Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/libalias/modules/irc/@/compat/x86bios/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/libalias/modules/irc/@/compat/x86bios/x86bios.c |
/*- * Copyright (c) 2009 Alex Keda <admin@lissyara.su> * Copyright (c) 2009-2010 Jung-uk Kim <jkim@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/compat/x86bios/x86bios.c 219430 2011-03-09 16:16:38Z jkim $"); #include "opt_x86bios.h" #include <sys/param.h> #include <sys/bus.h> #include <sys/kernel.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/module.h> #include <sys/mutex.h> #include <sys/sysctl.h> #include <contrib/x86emu/x86emu.h> #include <contrib/x86emu/x86emu_regs.h> #include <compat/x86bios/x86bios.h> #include <dev/pci/pcireg.h> #include <dev/pci/pcivar.h> #include <vm/vm.h> #include <vm/pmap.h> #ifdef __amd64__ #define X86BIOS_NATIVE_ARCH #endif #ifdef __i386__ #define X86BIOS_NATIVE_VM86 #endif #define X86BIOS_MEM_SIZE 0x00100000 /* 1M */ #define X86BIOS_TRACE(h, n, r) do { \ printf(__STRING(h) \ " (ax=0x%04x bx=0x%04x cx=0x%04x dx=0x%04x es=0x%04x di=0x%04x)\n",\ (n), (r)->R_AX, (r)->R_BX, (r)->R_CX, (r)->R_DX, \ (r)->R_ES, (r)->R_DI); \ } while (0) static struct mtx x86bios_lock; SYSCTL_NODE(_debug, OID_AUTO, x86bios, CTLFLAG_RD, NULL, "x86bios debugging"); static int x86bios_trace_call; TUNABLE_INT("debug.x86bios.call", &x86bios_trace_call); SYSCTL_INT(_debug_x86bios, OID_AUTO, call, CTLFLAG_RW, &x86bios_trace_call, 0, "Trace far function calls"); static int x86bios_trace_int; TUNABLE_INT("debug.x86bios.int", &x86bios_trace_int); SYSCTL_INT(_debug_x86bios, OID_AUTO, int, CTLFLAG_RW, &x86bios_trace_int, 0, "Trace software interrupt handlers"); #ifdef X86BIOS_NATIVE_VM86 #include <machine/vm86.h> #include <machine/vmparam.h> #include <machine/pc/bios.h> struct vm86context x86bios_vmc; static void x86bios_emu2vmf(struct x86emu_regs *regs, struct vm86frame *vmf) { vmf->vmf_ds = regs->R_DS; vmf->vmf_es = regs->R_ES; vmf->vmf_ax = regs->R_AX; vmf->vmf_bx = regs->R_BX; vmf->vmf_cx = regs->R_CX; vmf->vmf_dx = regs->R_DX; vmf->vmf_bp = regs->R_BP; vmf->vmf_si = regs->R_SI; vmf->vmf_di = regs->R_DI; } static void x86bios_vmf2emu(struct vm86frame *vmf, struct x86emu_regs *regs) { regs->R_DS = vmf->vmf_ds; regs->R_ES = vmf->vmf_es; regs->R_FLG = vmf->vmf_flags; regs->R_AX = vmf->vmf_ax; regs->R_BX = vmf->vmf_bx; regs->R_CX = vmf->vmf_cx; regs->R_DX = vmf->vmf_dx; regs->R_BP = vmf->vmf_bp; regs->R_SI = vmf->vmf_si; regs->R_DI = vmf->vmf_di; } void * x86bios_alloc(uint32_t *offset, size_t size, int flags) { void *vaddr; int i; if (offset == NULL || size == 0) return (NULL); vaddr = contigmalloc(size, M_DEVBUF, flags, 0, X86BIOS_MEM_SIZE, PAGE_SIZE, 0); if (vaddr != NULL) { *offset = vtophys(vaddr); mtx_lock(&x86bios_lock); for (i = 0; i < atop(round_page(size)); i++) vm86_addpage(&x86bios_vmc, atop(*offset) + i, (vm_offset_t)vaddr + ptoa(i)); mtx_unlock(&x86bios_lock); } return (vaddr); } void x86bios_free(void *addr, size_t size) { vm_paddr_t paddr; int i, nfree; if (addr == NULL || size == 0) return; paddr = vtophys(addr); if (paddr >= X86BIOS_MEM_SIZE || (paddr & PAGE_MASK) != 0) return; mtx_lock(&x86bios_lock); for (i = 0; i < x86bios_vmc.npages; i++) if (x86bios_vmc.pmap[i].kva == (vm_offset_t)addr) break; if (i >= x86bios_vmc.npages) { mtx_unlock(&x86bios_lock); return; } nfree = atop(round_page(size)); bzero(x86bios_vmc.pmap + i, sizeof(*x86bios_vmc.pmap) * nfree); if (i + nfree == x86bios_vmc.npages) { x86bios_vmc.npages -= nfree; while (--i >= 0 && x86bios_vmc.pmap[i].kva == 0) x86bios_vmc.npages--; } mtx_unlock(&x86bios_lock); contigfree(addr, size, M_DEVBUF); } void x86bios_init_regs(struct x86regs *regs) { bzero(regs, sizeof(*regs)); } void x86bios_call(struct x86regs *regs, uint16_t seg, uint16_t off) { struct vm86frame vmf; if (x86bios_trace_call) X86BIOS_TRACE(Calling 0x%06x, (seg << 4) + off, regs); bzero(&vmf, sizeof(vmf)); x86bios_emu2vmf((struct x86emu_regs *)regs, &vmf); vmf.vmf_cs = seg; vmf.vmf_ip = off; mtx_lock(&x86bios_lock); vm86_datacall(-1, &vmf, &x86bios_vmc); mtx_unlock(&x86bios_lock); x86bios_vmf2emu(&vmf, (struct x86emu_regs *)regs); if (x86bios_trace_call) X86BIOS_TRACE(Exiting 0x%06x, (seg << 4) + off, regs); } uint32_t x86bios_get_intr(int intno) { return (readl(BIOS_PADDRTOVADDR(intno * 4))); } void x86bios_set_intr(int intno, uint32_t saddr) { writel(BIOS_PADDRTOVADDR(intno * 4), saddr); } void x86bios_intr(struct x86regs *regs, int intno) { struct vm86frame vmf; if (x86bios_trace_int) X86BIOS_TRACE(Calling INT 0x%02x, intno, regs); bzero(&vmf, sizeof(vmf)); x86bios_emu2vmf((struct x86emu_regs *)regs, &vmf); mtx_lock(&x86bios_lock); vm86_datacall(intno, &vmf, &x86bios_vmc); mtx_unlock(&x86bios_lock); x86bios_vmf2emu(&vmf, (struct x86emu_regs *)regs); if (x86bios_trace_int) X86BIOS_TRACE(Exiting INT 0x%02x, intno, regs); } void * x86bios_offset(uint32_t offset) { vm_offset_t addr; addr = vm86_getaddr(&x86bios_vmc, X86BIOS_PHYSTOSEG(offset), X86BIOS_PHYSTOOFF(offset)); if (addr == 0) addr = BIOS_PADDRTOVADDR(offset); return ((void *)addr); } static int x86bios_init(void) { mtx_init(&x86bios_lock, "x86bios lock", NULL, MTX_DEF); bzero(&x86bios_vmc, sizeof(x86bios_vmc)); return (0); } static int x86bios_uninit(void) { mtx_destroy(&x86bios_lock); return (0); } #else #include <machine/iodev.h> #define X86BIOS_PAGE_SIZE 0x00001000 /* 4K */ #define X86BIOS_IVT_SIZE 0x00000500 /* 1K + 256 (BDA) */ #define X86BIOS_IVT_BASE 0x00000000 #define X86BIOS_RAM_BASE 0x00001000 #define X86BIOS_ROM_BASE 0x000a0000 #define X86BIOS_ROM_SIZE (X86BIOS_MEM_SIZE - x86bios_rom_phys) #define X86BIOS_SEG_SIZE X86BIOS_PAGE_SIZE #define X86BIOS_PAGES (X86BIOS_MEM_SIZE / X86BIOS_PAGE_SIZE) #define X86BIOS_R_SS _pad2 #define X86BIOS_R_SP _pad3.I16_reg.x_reg static struct x86emu x86bios_emu; static void *x86bios_ivt; static void *x86bios_rom; static void *x86bios_seg; static vm_offset_t *x86bios_map; static vm_paddr_t x86bios_rom_phys; static vm_paddr_t x86bios_seg_phys; static int x86bios_fault; static uint32_t x86bios_fault_addr; static uint16_t x86bios_fault_cs; static uint16_t x86bios_fault_ip; static void x86bios_set_fault(struct x86emu *emu, uint32_t addr) { x86bios_fault = 1; x86bios_fault_addr = addr; x86bios_fault_cs = emu->x86.R_CS; x86bios_fault_ip = emu->x86.R_IP; x86emu_halt_sys(emu); } static void * x86bios_get_pages(uint32_t offset, size_t size) { vm_offset_t addr; if (offset + size > X86BIOS_MEM_SIZE + X86BIOS_IVT_SIZE) return (NULL); if (offset >= X86BIOS_MEM_SIZE) offset -= X86BIOS_MEM_SIZE; addr = x86bios_map[offset / X86BIOS_PAGE_SIZE]; if (addr != 0) addr += offset % X86BIOS_PAGE_SIZE; return ((void *)addr); } static void x86bios_set_pages(vm_offset_t va, vm_paddr_t pa, size_t size) { int i, j; for (i = pa / X86BIOS_PAGE_SIZE, j = 0; j < howmany(size, X86BIOS_PAGE_SIZE); i++, j++) x86bios_map[i] = va + j * X86BIOS_PAGE_SIZE; } static uint8_t x86bios_emu_rdb(struct x86emu *emu, uint32_t addr) { uint8_t *va; va = x86bios_get_pages(addr, sizeof(*va)); if (va == NULL) x86bios_set_fault(emu, addr); return (*va); } static uint16_t x86bios_emu_rdw(struct x86emu *emu, uint32_t addr) { uint16_t *va; va = x86bios_get_pages(addr, sizeof(*va)); if (va == NULL) x86bios_set_fault(emu, addr); #ifndef __NO_STRICT_ALIGNMENT if ((addr & 1) != 0) return (le16dec(va)); else #endif return (le16toh(*va)); } static uint32_t x86bios_emu_rdl(struct x86emu *emu, uint32_t addr) { uint32_t *va; va = x86bios_get_pages(addr, sizeof(*va)); if (va == NULL) x86bios_set_fault(emu, addr); #ifndef __NO_STRICT_ALIGNMENT if ((addr & 3) != 0) return (le32dec(va)); else #endif return (le32toh(*va)); } static void x86bios_emu_wrb(struct x86emu *emu, uint32_t addr, uint8_t val) { uint8_t *va; va = x86bios_get_pages(addr, sizeof(*va)); if (va == NULL) x86bios_set_fault(emu, addr); *va = val; } static void x86bios_emu_wrw(struct x86emu *emu, uint32_t addr, uint16_t val) { uint16_t *va; va = x86bios_get_pages(addr, sizeof(*va)); if (va == NULL) x86bios_set_fault(emu, addr); #ifndef __NO_STRICT_ALIGNMENT if ((addr & 1) != 0) le16enc(va, val); else #endif *va = htole16(val); } static void x86bios_emu_wrl(struct x86emu *emu, uint32_t addr, uint32_t val) { uint32_t *va; va = x86bios_get_pages(addr, sizeof(*va)); if (va == NULL) x86bios_set_fault(emu, addr); #ifndef __NO_STRICT_ALIGNMENT if ((addr & 3) != 0) le32enc(va, val); else #endif *va = htole32(val); } static uint8_t x86bios_emu_inb(struct x86emu *emu, uint16_t port) { #ifndef X86BIOS_NATIVE_ARCH if (port == 0xb2) /* APM scratch register */ return (0); if (port >= 0x80 && port < 0x88) /* POST status register */ return (0); #endif return (iodev_read_1(port)); } static uint16_t x86bios_emu_inw(struct x86emu *emu, uint16_t port) { uint16_t val; #ifndef X86BIOS_NATIVE_ARCH if (port >= 0x80 && port < 0x88) /* POST status register */ return (0); if ((port & 1) != 0) { val = iodev_read_1(port); val |= iodev_read_1(port + 1) << 8; } else #endif val = iodev_read_2(port); return (val); } static uint32_t x86bios_emu_inl(struct x86emu *emu, uint16_t port) { uint32_t val; #ifndef X86BIOS_NATIVE_ARCH if (port >= 0x80 && port < 0x88) /* POST status register */ return (0); if ((port & 1) != 0) { val = iodev_read_1(port); val |= iodev_read_2(port + 1) << 8; val |= iodev_read_1(port + 3) << 24; } else if ((port & 2) != 0) { val = iodev_read_2(port); val |= iodev_read_2(port + 2) << 16; } else #endif val = iodev_read_4(port); return (val); } static void x86bios_emu_outb(struct x86emu *emu, uint16_t port, uint8_t val) { #ifndef X86BIOS_NATIVE_ARCH if (port == 0xb2) /* APM scratch register */ return; if (port >= 0x80 && port < 0x88) /* POST status register */ return; #endif iodev_write_1(port, val); } static void x86bios_emu_outw(struct x86emu *emu, uint16_t port, uint16_t val) { #ifndef X86BIOS_NATIVE_ARCH if (port >= 0x80 && port < 0x88) /* POST status register */ return; if ((port & 1) != 0) { iodev_write_1(port, val); iodev_write_1(port + 1, val >> 8); } else #endif iodev_write_2(port, val); } static void x86bios_emu_outl(struct x86emu *emu, uint16_t port, uint32_t val) { #ifndef X86BIOS_NATIVE_ARCH if (port >= 0x80 && port < 0x88) /* POST status register */ return; if ((port & 1) != 0) { iodev_write_1(port, val); iodev_write_2(port + 1, val >> 8); iodev_write_1(port + 3, val >> 24); } else if ((port & 2) != 0) { iodev_write_2(port, val); iodev_write_2(port + 2, val >> 16); } else #endif iodev_write_4(port, val); } void * x86bios_alloc(uint32_t *offset, size_t size, int flags) { void *vaddr; if (offset == NULL || size == 0) return (NULL); vaddr = contigmalloc(size, M_DEVBUF, flags, X86BIOS_RAM_BASE, x86bios_rom_phys, X86BIOS_PAGE_SIZE, 0); if (vaddr != NULL) { *offset = vtophys(vaddr); mtx_lock(&x86bios_lock); x86bios_set_pages((vm_offset_t)vaddr, *offset, size); mtx_unlock(&x86bios_lock); } return (vaddr); } void x86bios_free(void *addr, size_t size) { vm_paddr_t paddr; if (addr == NULL || size == 0) return; paddr = vtophys(addr); if (paddr < X86BIOS_RAM_BASE || paddr >= x86bios_rom_phys || paddr % X86BIOS_PAGE_SIZE != 0) return; mtx_lock(&x86bios_lock); bzero(x86bios_map + paddr / X86BIOS_PAGE_SIZE, sizeof(*x86bios_map) * howmany(size, X86BIOS_PAGE_SIZE)); mtx_unlock(&x86bios_lock); contigfree(addr, size, M_DEVBUF); } void x86bios_init_regs(struct x86regs *regs) { bzero(regs, sizeof(*regs)); regs->X86BIOS_R_SS = X86BIOS_PHYSTOSEG(x86bios_seg_phys); regs->X86BIOS_R_SP = X86BIOS_PAGE_SIZE - 2; } void x86bios_call(struct x86regs *regs, uint16_t seg, uint16_t off) { if (x86bios_trace_call) X86BIOS_TRACE(Calling 0x%06x, (seg << 4) + off, regs); mtx_lock(&x86bios_lock); memcpy(&x86bios_emu.x86, regs, sizeof(*regs)); x86bios_fault = 0; spinlock_enter(); x86emu_exec_call(&x86bios_emu, seg, off); spinlock_exit(); memcpy(regs, &x86bios_emu.x86, sizeof(*regs)); mtx_unlock(&x86bios_lock); if (x86bios_trace_call) { X86BIOS_TRACE(Exiting 0x%06x, (seg << 4) + off, regs); if (x86bios_fault) printf("Page fault at 0x%06x from 0x%04x:0x%04x.\n", x86bios_fault_addr, x86bios_fault_cs, x86bios_fault_ip); } } uint32_t x86bios_get_intr(int intno) { return (le32toh(*((uint32_t *)x86bios_ivt + intno))); } void x86bios_set_intr(int intno, uint32_t saddr) { *((uint32_t *)x86bios_ivt + intno) = htole32(saddr); } void x86bios_intr(struct x86regs *regs, int intno) { if (intno < 0 || intno > 255) return; if (x86bios_trace_int) X86BIOS_TRACE(Calling INT 0x%02x, intno, regs); mtx_lock(&x86bios_lock); memcpy(&x86bios_emu.x86, regs, sizeof(*regs)); x86bios_fault = 0; spinlock_enter(); x86emu_exec_intr(&x86bios_emu, intno); spinlock_exit(); memcpy(regs, &x86bios_emu.x86, sizeof(*regs)); mtx_unlock(&x86bios_lock); if (x86bios_trace_int) { X86BIOS_TRACE(Exiting INT 0x%02x, intno, regs); if (x86bios_fault) printf("Page fault at 0x%06x from 0x%04x:0x%04x.\n", x86bios_fault_addr, x86bios_fault_cs, x86bios_fault_ip); } } void * x86bios_offset(uint32_t offset) { return (x86bios_get_pages(offset, 1)); } static __inline void x86bios_unmap_mem(void) { free(x86bios_map, M_DEVBUF); if (x86bios_ivt != NULL) #ifdef X86BIOS_NATIVE_ARCH pmap_unmapbios((vm_offset_t)x86bios_ivt, X86BIOS_IVT_SIZE); #else free(x86bios_ivt, M_DEVBUF); #endif if (x86bios_rom != NULL) pmap_unmapdev((vm_offset_t)x86bios_rom, X86BIOS_ROM_SIZE); if (x86bios_seg != NULL) contigfree(x86bios_seg, X86BIOS_SEG_SIZE, M_DEVBUF); } static __inline int x86bios_map_mem(void) { x86bios_map = malloc(sizeof(*x86bios_map) * X86BIOS_PAGES, M_DEVBUF, M_WAITOK | M_ZERO); #ifdef X86BIOS_NATIVE_ARCH x86bios_ivt = pmap_mapbios(X86BIOS_IVT_BASE, X86BIOS_IVT_SIZE); /* Probe EBDA via BDA. */ x86bios_rom_phys = *(uint16_t *)((caddr_t)x86bios_ivt + 0x40e); x86bios_rom_phys = x86bios_rom_phys << 4; if (x86bios_rom_phys != 0 && x86bios_rom_phys < X86BIOS_ROM_BASE && X86BIOS_ROM_BASE - x86bios_rom_phys <= 128 * 1024) x86bios_rom_phys = rounddown(x86bios_rom_phys, X86BIOS_PAGE_SIZE); else #else x86bios_ivt = malloc(X86BIOS_IVT_SIZE, M_DEVBUF, M_ZERO | M_WAITOK); #endif x86bios_rom_phys = X86BIOS_ROM_BASE; x86bios_rom = pmap_mapdev(x86bios_rom_phys, X86BIOS_ROM_SIZE); if (x86bios_rom == NULL) goto fail; #ifdef X86BIOS_NATIVE_ARCH /* Change attribute for EBDA. */ if (x86bios_rom_phys < X86BIOS_ROM_BASE && pmap_change_attr((vm_offset_t)x86bios_rom, X86BIOS_ROM_BASE - x86bios_rom_phys, PAT_WRITE_BACK) != 0) goto fail; #endif x86bios_seg = contigmalloc(X86BIOS_SEG_SIZE, M_DEVBUF, M_WAITOK, X86BIOS_RAM_BASE, x86bios_rom_phys, X86BIOS_PAGE_SIZE, 0); x86bios_seg_phys = vtophys(x86bios_seg); x86bios_set_pages((vm_offset_t)x86bios_ivt, X86BIOS_IVT_BASE, X86BIOS_IVT_SIZE); x86bios_set_pages((vm_offset_t)x86bios_rom, x86bios_rom_phys, X86BIOS_ROM_SIZE); x86bios_set_pages((vm_offset_t)x86bios_seg, x86bios_seg_phys, X86BIOS_SEG_SIZE); if (bootverbose) { printf("x86bios: IVT 0x%06jx-0x%06jx at %p\n", (vm_paddr_t)X86BIOS_IVT_BASE, (vm_paddr_t)X86BIOS_IVT_SIZE + X86BIOS_IVT_BASE - 1, x86bios_ivt); printf("x86bios: SSEG 0x%06jx-0x%06jx at %p\n", x86bios_seg_phys, (vm_paddr_t)X86BIOS_SEG_SIZE + x86bios_seg_phys - 1, x86bios_seg); if (x86bios_rom_phys < X86BIOS_ROM_BASE) printf("x86bios: EBDA 0x%06jx-0x%06jx at %p\n", x86bios_rom_phys, (vm_paddr_t)X86BIOS_ROM_BASE - 1, x86bios_rom); printf("x86bios: ROM 0x%06jx-0x%06jx at %p\n", (vm_paddr_t)X86BIOS_ROM_BASE, (vm_paddr_t)X86BIOS_MEM_SIZE - X86BIOS_SEG_SIZE - 1, (caddr_t)x86bios_rom + X86BIOS_ROM_BASE - x86bios_rom_phys); } return (0); fail: x86bios_unmap_mem(); return (1); } static int x86bios_init(void) { mtx_init(&x86bios_lock, "x86bios lock", NULL, MTX_DEF); if (x86bios_map_mem() != 0) return (ENOMEM); bzero(&x86bios_emu, sizeof(x86bios_emu)); x86bios_emu.emu_rdb = x86bios_emu_rdb; x86bios_emu.emu_rdw = x86bios_emu_rdw; x86bios_emu.emu_rdl = x86bios_emu_rdl; x86bios_emu.emu_wrb = x86bios_emu_wrb; x86bios_emu.emu_wrw = x86bios_emu_wrw; x86bios_emu.emu_wrl = x86bios_emu_wrl; x86bios_emu.emu_inb = x86bios_emu_inb; x86bios_emu.emu_inw = x86bios_emu_inw; x86bios_emu.emu_inl = x86bios_emu_inl; x86bios_emu.emu_outb = x86bios_emu_outb; x86bios_emu.emu_outw = x86bios_emu_outw; x86bios_emu.emu_outl = x86bios_emu_outl; return (0); } static int x86bios_uninit(void) { x86bios_unmap_mem(); mtx_destroy(&x86bios_lock); return (0); } #endif void * x86bios_get_orm(uint32_t offset) { uint8_t *p; /* Does the shadow ROM contain BIOS POST code for x86? */ p = x86bios_offset(offset); if (p == NULL || p[0] != 0x55 || p[1] != 0xaa || (p[3] != 0xe9 && p[3] != 0xeb)) return (NULL); return (p); } int x86bios_match_device(uint32_t offset, device_t dev) { uint8_t *p; uint16_t device, vendor; uint8_t class, progif, subclass; /* Does the shadow ROM contain BIOS POST code for x86? */ p = x86bios_get_orm(offset); if (p == NULL) return (0); /* Does it contain PCI data structure? */ p += le16toh(*(uint16_t *)(p + 0x18)); if (bcmp(p, "PCIR", 4) != 0 || le16toh(*(uint16_t *)(p + 0x0a)) < 0x18 || *(p + 0x14) != 0) return (0); /* Does it match the vendor, device, and classcode? */ vendor = le16toh(*(uint16_t *)(p + 0x04)); device = le16toh(*(uint16_t *)(p + 0x06)); progif = *(p + 0x0d); subclass = *(p + 0x0e); class = *(p + 0x0f); if (vendor != pci_get_vendor(dev) || device != pci_get_device(dev) || class != pci_get_class(dev) || subclass != pci_get_subclass(dev) || progif != pci_get_progif(dev)) return (0); return (1); } static int x86bios_modevent(module_t mod __unused, int type, void *data __unused) { switch (type) { case MOD_LOAD: return (x86bios_init()); case MOD_UNLOAD: return (x86bios_uninit()); default: return (ENOTSUP); } } static moduledata_t x86bios_mod = { "x86bios", x86bios_modevent, NULL, }; DECLARE_MODULE(x86bios, x86bios_mod, SI_SUB_CPU, SI_ORDER_ANY); MODULE_VERSION(x86bios, 1);