NULL) { device_printf(sc->sc_dev, "ieee80211_crypto_encap returns NULL.\n"); error = EIO; goto done; } /* in case packet header moved, reset pointer */ wh = mtod(m, struct ieee80211_frame *); } /* Transmit the URB containing the TX data. */ memset(data->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data->buf; mem->addr = htole32(data->addr); txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { /* mgmt frames */ txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT; /* always send mgmt frames at lowest rate (DS1) */ memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); } else { /* data frames */ txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates)); } txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; txdesc->header1.len = htole16(m->m_pkthdr.len); txdesc->header2.reqid = htole32(data->addr); txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; if (ieee80211_radiotap_active_vap(vap)) { struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = 0; /* XXX where to get from? */ ieee80211_radiotap_tx(vap, m); } /* copy frame below our TX descriptor header */ m_copydata(m, 0, m->m_pkthdr.len, data->buf + (sizeof(*mem) + sizeof(*txdesc))); /* calculate frame size */ len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; /* we need to align the frame to a 4 byte boundary */ len = (len + 3) & ~3; /* calculate frame checksum */ mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem)); data->ni = ni; data->m = m; data->buflen = len; DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n", __func__, len); KASSERT(len <= MCLBYTES, ("mbuf is small for saving data")); upgt_bulk_tx(sc, data); done: /* * If we don't regulary read the device statistics, the RX queue * will stall. It's strange, but it works, so we keep reading * the statistics here. *shrug* */ if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL)) upgt_get_stats(sc); return (error); } static void upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct upgt_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = sc->sc_ifp; struct ieee80211com *ic = ifp->if_l2com; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m = NULL; struct upgt_data *data; int8_t nf; int rssi = -1; UPGT_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); m = upgt_rxeof(xfer, data, &rssi); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) return; STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ UPGT_UNLOCK(sc); if (m != NULL) { wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); nf = -95; /* XXX */ if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, nf); /* node is no longer needed */ ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); m = NULL; } if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) upgt_start(ifp); UPGT_LOCK(sc); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); ifp->if_ierrors++; goto setup; } break; } } static void upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) { struct upgt_softc *sc = usbd_xfer_softc(xfer); struct ifnet *ifp = sc->sc_ifp; struct upgt_data *data; UPGT_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); UPGT_STAT_DEC(sc, st_tx_active); upgt_txeof(xfer, data); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); UPGT_STAT_INC(sc, st_tx_inactive); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_tx_pending); if (data == NULL) { DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n", __func__); return; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); UPGT_STAT_DEC(sc, st_tx_pending); STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); UPGT_STAT_INC(sc, st_tx_active); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); usbd_transfer_submit(xfer); UPGT_UNLOCK(sc); upgt_start(ifp); UPGT_LOCK(sc); break; default: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; ifp->if_oerrors++; } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto setup; } break; } } static device_method_t upgt_methods[] = { /* Device interface */ DEVMETHOD(device_probe, upgt_match), DEVMETHOD(device_attach, upgt_attach), DEVMETHOD(device_detach, upgt_detach), { 0, 0 } }; static driver_t upgt_driver = { .name = "upgt", .methods = upgt_methods, .size = sizeof(struct upgt_softc) }; static devclass_t upgt_devclass; DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0); MODULE_VERSION(if_upgt, 1); MODULE_DEPEND(if_upgt, usb, 1, 1, 1); MODULE_DEPEND(if_upgt, wlan, 1, 1, 1); MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);