Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/lindev/@/gnu/fs/xfs/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/lindev/@/gnu/fs/xfs/xfs_inode.c |
/* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_imap.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir.h" #include "xfs_dir2.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dir_sf.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_buf_item.h" #include "xfs_inode_item.h" #include "xfs_btree.h" #include "xfs_alloc.h" #include "xfs_ialloc.h" #include "xfs_bmap.h" #include "xfs_rw.h" #include "xfs_error.h" #include "xfs_utils.h" #include "xfs_dir2_trace.h" #include "xfs_quota.h" #include "xfs_mac.h" #include "xfs_acl.h" kmem_zone_t *xfs_ifork_zone; kmem_zone_t *xfs_inode_zone; kmem_zone_t *xfs_chashlist_zone; /* * Used in xfs_itruncate(). This is the maximum number of extents * freed from a file in a single transaction. */ #define XFS_ITRUNC_MAX_EXTENTS 2 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); #ifdef DEBUG /* * Make sure that the extents in the given memory buffer * are valid. */ STATIC void xfs_validate_extents( xfs_ifork_t *ifp, int nrecs, int disk, xfs_exntfmt_t fmt) { xfs_bmbt_rec_t *ep; xfs_bmbt_irec_t irec; xfs_bmbt_rec_t rec; int i; for (i = 0; i < nrecs; i++) { ep = xfs_iext_get_ext(ifp, i); rec.l0 = get_unaligned((__uint64_t*)&ep->l0); rec.l1 = get_unaligned((__uint64_t*)&ep->l1); if (disk) xfs_bmbt_disk_get_all(&rec, &irec); else xfs_bmbt_get_all(&rec, &irec); if (fmt == XFS_EXTFMT_NOSTATE) ASSERT(irec.br_state == XFS_EXT_NORM); } } #else /* DEBUG */ #define xfs_validate_extents(ifp, nrecs, disk, fmt) #endif /* DEBUG */ /* * Check that none of the inode's in the buffer have a next * unlinked field of 0. */ #if defined(DEBUG) void xfs_inobp_check( xfs_mount_t *mp, xfs_buf_t *bp) { int i; int j; xfs_dinode_t *dip; j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; for (i = 0; i < j; i++) { dip = (xfs_dinode_t *)xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize); if (!dip->di_next_unlinked) { xfs_fs_cmn_err(CE_ALERT, mp, "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", bp); ASSERT(dip->di_next_unlinked); } } } #endif /* * This routine is called to map an inode number within a file * system to the buffer containing the on-disk version of the * inode. It returns a pointer to the buffer containing the * on-disk inode in the bpp parameter, and in the dip parameter * it returns a pointer to the on-disk inode within that buffer. * * If a non-zero error is returned, then the contents of bpp and * dipp are undefined. * * Use xfs_imap() to determine the size and location of the * buffer to read from disk. */ STATIC int xfs_inotobp( xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, xfs_dinode_t **dipp, xfs_buf_t **bpp, int *offset) { int di_ok; xfs_imap_t imap; xfs_buf_t *bp; int error; xfs_dinode_t *dip; /* * Call the space management code to find the location of the * inode on disk. */ imap.im_blkno = 0; error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); if (error != 0) { cmn_err(CE_WARN, "xfs_inotobp: xfs_imap() returned an " "error %d on %s. Returning error.", error, mp->m_fsname); return error; } /* * If the inode number maps to a block outside the bounds of the * file system then return NULL rather than calling read_buf * and panicing when we get an error from the driver. */ if ((imap.im_blkno + imap.im_len) > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { cmn_err(CE_WARN, "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds " "of the file system %s. Returning EINVAL.", (unsigned long long)imap.im_blkno, imap.im_len, mp->m_fsname); return XFS_ERROR(EINVAL); } /* * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will * default to just a read_buf() call. */ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, (int)imap.im_len, XFS_BUF_LOCK, &bp); if (error) { cmn_err(CE_WARN, "xfs_inotobp: xfs_trans_read_buf() returned an " "error %d on %s. Returning error.", error, mp->m_fsname); return error; } dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, XFS_RANDOM_ITOBP_INOTOBP))) { XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); xfs_trans_brelse(tp, bp); cmn_err(CE_WARN, "xfs_inotobp: XFS_TEST_ERROR() returned an " "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); return XFS_ERROR(EFSCORRUPTED); } xfs_inobp_check(mp, bp); /* * Set *dipp to point to the on-disk inode in the buffer. */ *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); *bpp = bp; *offset = imap.im_boffset; return 0; } /* * This routine is called to map an inode to the buffer containing * the on-disk version of the inode. It returns a pointer to the * buffer containing the on-disk inode in the bpp parameter, and in * the dip parameter it returns a pointer to the on-disk inode within * that buffer. * * If a non-zero error is returned, then the contents of bpp and * dipp are undefined. * * If the inode is new and has not yet been initialized, use xfs_imap() * to determine the size and location of the buffer to read from disk. * If the inode has already been mapped to its buffer and read in once, * then use the mapping information stored in the inode rather than * calling xfs_imap(). This allows us to avoid the overhead of looking * at the inode btree for small block file systems (see xfs_dilocate()). * We can tell whether the inode has been mapped in before by comparing * its disk block address to 0. Only uninitialized inodes will have * 0 for the disk block address. */ int xfs_itobp( xfs_mount_t *mp, xfs_trans_t *tp, xfs_inode_t *ip, xfs_dinode_t **dipp, xfs_buf_t **bpp, xfs_daddr_t bno, uint imap_flags) { xfs_buf_t *bp; int error; xfs_imap_t imap; #ifdef __KERNEL__ int i; int ni; #endif if (ip->i_blkno == (xfs_daddr_t)0) { /* * Call the space management code to find the location of the * inode on disk. */ imap.im_blkno = bno; if ((error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP | imap_flags))) return error; /* * If the inode number maps to a block outside the bounds * of the file system then return NULL rather than calling * read_buf and panicing when we get an error from the * driver. */ if ((imap.im_blkno + imap.im_len) > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { #ifdef DEBUG xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " "(imap.im_blkno (0x%llx) " "+ imap.im_len (0x%llx)) > " " XFS_FSB_TO_BB(mp, " "mp->m_sb.sb_dblocks) (0x%llx)", (unsigned long long) imap.im_blkno, (unsigned long long) imap.im_len, XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); #endif /* DEBUG */ return XFS_ERROR(EINVAL); } /* * Fill in the fields in the inode that will be used to * map the inode to its buffer from now on. */ ip->i_blkno = imap.im_blkno; ip->i_len = imap.im_len; ip->i_boffset = imap.im_boffset; } else { /* * We've already mapped the inode once, so just use the * mapping that we saved the first time. */ imap.im_blkno = ip->i_blkno; imap.im_len = ip->i_len; imap.im_boffset = ip->i_boffset; } ASSERT(bno == 0 || bno == imap.im_blkno); /* * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will * default to just a read_buf() call. */ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, (int)imap.im_len, XFS_BUF_LOCK, &bp); if (error) { #ifdef DEBUG xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " "xfs_trans_read_buf() returned error %d, " "imap.im_blkno 0x%llx, imap.im_len 0x%llx", error, (unsigned long long) imap.im_blkno, (unsigned long long) imap.im_len); #endif /* DEBUG */ return error; } #ifdef __KERNEL__ /* * Validate the magic number and version of every inode in the buffer * (if DEBUG kernel) or the first inode in the buffer, otherwise. */ #ifdef DEBUG ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog); #else ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1; #endif for (i = 0; i < ni; i++) { int di_ok; xfs_dinode_t *dip; dip = (xfs_dinode_t *)xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog)); di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, XFS_RANDOM_ITOBP_INOTOBP))) { #ifdef DEBUG prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", mp->m_ddev_targp, (unsigned long long)imap.im_blkno, i, INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); #endif XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, mp, dip); xfs_trans_brelse(tp, bp); return XFS_ERROR(EFSCORRUPTED); } } #endif /* __KERNEL__ */ xfs_inobp_check(mp, bp); /* * Mark the buffer as an inode buffer now that it looks good */ XFS_BUF_SET_VTYPE(bp, B_FS_INO); /* * Set *dipp to point to the on-disk inode in the buffer. */ *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); *bpp = bp; return 0; } /* * Move inode type and inode format specific information from the * on-disk inode to the in-core inode. For fifos, devs, and sockets * this means set if_rdev to the proper value. For files, directories, * and symlinks this means to bring in the in-line data or extent * pointers. For a file in B-tree format, only the root is immediately * brought in-core. The rest will be in-lined in if_extents when it * is first referenced (see xfs_iread_extents()). */ STATIC int xfs_iformat( xfs_inode_t *ip, xfs_dinode_t *dip) { xfs_attr_shortform_t *atp; int size; int error; xfs_fsize_t di_size; ip->i_df.if_ext_max = XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); error = 0; if (unlikely( INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.", (unsigned long long)ip->i_ino, (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), (unsigned long long) INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.", (unsigned long long)ip->i_ino, (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } switch (ip->i_d.di_mode & S_IFMT) { case S_IFIFO: case S_IFCHR: case S_IFBLK: case S_IFSOCK: if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } ip->i_d.di_size = 0; ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); break; case S_IFREG: case S_IFLNK: case S_IFDIR: switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { case XFS_DINODE_FMT_LOCAL: /* * no local regular files yet */ if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, "corrupt inode %Lu " "(local format for regular file).", (unsigned long long) ip->i_ino); XFS_CORRUPTION_ERROR("xfs_iformat(4)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, "corrupt inode %Lu " "(bad size %Ld for local inode).", (unsigned long long) ip->i_ino, (long long) di_size); XFS_CORRUPTION_ERROR("xfs_iformat(5)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } size = (int)di_size; error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); break; case XFS_DINODE_FMT_EXTENTS: error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); break; case XFS_DINODE_FMT_BTREE: error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); break; default: XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } break; default: XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } if (error) { return error; } if (!XFS_DFORK_Q(dip)) return 0; ASSERT(ip->i_afp == NULL); ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); ip->i_afp->if_ext_max = XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { case XFS_DINODE_FMT_LOCAL: atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); size = be16_to_cpu(atp->hdr.totsize); error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); break; case XFS_DINODE_FMT_EXTENTS: error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); break; case XFS_DINODE_FMT_BTREE: error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); break; default: error = XFS_ERROR(EFSCORRUPTED); break; } if (error) { kmem_zone_free(xfs_ifork_zone, ip->i_afp); ip->i_afp = NULL; xfs_idestroy_fork(ip, XFS_DATA_FORK); } return error; } /* * The file is in-lined in the on-disk inode. * If it fits into if_inline_data, then copy * it there, otherwise allocate a buffer for it * and copy the data there. Either way, set * if_data to point at the data. * If we allocate a buffer for the data, make * sure that its size is a multiple of 4 and * record the real size in i_real_bytes. */ STATIC int xfs_iformat_local( xfs_inode_t *ip, xfs_dinode_t *dip, int whichfork, int size) { xfs_ifork_t *ifp; int real_size; /* * If the size is unreasonable, then something * is wrong and we just bail out rather than crash in * kmem_alloc() or memcpy() below. */ if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, "corrupt inode %Lu " "(bad size %d for local fork, size = %d).", (unsigned long long) ip->i_ino, size, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } ifp = XFS_IFORK_PTR(ip, whichfork); real_size = 0; if (size == 0) ifp->if_u1.if_data = NULL; else if (size <= sizeof(ifp->if_u2.if_inline_data)) ifp->if_u1.if_data = ifp->if_u2.if_inline_data; else { real_size = roundup(size, 4); ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); } ifp->if_bytes = size; ifp->if_real_bytes = real_size; if (size) memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); ifp->if_flags &= ~XFS_IFEXTENTS; ifp->if_flags |= XFS_IFINLINE; return 0; } /* * The file consists of a set of extents all * of which fit into the on-disk inode. * If there are few enough extents to fit into * the if_inline_ext, then copy them there. * Otherwise allocate a buffer for them and copy * them into it. Either way, set if_extents * to point at the extents. */ STATIC int xfs_iformat_extents( xfs_inode_t *ip, xfs_dinode_t *dip, int whichfork) { xfs_bmbt_rec_t *ep, *dp; xfs_ifork_t *ifp; int nex; int size; int i; ifp = XFS_IFORK_PTR(ip, whichfork); nex = XFS_DFORK_NEXTENTS(dip, whichfork); size = nex * (uint)sizeof(xfs_bmbt_rec_t); /* * If the number of extents is unreasonable, then something * is wrong and we just bail out rather than crash in * kmem_alloc() or memcpy() below. */ if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, "corrupt inode %Lu ((a)extents = %d).", (unsigned long long) ip->i_ino, nex); XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } ifp->if_real_bytes = 0; if (nex == 0) ifp->if_u1.if_extents = NULL; else if (nex <= XFS_INLINE_EXTS) ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; else xfs_iext_add(ifp, 0, nex); ifp->if_bytes = size; if (size) { dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip)); for (i = 0; i < nex; i++, dp++) { ep = xfs_iext_get_ext(ifp, i); ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), ARCH_CONVERT); ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), ARCH_CONVERT); } xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, whichfork); if (whichfork != XFS_DATA_FORK || XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) if (unlikely(xfs_check_nostate_extents( ifp, 0, nex))) { XFS_ERROR_REPORT("xfs_iformat_extents(2)", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } } ifp->if_flags |= XFS_IFEXTENTS; return 0; } /* * The file has too many extents to fit into * the inode, so they are in B-tree format. * Allocate a buffer for the root of the B-tree * and copy the root into it. The i_extents * field will remain NULL until all of the * extents are read in (when they are needed). */ STATIC int xfs_iformat_btree( xfs_inode_t *ip, xfs_dinode_t *dip, int whichfork) { xfs_bmdr_block_t *dfp; xfs_ifork_t *ifp; /* REFERENCED */ int nrecs; int size; ifp = XFS_IFORK_PTR(ip, whichfork); dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); size = XFS_BMAP_BROOT_SPACE(dfp); nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); /* * blow out if -- fork has less extents than can fit in * fork (fork shouldn't be a btree format), root btree * block has more records than can fit into the fork, * or the number of extents is greater than the number of * blocks. */ if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max || XFS_BMDR_SPACE_CALC(nrecs) > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount, "corrupt inode %Lu (btree).", (unsigned long long) ip->i_ino); XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } ifp->if_broot_bytes = size; ifp->if_broot = kmem_alloc(size, KM_SLEEP); ASSERT(ifp->if_broot != NULL); /* * Copy and convert from the on-disk structure * to the in-memory structure. */ xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), ifp->if_broot, size); ifp->if_flags &= ~XFS_IFEXTENTS; ifp->if_flags |= XFS_IFBROOT; return 0; } /* * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk * and native format * * buf = on-disk representation * dip = native representation * dir = direction - +ve -> disk to native * -ve -> native to disk */ void xfs_xlate_dinode_core( xfs_caddr_t buf, xfs_dinode_core_t *dip, int dir) { xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; xfs_arch_t arch = ARCH_CONVERT; ASSERT(dir); INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); if (dir > 0) { memcpy(mem_core->di_pad, buf_core->di_pad, sizeof(buf_core->di_pad)); } else { memcpy(buf_core->di_pad, mem_core->di_pad, sizeof(buf_core->di_pad)); } INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, dir, arch); INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, dir, arch); INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, dir, arch); INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, dir, arch); INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, dir, arch); INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, dir, arch); INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); } STATIC uint _xfs_dic2xflags( xfs_dinode_core_t *dic, __uint16_t di_flags) { uint flags = 0; if (di_flags & XFS_DIFLAG_ANY) { if (di_flags & XFS_DIFLAG_REALTIME) flags |= XFS_XFLAG_REALTIME; if (di_flags & XFS_DIFLAG_PREALLOC) flags |= XFS_XFLAG_PREALLOC; if (di_flags & XFS_DIFLAG_IMMUTABLE) flags |= XFS_XFLAG_IMMUTABLE; if (di_flags & XFS_DIFLAG_APPEND) flags |= XFS_XFLAG_APPEND; if (di_flags & XFS_DIFLAG_SYNC) flags |= XFS_XFLAG_SYNC; if (di_flags & XFS_DIFLAG_NOATIME) flags |= XFS_XFLAG_NOATIME; if (di_flags & XFS_DIFLAG_NODUMP) flags |= XFS_XFLAG_NODUMP; if (di_flags & XFS_DIFLAG_RTINHERIT) flags |= XFS_XFLAG_RTINHERIT; if (di_flags & XFS_DIFLAG_PROJINHERIT) flags |= XFS_XFLAG_PROJINHERIT; if (di_flags & XFS_DIFLAG_NOSYMLINKS) flags |= XFS_XFLAG_NOSYMLINKS; if (di_flags & XFS_DIFLAG_EXTSIZE) flags |= XFS_XFLAG_EXTSIZE; if (di_flags & XFS_DIFLAG_EXTSZINHERIT) flags |= XFS_XFLAG_EXTSZINHERIT; } return flags; } uint xfs_ip2xflags( xfs_inode_t *ip) { xfs_dinode_core_t *dic = &ip->i_d; return _xfs_dic2xflags(dic, dic->di_flags) | (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); } uint xfs_dic2xflags( xfs_dinode_core_t *dic) { return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); } /* * Given a mount structure and an inode number, return a pointer * to a newly allocated in-core inode corresponding to the given * inode number. * * Initialize the inode's attributes and extent pointers if it * already has them (it will not if the inode has no links). */ int xfs_iread( xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, xfs_inode_t **ipp, xfs_daddr_t bno) { xfs_buf_t *bp; xfs_dinode_t *dip; xfs_inode_t *ip; int error; ASSERT(xfs_inode_zone != NULL); ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); ip->i_ino = ino; ip->i_mount = mp; /* * Get pointer's to the on-disk inode and the buffer containing it. * If the inode number refers to a block outside the file system * then xfs_itobp() will return NULL. In this case we should * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will * know that this is a new incore inode. */ error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0); if (error) { kmem_zone_free(xfs_inode_zone, ip); return error; } /* * Initialize inode's trace buffers. * Do this before xfs_iformat in case it adds entries. */ #ifdef XFS_BMAP_TRACE ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_BMBT_TRACE ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_RW_TRACE ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_ILOCK_TRACE ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_DIR2_TRACE ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); #endif /* * If we got something that isn't an inode it means someone * (nfs or dmi) has a stale handle. */ if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { kmem_zone_free(xfs_inode_zone, ip); xfs_trans_brelse(tp, bp); #ifdef DEBUG xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " "dip->di_core.di_magic (0x%x) != " "XFS_DINODE_MAGIC (0x%x)", INT_GET(dip->di_core.di_magic, ARCH_CONVERT), XFS_DINODE_MAGIC); #endif /* DEBUG */ return XFS_ERROR(EINVAL); } /* * If the on-disk inode is already linked to a directory * entry, copy all of the inode into the in-core inode. * xfs_iformat() handles copying in the inode format * specific information. * Otherwise, just get the truly permanent information. */ if (dip->di_core.di_mode) { xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, &(ip->i_d), 1); error = xfs_iformat(ip, dip); if (error) { kmem_zone_free(xfs_inode_zone, ip); xfs_trans_brelse(tp, bp); #ifdef DEBUG xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " "xfs_iformat() returned error %d", error); #endif /* DEBUG */ return error; } } else { ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); /* * Make sure to pull in the mode here as well in * case the inode is released without being used. * This ensures that xfs_inactive() will see that * the inode is already free and not try to mess * with the uninitialized part of it. */ ip->i_d.di_mode = 0; /* * Initialize the per-fork minima and maxima for a new * inode here. xfs_iformat will do it for old inodes. */ ip->i_df.if_ext_max = XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); } #ifdef RMC INIT_LIST_HEAD(&ip->i_reclaim); #else bzero(&ip->i_reclaim,sizeof(ip->i_reclaim)); #endif /* * The inode format changed when we moved the link count and * made it 32 bits long. If this is an old format inode, * convert it in memory to look like a new one. If it gets * flushed to disk we will convert back before flushing or * logging it. We zero out the new projid field and the old link * count field. We'll handle clearing the pad field (the remains * of the old uuid field) when we actually convert the inode to * the new format. We don't change the version number so that we * can distinguish this from a real new format inode. */ if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { ip->i_d.di_nlink = ip->i_d.di_onlink; ip->i_d.di_onlink = 0; ip->i_d.di_projid = 0; } ip->i_delayed_blks = 0; /* * Mark the buffer containing the inode as something to keep * around for a while. This helps to keep recently accessed * meta-data in-core longer. */ XFS_BUF_SET_REF(bp, XFS_INO_REF); /* * Use xfs_trans_brelse() to release the buffer containing the * on-disk inode, because it was acquired with xfs_trans_read_buf() * in xfs_itobp() above. If tp is NULL, this is just a normal * brelse(). If we're within a transaction, then xfs_trans_brelse() * will only release the buffer if it is not dirty within the * transaction. It will be OK to release the buffer in this case, * because inodes on disk are never destroyed and we will be * locking the new in-core inode before putting it in the hash * table where other processes can find it. Thus we don't have * to worry about the inode being changed just because we released * the buffer. */ xfs_trans_brelse(tp, bp); *ipp = ip; return 0; } /* * Read in extents from a btree-format inode. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. */ int xfs_iread_extents( xfs_trans_t *tp, xfs_inode_t *ip, int whichfork) { int error; xfs_ifork_t *ifp; xfs_extnum_t nextents; size_t size; if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } nextents = XFS_IFORK_NEXTENTS(ip, whichfork); size = nextents * sizeof(xfs_bmbt_rec_t); ifp = XFS_IFORK_PTR(ip, whichfork); /* * We know that the size is valid (it's checked in iformat_btree) */ ifp->if_lastex = NULLEXTNUM; ifp->if_bytes = ifp->if_real_bytes = 0; ifp->if_flags |= XFS_IFEXTENTS; xfs_iext_add(ifp, 0, nextents); error = xfs_bmap_read_extents(tp, ip, whichfork); if (error) { xfs_iext_destroy(ifp); ifp->if_flags &= ~XFS_IFEXTENTS; return error; } xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip)); return 0; } /* * Allocate an inode on disk and return a copy of its in-core version. * The in-core inode is locked exclusively. Set mode, nlink, and rdev * appropriately within the inode. The uid and gid for the inode are * set according to the contents of the given cred structure. * * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() * has a free inode available, call xfs_iget() * to obtain the in-core version of the allocated inode. Finally, * fill in the inode and log its initial contents. In this case, * ialloc_context would be set to NULL and call_again set to false. * * If xfs_dialloc() does not have an available inode, * it will replenish its supply by doing an allocation. Since we can * only do one allocation within a transaction without deadlocks, we * must commit the current transaction before returning the inode itself. * In this case, therefore, we will set call_again to true and return. * The caller should then commit the current transaction, start a new * transaction, and call xfs_ialloc() again to actually get the inode. * * To ensure that some other process does not grab the inode that * was allocated during the first call to xfs_ialloc(), this routine * also returns the [locked] bp pointing to the head of the freelist * as ialloc_context. The caller should hold this buffer across * the commit and pass it back into this routine on the second call. */ int xfs_ialloc( xfs_trans_t *tp, xfs_inode_t *pip, mode_t mode, xfs_nlink_t nlink, xfs_dev_t rdev, cred_t *cr, xfs_prid_t prid, int okalloc, xfs_buf_t **ialloc_context, boolean_t *call_again, xfs_inode_t **ipp) { xfs_ino_t ino; xfs_inode_t *ip; xfs_vnode_t *vp; uint flags; int error; /* * Call the space management code to pick * the on-disk inode to be allocated. */ error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, ialloc_context, call_again, &ino); if (error != 0) { return error; } if (*call_again || ino == NULLFSINO) { *ipp = NULL; return 0; } ASSERT(*ialloc_context == NULL); /* * Get the in-core inode with the lock held exclusively. * This is because we're setting fields here we need * to prevent others from looking at until we're done. */ error = xfs_trans_iget(tp->t_mountp, tp, ino, IGET_CREATE, XFS_ILOCK_EXCL, &ip); if (error != 0) { return error; } ASSERT(ip != NULL); vp = XFS_ITOV(ip); ip->i_d.di_mode = (__uint16_t)mode; ip->i_d.di_onlink = 0; ip->i_d.di_nlink = nlink; ASSERT(ip->i_d.di_nlink == nlink); ip->i_d.di_uid = curthread->td_ucred->cr_uid; ip->i_d.di_gid = curthread->td_ucred->cr_groups[0]; ip->i_d.di_projid = prid; memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); /* * If the superblock version is up to where we support new format * inodes and this is currently an old format inode, then change * the inode version number now. This way we only do the conversion * here rather than here and in the flush/logging code. */ if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && ip->i_d.di_version == XFS_DINODE_VERSION_1) { ip->i_d.di_version = XFS_DINODE_VERSION_2; /* * We've already zeroed the old link count, the projid field, * and the pad field. */ } /* * Project ids won't be stored on disk if we are using a version 1 inode. */ if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) xfs_bump_ino_vers2(tp, ip); if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { ip->i_d.di_gid = pip->i_d.di_gid; if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { ip->i_d.di_mode |= S_ISGID; } } /* * If the group ID of the new file does not match the effective group * ID or one of the supplementary group IDs, the S_ISGID bit is cleared * (and only if the irix_sgid_inherit compatibility variable is set). */ if ((irix_sgid_inherit) && (ip->i_d.di_mode & S_ISGID) && (!groupmember((gid_t)ip->i_d.di_gid, curthread->td_ucred))) { ip->i_d.di_mode &= ~S_ISGID; } ip->i_d.di_size = 0; ip->i_d.di_nextents = 0; ASSERT(ip->i_d.di_nblocks == 0); xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); /* * di_gen will have been taken care of in xfs_iread. */ ip->i_d.di_extsize = 0; ip->i_d.di_dmevmask = 0; ip->i_d.di_dmstate = 0; ip->i_d.di_flags = 0; flags = XFS_ILOG_CORE; switch (mode & S_IFMT) { case S_IFIFO: case S_IFCHR: case S_IFBLK: case S_IFSOCK: ip->i_d.di_format = XFS_DINODE_FMT_DEV; ip->i_df.if_u2.if_rdev = rdev; ip->i_df.if_flags = 0; flags |= XFS_ILOG_DEV; break; case S_IFREG: case S_IFDIR: if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { uint di_flags = 0; if ((mode & S_IFMT) == S_IFDIR) { if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) di_flags |= XFS_DIFLAG_RTINHERIT; if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { di_flags |= XFS_DIFLAG_EXTSZINHERIT; ip->i_d.di_extsize = pip->i_d.di_extsize; } } else if ((mode & S_IFMT) == S_IFREG) { if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { di_flags |= XFS_DIFLAG_REALTIME; ip->i_iocore.io_flags |= XFS_IOCORE_RT; } if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { di_flags |= XFS_DIFLAG_EXTSIZE; ip->i_d.di_extsize = pip->i_d.di_extsize; } } if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && xfs_inherit_noatime) di_flags |= XFS_DIFLAG_NOATIME; if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && xfs_inherit_nodump) di_flags |= XFS_DIFLAG_NODUMP; if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && xfs_inherit_sync) di_flags |= XFS_DIFLAG_SYNC; if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && xfs_inherit_nosymlinks) di_flags |= XFS_DIFLAG_NOSYMLINKS; if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) di_flags |= XFS_DIFLAG_PROJINHERIT; ip->i_d.di_flags |= di_flags; } /* FALLTHROUGH */ case S_IFLNK: ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; ip->i_df.if_flags = XFS_IFEXTENTS; ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; ip->i_df.if_u1.if_extents = NULL; break; default: ASSERT(0); } /* * Attribute fork settings for new inode. */ ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; ip->i_d.di_anextents = 0; /* * Log the new values stuffed into the inode. */ xfs_trans_log_inode(tp, ip, flags); /* now that we have an i_mode we can set Linux inode ops (& unlock) */ XVFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); *ipp = ip; return 0; } /* * Check to make sure that there are no blocks allocated to the * file beyond the size of the file. We don't check this for * files with fixed size extents or real time extents, but we * at least do it for regular files. */ #ifdef DEBUG void xfs_isize_check( xfs_mount_t *mp, xfs_inode_t *ip, xfs_fsize_t isize) { xfs_fileoff_t map_first; int nimaps; xfs_bmbt_irec_t imaps[2]; if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) return; if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE)) return; nimaps = 2; map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); /* * The filesystem could be shutting down, so bmapi may return * an error. */ if (xfs_bmapi(NULL, ip, map_first, (XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - map_first), XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, NULL, NULL)) return; ASSERT(nimaps == 1); ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); } #endif /* DEBUG */ /* * Calculate the last possible buffered byte in a file. This must * include data that was buffered beyond the EOF by the write code. * This also needs to deal with overflowing the xfs_fsize_t type * which can happen for sizes near the limit. * * We also need to take into account any blocks beyond the EOF. It * may be the case that they were buffered by a write which failed. * In that case the pages will still be in memory, but the inode size * will never have been updated. */ xfs_fsize_t xfs_file_last_byte( xfs_inode_t *ip) { xfs_mount_t *mp; xfs_fsize_t last_byte; xfs_fileoff_t last_block; xfs_fileoff_t size_last_block; int error; ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); mp = ip->i_mount; /* * Only check for blocks beyond the EOF if the extents have * been read in. This eliminates the need for the inode lock, * and it also saves us from looking when it really isn't * necessary. */ if (ip->i_df.if_flags & XFS_IFEXTENTS) { error = xfs_bmap_last_offset(NULL, ip, &last_block, XFS_DATA_FORK); if (error) { last_block = 0; } } else { last_block = 0; } size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); last_block = XFS_FILEOFF_MAX(last_block, size_last_block); last_byte = XFS_FSB_TO_B(mp, last_block); if (last_byte < 0) { return XFS_MAXIOFFSET(mp); } last_byte += (1 << mp->m_writeio_log); if (last_byte < 0) { return XFS_MAXIOFFSET(mp); } return last_byte; } #if defined(XFS_RW_TRACE) STATIC void xfs_itrunc_trace( int tag, xfs_inode_t *ip, int flag, xfs_fsize_t new_size, xfs_off_t toss_start, xfs_off_t toss_finish) { if (ip->i_rwtrace == NULL) { return; } ktrace_enter(ip->i_rwtrace, (void*)((long)tag), (void*)ip, (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), (void*)((long)flag), (void*)(unsigned long)((new_size >> 32) & 0xffffffff), (void*)(unsigned long)(new_size & 0xffffffff), (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), (void*)(unsigned long)(toss_start & 0xffffffff), (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), (void*)(unsigned long)(toss_finish & 0xffffffff), (void*)(unsigned long)current_cpu(), (void*)(unsigned long)current_pid(), (void*)NULL, (void*)NULL, (void*)NULL); } #else #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) #endif /* * Start the truncation of the file to new_size. The new size * must be smaller than the current size. This routine will * clear the buffer and page caches of file data in the removed * range, and xfs_itruncate_finish() will remove the underlying * disk blocks. * * The inode must have its I/O lock locked EXCLUSIVELY, and it * must NOT have the inode lock held at all. This is because we're * calling into the buffer/page cache code and we can't hold the * inode lock when we do so. * * We need to wait for any direct I/Os in flight to complete before we * proceed with the truncate. This is needed to prevent the extents * being read or written by the direct I/Os from being removed while the * I/O is in flight as there is no other method of synchronising * direct I/O with the truncate operation. Also, because we hold * the IOLOCK in exclusive mode, we prevent new direct I/Os from being * started until the truncate completes and drops the lock. Essentially, * the vn_iowait() call forms an I/O barrier that provides strict ordering * between direct I/Os and the truncate operation. * * The flags parameter can have either the value XFS_ITRUNC_DEFINITE * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used * in the case that the caller is locking things out of order and * may not be able to call xfs_itruncate_finish() with the inode lock * held without dropping the I/O lock. If the caller must drop the * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() * must be called again with all the same restrictions as the initial * call. */ void xfs_itruncate_start( xfs_inode_t *ip, uint flags, xfs_fsize_t new_size) { xfs_fsize_t last_byte; xfs_off_t toss_start; xfs_mount_t *mp; xfs_vnode_t *vp; ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); ASSERT((flags == XFS_ITRUNC_DEFINITE) || (flags == XFS_ITRUNC_MAYBE)); mp = ip->i_mount; vp = XFS_ITOV(ip); vn_iowait(vp); /* wait for the completion of any pending DIOs */ /* * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers * overlapping the region being removed. We have to use * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the * caller may not be able to finish the truncate without * dropping the inode's I/O lock. Make sure * to catch any pages brought in by buffers overlapping * the EOF by searching out beyond the isize by our * block size. We round new_size up to a block boundary * so that we don't toss things on the same block as * new_size but before it. * * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to * call remapf() over the same region if the file is mapped. * This frees up mapped file references to the pages in the * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures * that we get the latest mapped changes flushed out. */ toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); toss_start = XFS_FSB_TO_B(mp, toss_start); if (toss_start < 0) { /* * The place to start tossing is beyond our maximum * file size, so there is no way that the data extended * out there. */ return; } last_byte = xfs_file_last_byte(ip); xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, last_byte); if (last_byte > toss_start) { if (flags & XFS_ITRUNC_DEFINITE) { XVOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); } else { XVOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); } } #ifdef DEBUG if (new_size == 0) { ASSERT(VN_CACHED(vp) == 0); } #endif } /* * Shrink the file to the given new_size. The new * size must be smaller than the current size. * This will free up the underlying blocks * in the removed range after a call to xfs_itruncate_start() * or xfs_atruncate_start(). * * The transaction passed to this routine must have made * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. * This routine may commit the given transaction and * start new ones, so make sure everything involved in * the transaction is tidy before calling here. * Some transaction will be returned to the caller to be * committed. The incoming transaction must already include * the inode, and both inode locks must be held exclusively. * The inode must also be "held" within the transaction. On * return the inode will be "held" within the returned transaction. * This routine does NOT require any disk space to be reserved * for it within the transaction. * * The fork parameter must be either xfs_attr_fork or xfs_data_fork, * and it indicates the fork which is to be truncated. For the * attribute fork we only support truncation to size 0. * * We use the sync parameter to indicate whether or not the first * transaction we perform might have to be synchronous. For the attr fork, * it needs to be so if the unlink of the inode is not yet known to be * permanent in the log. This keeps us from freeing and reusing the * blocks of the attribute fork before the unlink of the inode becomes * permanent. * * For the data fork, we normally have to run synchronously if we're * being called out of the inactive path or we're being called * out of the create path where we're truncating an existing file. * Either way, the truncate needs to be sync so blocks don't reappear * in the file with altered data in case of a crash. wsync filesystems * can run the first case async because anything that shrinks the inode * has to run sync so by the time we're called here from inactive, the * inode size is permanently set to 0. * * Calls from the truncate path always need to be sync unless we're * in a wsync filesystem and the file has already been unlinked. * * The caller is responsible for correctly setting the sync parameter. * It gets too hard for us to guess here which path we're being called * out of just based on inode state. */ int xfs_itruncate_finish( xfs_trans_t **tp, xfs_inode_t *ip, xfs_fsize_t new_size, int fork, int sync) { xfs_fsblock_t first_block; xfs_fileoff_t first_unmap_block; xfs_fileoff_t last_block; xfs_filblks_t unmap_len=0; xfs_mount_t *mp; xfs_trans_t *ntp; int done; int committed; xfs_bmap_free_t free_list; int error; ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); ASSERT(*tp != NULL); ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); ASSERT(ip->i_transp == *tp); ASSERT(ip->i_itemp != NULL); ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); ntp = *tp; mp = (ntp)->t_mountp; ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); /* * We only support truncating the entire attribute fork. */ if (fork == XFS_ATTR_FORK) { new_size = 0LL; } first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); /* * The first thing we do is set the size to new_size permanently * on disk. This way we don't have to worry about anyone ever * being able to look at the data being freed even in the face * of a crash. What we're getting around here is the case where * we free a block, it is allocated to another file, it is written * to, and then we crash. If the new data gets written to the * file but the log buffers containing the free and reallocation * don't, then we'd end up with garbage in the blocks being freed. * As long as we make the new_size permanent before actually * freeing any blocks it doesn't matter if they get writtten to. * * The callers must signal into us whether or not the size * setting here must be synchronous. There are a few cases * where it doesn't have to be synchronous. Those cases * occur if the file is unlinked and we know the unlink is * permanent or if the blocks being truncated are guaranteed * to be beyond the inode eof (regardless of the link count) * and the eof value is permanent. Both of these cases occur * only on wsync-mounted filesystems. In those cases, we're * guaranteed that no user will ever see the data in the blocks * that are being truncated so the truncate can run async. * In the free beyond eof case, the file may wind up with * more blocks allocated to it than it needs if we crash * and that won't get fixed until the next time the file * is re-opened and closed but that's ok as that shouldn't * be too many blocks. * * However, we can't just make all wsync xactions run async * because there's one call out of the create path that needs * to run sync where it's truncating an existing file to size * 0 whose size is > 0. * * It's probably possible to come up with a test in this * routine that would correctly distinguish all the above * cases from the values of the function parameters and the * inode state but for sanity's sake, I've decided to let the * layers above just tell us. It's simpler to correctly figure * out in the layer above exactly under what conditions we * can run async and I think it's easier for others read and * follow the logic in case something has to be changed. * cscope is your friend -- rcc. * * The attribute fork is much simpler. * * For the attribute fork we allow the caller to tell us whether * the unlink of the inode that led to this call is yet permanent * in the on disk log. If it is not and we will be freeing extents * in this inode then we make the first transaction synchronous * to make sure that the unlink is permanent by the time we free * the blocks. */ if (fork == XFS_DATA_FORK) { if (ip->i_d.di_nextents > 0) { ip->i_d.di_size = new_size; xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); } } else if (sync) { ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); if (ip->i_d.di_anextents > 0) xfs_trans_set_sync(ntp); } ASSERT(fork == XFS_DATA_FORK || (fork == XFS_ATTR_FORK && ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); /* * Since it is possible for space to become allocated beyond * the end of the file (in a crash where the space is allocated * but the inode size is not yet updated), simply remove any * blocks which show up between the new EOF and the maximum * possible file size. If the first block to be removed is * beyond the maximum file size (ie it is the same as last_block), * then there is nothing to do. */ last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); ASSERT(first_unmap_block <= last_block); done = 0; if (last_block == first_unmap_block) { done = 1; } else { unmap_len = last_block - first_unmap_block + 1; } while (!done) { /* * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() * will tell us whether it freed the entire range or * not. If this is a synchronous mount (wsync), * then we can tell bunmapi to keep all the * transactions asynchronous since the unlink * transaction that made this inode inactive has * already hit the disk. There's no danger of * the freed blocks being reused, there being a * crash, and the reused blocks suddenly reappearing * in this file with garbage in them once recovery * runs. */ XFS_BMAP_INIT(&free_list, &first_block); error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore, first_unmap_block, unmap_len, XFS_BMAPI_AFLAG(fork) | (sync ? 0 : XFS_BMAPI_ASYNC), XFS_ITRUNC_MAX_EXTENTS, &first_block, &free_list, NULL, &done); if (error) { /* * If the bunmapi call encounters an error, * return to the caller where the transaction * can be properly aborted. We just need to * make sure we're not holding any resources * that we were not when we came in. */ xfs_bmap_cancel(&free_list); return error; } /* * Duplicate the transaction that has the permanent * reservation and commit the old transaction. */ error = xfs_bmap_finish(tp, &free_list, first_block, &committed); ntp = *tp; if (error) { /* * If the bmap finish call encounters an error, * return to the caller where the transaction * can be properly aborted. We just need to * make sure we're not holding any resources * that we were not when we came in. * * Aborting from this point might lose some * blocks in the file system, but oh well. */ xfs_bmap_cancel(&free_list); if (committed) { /* * If the passed in transaction committed * in xfs_bmap_finish(), then we want to * add the inode to this one before returning. * This keeps things simple for the higher * level code, because it always knows that * the inode is locked and held in the * transaction that returns to it whether * errors occur or not. We don't mark the * inode dirty so that this transaction can * be easily aborted if possible. */ xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); xfs_trans_ihold(ntp, ip); } return error; } if (committed) { /* * The first xact was committed, * so add the inode to the new one. * Mark it dirty so it will be logged * and moved forward in the log as * part of every commit. */ xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); xfs_trans_ihold(ntp, ip); xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); } ntp = xfs_trans_dup(ntp); (void) xfs_trans_commit(*tp, 0, NULL); *tp = ntp; error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, XFS_TRANS_PERM_LOG_RES, XFS_ITRUNCATE_LOG_COUNT); /* * Add the inode being truncated to the next chained * transaction. */ xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); xfs_trans_ihold(ntp, ip); if (error) return (error); } /* * Only update the size in the case of the data fork, but * always re-log the inode so that our permanent transaction * can keep on rolling it forward in the log. */ if (fork == XFS_DATA_FORK) { xfs_isize_check(mp, ip, new_size); ip->i_d.di_size = new_size; } xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); ASSERT((new_size != 0) || (fork == XFS_ATTR_FORK) || (ip->i_delayed_blks == 0)); ASSERT((new_size != 0) || (fork == XFS_ATTR_FORK) || (ip->i_d.di_nextents == 0)); xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); return 0; } /* * xfs_igrow_start * * Do the first part of growing a file: zero any data in the last * block that is beyond the old EOF. We need to do this before * the inode is joined to the transaction to modify the i_size. * That way we can drop the inode lock and call into the buffer * cache to get the buffer mapping the EOF. */ int xfs_igrow_start( xfs_inode_t *ip, xfs_fsize_t new_size, cred_t *credp) { int error; ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); ASSERT(new_size > ip->i_d.di_size); /* * Zero any pages that may have been created by * xfs_write_file() beyond the end of the file * and any blocks between the old and new file sizes. */ error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, ip->i_d.di_size, new_size); return error; } /* * xfs_igrow_finish * * This routine is called to extend the size of a file. * The inode must have both the iolock and the ilock locked * for update and it must be a part of the current transaction. * The xfs_igrow_start() function must have been called previously. * If the change_flag is not zero, the inode change timestamp will * be updated. */ void xfs_igrow_finish( xfs_trans_t *tp, xfs_inode_t *ip, xfs_fsize_t new_size, int change_flag) { ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); ASSERT(ip->i_transp == tp); ASSERT(new_size > ip->i_d.di_size); /* * Update the file size. Update the inode change timestamp * if change_flag set. */ ip->i_d.di_size = new_size; if (change_flag) xfs_ichgtime(ip, XFS_ICHGTIME_CHG); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); } /* * This is called when the inode's link count goes to 0. * We place the on-disk inode on a list in the AGI. It * will be pulled from this list when the inode is freed. */ int xfs_iunlink( xfs_trans_t *tp, xfs_inode_t *ip) { xfs_mount_t *mp; xfs_agi_t *agi; xfs_dinode_t *dip; xfs_buf_t *agibp; xfs_buf_t *ibp; xfs_agnumber_t agno; xfs_daddr_t agdaddr; xfs_agino_t agino; short bucket_index; int offset; int error; int agi_ok; ASSERT(ip->i_d.di_nlink == 0); ASSERT(ip->i_d.di_mode != 0); ASSERT(ip->i_transp == tp); mp = tp->t_mountp; agno = XFS_INO_TO_AGNO(mp, ip->i_ino); agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); /* * Get the agi buffer first. It ensures lock ordering * on the list. */ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, XFS_FSS_TO_BB(mp, 1), 0, &agibp); if (error) { return error; } /* * Validate the magic number of the agi block. */ agi = XFS_BUF_TO_AGI(agibp); agi_ok = be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, XFS_RANDOM_IUNLINK))) { XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); xfs_trans_brelse(tp, agibp); return XFS_ERROR(EFSCORRUPTED); } /* * Get the index into the agi hash table for the * list this inode will go on. */ agino = XFS_INO_TO_AGINO(mp, ip->i_ino); ASSERT(agino != 0); bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; ASSERT(agi->agi_unlinked[bucket_index]); ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) { /* * There is already another inode in the bucket we need * to add ourselves to. Add us at the front of the list. * Here we put the head pointer into our next pointer, * and then we fall through to point the head at us. */ error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); if (error) { return error; } ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); ASSERT(dip->di_next_unlinked); /* both on-disk, don't endian flip twice */ dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; offset = ip->i_boffset + offsetof(xfs_dinode_t, di_next_unlinked); xfs_trans_inode_buf(tp, ibp); xfs_trans_log_buf(tp, ibp, offset, (offset + sizeof(xfs_agino_t) - 1)); xfs_inobp_check(mp, ibp); } /* * Point the bucket head pointer at the inode being inserted. */ ASSERT(agino != 0); agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); offset = offsetof(xfs_agi_t, agi_unlinked) + (sizeof(xfs_agino_t) * bucket_index); xfs_trans_log_buf(tp, agibp, offset, (offset + sizeof(xfs_agino_t) - 1)); return 0; } /* * Pull the on-disk inode from the AGI unlinked list. */ STATIC int xfs_iunlink_remove( xfs_trans_t *tp, xfs_inode_t *ip) { xfs_ino_t next_ino; xfs_mount_t *mp; xfs_agi_t *agi; xfs_dinode_t *dip; xfs_buf_t *agibp; xfs_buf_t *ibp; xfs_agnumber_t agno; xfs_daddr_t agdaddr; xfs_agino_t agino; xfs_agino_t next_agino; xfs_buf_t *last_ibp; xfs_dinode_t *last_dip = NULL; short bucket_index; int offset, last_offset = 0; int error; int agi_ok; /* * First pull the on-disk inode from the AGI unlinked list. */ mp = tp->t_mountp; agno = XFS_INO_TO_AGNO(mp, ip->i_ino); agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); /* * Get the agi buffer first. It ensures lock ordering * on the list. */ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, XFS_FSS_TO_BB(mp, 1), 0, &agibp); if (error) { cmn_err(CE_WARN, "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", error, mp->m_fsname); return error; } /* * Validate the magic number of the agi block. */ agi = XFS_BUF_TO_AGI(agibp); agi_ok = be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC && XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)); if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, XFS_RANDOM_IUNLINK_REMOVE))) { XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, mp, agi); xfs_trans_brelse(tp, agibp); cmn_err(CE_WARN, "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", mp->m_fsname); return XFS_ERROR(EFSCORRUPTED); } /* * Get the index into the agi hash table for the * list this inode will go on. */ agino = XFS_INO_TO_AGINO(mp, ip->i_ino); ASSERT(agino != 0); bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO); ASSERT(agi->agi_unlinked[bucket_index]); if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { /* * We're at the head of the list. Get the inode's * on-disk buffer to see if there is anyone after us * on the list. Only modify our next pointer if it * is not already NULLAGINO. This saves us the overhead * of dealing with the buffer when there is no need to * change it. */ error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); if (error) { cmn_err(CE_WARN, "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", error, mp->m_fsname); return error; } next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); ASSERT(next_agino != 0); if (next_agino != NULLAGINO) { INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); offset = ip->i_boffset + offsetof(xfs_dinode_t, di_next_unlinked); xfs_trans_inode_buf(tp, ibp); xfs_trans_log_buf(tp, ibp, offset, (offset + sizeof(xfs_agino_t) - 1)); xfs_inobp_check(mp, ibp); } else { xfs_trans_brelse(tp, ibp); } /* * Point the bucket head pointer at the next inode. */ ASSERT(next_agino != 0); ASSERT(next_agino != agino); agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); offset = offsetof(xfs_agi_t, agi_unlinked) + (sizeof(xfs_agino_t) * bucket_index); xfs_trans_log_buf(tp, agibp, offset, (offset + sizeof(xfs_agino_t) - 1)); } else { /* * We need to search the list for the inode being freed. */ next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); last_ibp = NULL; while (next_agino != agino) { /* * If the last inode wasn't the one pointing to * us, then release its buffer since we're not * going to do anything with it. */ if (last_ibp != NULL) { xfs_trans_brelse(tp, last_ibp); } next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); error = xfs_inotobp(mp, tp, next_ino, &last_dip, &last_ibp, &last_offset); if (error) { cmn_err(CE_WARN, "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", error, mp->m_fsname); return error; } next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); ASSERT(next_agino != NULLAGINO); ASSERT(next_agino != 0); } /* * Now last_ibp points to the buffer previous to us on * the unlinked list. Pull us from the list. */ error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0); if (error) { cmn_err(CE_WARN, "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", error, mp->m_fsname); return error; } next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); ASSERT(next_agino != 0); ASSERT(next_agino != agino); if (next_agino != NULLAGINO) { INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); offset = ip->i_boffset + offsetof(xfs_dinode_t, di_next_unlinked); xfs_trans_inode_buf(tp, ibp); xfs_trans_log_buf(tp, ibp, offset, (offset + sizeof(xfs_agino_t) - 1)); xfs_inobp_check(mp, ibp); } else { xfs_trans_brelse(tp, ibp); } /* * Point the previous inode on the list to the next inode. */ INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); ASSERT(next_agino != 0); offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); xfs_trans_inode_buf(tp, last_ibp); xfs_trans_log_buf(tp, last_ibp, offset, (offset + sizeof(xfs_agino_t) - 1)); xfs_inobp_check(mp, last_ibp); } return 0; } static __inline__ int xfs_inode_clean(xfs_inode_t *ip) { return (((ip->i_itemp == NULL) || !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && (ip->i_update_core == 0)); } STATIC void xfs_ifree_cluster( xfs_inode_t *free_ip, xfs_trans_t *tp, xfs_ino_t inum) { xfs_mount_t *mp = free_ip->i_mount; int blks_per_cluster; int nbufs; int ninodes; int i, j, found, pre_flushed; xfs_daddr_t blkno; xfs_buf_t *bp; xfs_ihash_t *ih; xfs_inode_t *ip, **ip_found; xfs_inode_log_item_t *iip; xfs_log_item_t *lip; SPLDECL(s); if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { blks_per_cluster = 1; ninodes = mp->m_sb.sb_inopblock; nbufs = XFS_IALLOC_BLOCKS(mp); } else { blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / mp->m_sb.sb_blocksize; ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; } ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); for (j = 0; j < nbufs; j++, inum += ninodes) { blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), XFS_INO_TO_AGBNO(mp, inum)); /* * Look for each inode in memory and attempt to lock it, * we can be racing with flush and tail pushing here. * any inode we get the locks on, add to an array of * inode items to process later. * * The get the buffer lock, we could beat a flush * or tail pushing thread to the lock here, in which * case they will go looking for the inode buffer * and fail, we need some other form of interlock * here. */ found = 0; for (i = 0; i < ninodes; i++) { ih = XFS_IHASH(mp, inum + i); read_lock(&ih->ih_lock); for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { if (ip->i_ino == inum + i) break; } /* Inode not in memory or we found it already, * nothing to do */ if (!ip || (ip->i_flags & XFS_ISTALE)) { read_unlock(&ih->ih_lock); continue; } if (xfs_inode_clean(ip)) { read_unlock(&ih->ih_lock); continue; } /* If we can get the locks then add it to the * list, otherwise by the time we get the bp lock * below it will already be attached to the * inode buffer. */ /* This inode will already be locked - by us, lets * keep it that way. */ if (ip == free_ip) { if (xfs_iflock_nowait(ip)) { ip->i_flags |= XFS_ISTALE; if (xfs_inode_clean(ip)) { xfs_ifunlock(ip); } else { ip_found[found++] = ip; } } read_unlock(&ih->ih_lock); continue; } if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { if (xfs_iflock_nowait(ip)) { ip->i_flags |= XFS_ISTALE; if (xfs_inode_clean(ip)) { xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); } else { ip_found[found++] = ip; } } else { xfs_iunlock(ip, XFS_ILOCK_EXCL); } } read_unlock(&ih->ih_lock); } bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, mp->m_bsize * blks_per_cluster, XFS_BUF_LOCK); pre_flushed = 0; lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); while (lip) { if (lip->li_type == XFS_LI_INODE) { iip = (xfs_inode_log_item_t *)lip; ASSERT(iip->ili_logged == 1); lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; AIL_LOCK(mp,s); iip->ili_flush_lsn = iip->ili_item.li_lsn; AIL_UNLOCK(mp, s); iip->ili_inode->i_flags |= XFS_ISTALE; pre_flushed++; } lip = lip->li_bio_list; } for (i = 0; i < found; i++) { ip = ip_found[i]; iip = ip->i_itemp; if (!iip) { ip->i_update_core = 0; xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_EXCL); continue; } iip->ili_last_fields = iip->ili_format.ilf_fields; iip->ili_format.ilf_fields = 0; iip->ili_logged = 1; AIL_LOCK(mp,s); iip->ili_flush_lsn = iip->ili_item.li_lsn; AIL_UNLOCK(mp, s); xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done, (xfs_log_item_t *)iip); if (ip != free_ip) { xfs_iunlock(ip, XFS_ILOCK_EXCL); } } if (found || pre_flushed) xfs_trans_stale_inode_buf(tp, bp); xfs_trans_binval(tp, bp); } kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); } /* * This is called to return an inode to the inode free list. * The inode should already be truncated to 0 length and have * no pages associated with it. This routine also assumes that * the inode is already a part of the transaction. * * The on-disk copy of the inode will have been added to the list * of unlinked inodes in the AGI. We need to remove the inode from * that list atomically with respect to freeing it here. */ int xfs_ifree( xfs_trans_t *tp, xfs_inode_t *ip, xfs_bmap_free_t *flist) { int error; int delete; xfs_ino_t first_ino; ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); ASSERT(ip->i_transp == tp); ASSERT(ip->i_d.di_nlink == 0); ASSERT(ip->i_d.di_nextents == 0); ASSERT(ip->i_d.di_anextents == 0); ASSERT((ip->i_d.di_size == 0) || ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); ASSERT(ip->i_d.di_nblocks == 0); /* * Pull the on-disk inode from the AGI unlinked list. */ error = xfs_iunlink_remove(tp, ip); if (error != 0) { return error; } error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); if (error != 0) { return error; } ip->i_d.di_mode = 0; /* mark incore inode as free */ ip->i_d.di_flags = 0; ip->i_d.di_dmevmask = 0; ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ ip->i_df.if_ext_max = XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; /* * Bump the generation count so no one will be confused * by reincarnations of this inode. */ ip->i_d.di_gen++; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); if (delete) { xfs_ifree_cluster(ip, tp, first_ino); } return 0; } /* * Reallocate the space for if_broot based on the number of records * being added or deleted as indicated in rec_diff. Move the records * and pointers in if_broot to fit the new size. When shrinking this * will eliminate holes between the records and pointers created by * the caller. When growing this will create holes to be filled in * by the caller. * * The caller must not request to add more records than would fit in * the on-disk inode root. If the if_broot is currently NULL, then * if we adding records one will be allocated. The caller must also * not request that the number of records go below zero, although * it can go to zero. * * ip -- the inode whose if_broot area is changing * ext_diff -- the change in the number of records, positive or negative, * requested for the if_broot array. */ void xfs_iroot_realloc( xfs_inode_t *ip, int rec_diff, int whichfork) { int cur_max; xfs_ifork_t *ifp; xfs_bmbt_block_t *new_broot; int new_max; size_t new_size; char *np; char *op; /* * Handle the degenerate case quietly. */ if (rec_diff == 0) { return; } ifp = XFS_IFORK_PTR(ip, whichfork); if (rec_diff > 0) { /* * If there wasn't any memory allocated before, just * allocate it now and get out. */ if (ifp->if_broot_bytes == 0) { new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, KM_SLEEP); ifp->if_broot_bytes = (int)new_size; return; } /* * If there is already an existing if_broot, then we need * to realloc() it and shift the pointers to their new * location. The records don't change location because * they are kept butted up against the btree block header. */ cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); new_max = cur_max + rec_diff; new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); ifp->if_broot = (xfs_bmbt_block_t *) kmem_realloc(ifp->if_broot, new_size, (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ KM_SLEEP); op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, ifp->if_broot_bytes); np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, (int)new_size); ifp->if_broot_bytes = (int)new_size; ASSERT(ifp->if_broot_bytes <= XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); return; } /* * rec_diff is less than 0. In this case, we are shrinking the * if_broot buffer. It must already exist. If we go to zero * records, just get rid of the root and clear the status bit. */ ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); new_max = cur_max + rec_diff; ASSERT(new_max >= 0); if (new_max > 0) new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); else new_size = 0; if (new_size > 0) { new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); /* * First copy over the btree block header. */ memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); } else { new_broot = NULL; ifp->if_flags &= ~XFS_IFBROOT; } /* * Only copy the records and pointers if there are any. */ if (new_max > 0) { /* * First copy the records. */ op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, ifp->if_broot_bytes); np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, (int)new_size); memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); /* * Then copy the pointers. */ op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, ifp->if_broot_bytes); np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, (int)new_size); memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); } kmem_free(ifp->if_broot, ifp->if_broot_bytes); ifp->if_broot = new_broot; ifp->if_broot_bytes = (int)new_size; ASSERT(ifp->if_broot_bytes <= XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); return; } /* * This is called when the amount of space needed for if_data * is increased or decreased. The change in size is indicated by * the number of bytes that need to be added or deleted in the * byte_diff parameter. * * If the amount of space needed has decreased below the size of the * inline buffer, then switch to using the inline buffer. Otherwise, * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer * to what is needed. * * ip -- the inode whose if_data area is changing * byte_diff -- the change in the number of bytes, positive or negative, * requested for the if_data array. */ void xfs_idata_realloc( xfs_inode_t *ip, int byte_diff, int whichfork) { xfs_ifork_t *ifp; int new_size; int real_size; if (byte_diff == 0) { return; } ifp = XFS_IFORK_PTR(ip, whichfork); new_size = (int)ifp->if_bytes + byte_diff; ASSERT(new_size >= 0); if (new_size == 0) { if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); } ifp->if_u1.if_data = NULL; real_size = 0; } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { /* * If the valid extents/data can fit in if_inline_ext/data, * copy them from the malloc'd vector and free it. */ if (ifp->if_u1.if_data == NULL) { ifp->if_u1.if_data = ifp->if_u2.if_inline_data; } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { ASSERT(ifp->if_real_bytes != 0); memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, new_size); kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); ifp->if_u1.if_data = ifp->if_u2.if_inline_data; } real_size = 0; } else { /* * Stuck with malloc/realloc. * For inline data, the underlying buffer must be * a multiple of 4 bytes in size so that it can be * logged and stay on word boundaries. We enforce * that here. */ real_size = roundup(new_size, 4); if (ifp->if_u1.if_data == NULL) { ASSERT(ifp->if_real_bytes == 0); ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { /* * Only do the realloc if the underlying size * is really changing. */ if (ifp->if_real_bytes != real_size) { ifp->if_u1.if_data = kmem_realloc(ifp->if_u1.if_data, real_size, ifp->if_real_bytes, KM_SLEEP); } } else { ASSERT(ifp->if_real_bytes == 0); ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, ifp->if_bytes); } } ifp->if_real_bytes = real_size; ifp->if_bytes = new_size; ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); } /* * Map inode to disk block and offset. * * mp -- the mount point structure for the current file system * tp -- the current transaction * ino -- the inode number of the inode to be located * imap -- this structure is filled in with the information necessary * to retrieve the given inode from disk * flags -- flags to pass to xfs_dilocate indicating whether or not * lookups in the inode btree were OK or not */ int xfs_imap( xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, xfs_imap_t *imap, uint flags) { xfs_fsblock_t fsbno; int len; int off; int error; fsbno = imap->im_blkno ? XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); if (error != 0) { return error; } imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); imap->im_len = XFS_FSB_TO_BB(mp, len); imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); imap->im_ioffset = (ushort)off; imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); return 0; } void xfs_idestroy_fork( xfs_inode_t *ip, int whichfork) { xfs_ifork_t *ifp; ifp = XFS_IFORK_PTR(ip, whichfork); if (ifp->if_broot != NULL) { kmem_free(ifp->if_broot, ifp->if_broot_bytes); ifp->if_broot = NULL; } /* * If the format is local, then we can't have an extents * array so just look for an inline data array. If we're * not local then we may or may not have an extents list, * so check and free it up if we do. */ if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && (ifp->if_u1.if_data != NULL)) { ASSERT(ifp->if_real_bytes != 0); kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); ifp->if_u1.if_data = NULL; ifp->if_real_bytes = 0; } } else if ((ifp->if_flags & XFS_IFEXTENTS) && ((ifp->if_flags & XFS_IFEXTIREC) || ((ifp->if_u1.if_extents != NULL) && (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) { ASSERT(ifp->if_real_bytes != 0); xfs_iext_destroy(ifp); } ASSERT(ifp->if_u1.if_extents == NULL || ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); ASSERT(ifp->if_real_bytes == 0); if (whichfork == XFS_ATTR_FORK) { kmem_zone_free(xfs_ifork_zone, ip->i_afp); ip->i_afp = NULL; } } /* * This is called free all the memory associated with an inode. * It must free the inode itself and any buffers allocated for * if_extents/if_data and if_broot. It must also free the lock * associated with the inode. */ void xfs_idestroy( xfs_inode_t *ip) { switch (ip->i_d.di_mode & S_IFMT) { case S_IFREG: case S_IFDIR: case S_IFLNK: xfs_idestroy_fork(ip, XFS_DATA_FORK); break; } if (ip->i_afp) xfs_idestroy_fork(ip, XFS_ATTR_FORK); mrfree(&ip->i_lock); mrfree(&ip->i_iolock); freesema(&ip->i_flock); #ifdef XFS_BMAP_TRACE ktrace_free(ip->i_xtrace); #endif #ifdef XFS_BMBT_TRACE ktrace_free(ip->i_btrace); #endif #ifdef XFS_RW_TRACE ktrace_free(ip->i_rwtrace); #endif #ifdef XFS_ILOCK_TRACE ktrace_free(ip->i_lock_trace); #endif #ifdef XFS_DIR2_TRACE ktrace_free(ip->i_dir_trace); #endif if (ip->i_itemp) { /* XXXdpd should be able to assert this but shutdown * is leaving the AIL behind. */ ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || XFS_FORCED_SHUTDOWN(ip->i_mount)); xfs_inode_item_destroy(ip); } kmem_zone_free(xfs_inode_zone, ip); } /* * Increment the pin count of the given buffer. * This value is protected by ipinlock spinlock in the mount structure. */ void xfs_ipin( xfs_inode_t *ip) { ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); atomic_inc(&ip->i_pincount); } /* * Decrement the pin count of the given inode, and wake up * anyone in xfs_iwait_unpin() if the count goes to 0. The * inode must have been previously pinned with a call to xfs_ipin(). */ void xfs_iunpin( xfs_inode_t *ip) { ASSERT(atomic_read(&ip->i_pincount) > 0); if (atomic_dec_and_test(&ip->i_pincount)) { /* * If the inode is currently being reclaimed, the * linux inode _and_ the xfs vnode may have been * freed so we cannot reference either of them safely. * Hence we should not try to do anything to them * if the xfs inode is currently in the reclaim * path. * * However, we still need to issue the unpin wakeup * call as the inode reclaim may be blocked waiting for * the inode to become unpinned. */ if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) { /* * Should I mark FreeBSD vnode as dirty here? */ printf("xfs_iunpin: REC RECABLE ip %p\n",ip); #ifdef RMC xfs_vnode_t *vp = XFS_ITOV_NULL(ip); /* make sync come back and flush this inode */ if (vp) { struct inode *inode = vn_to_inode(vp); if (!(inode->i_state & I_NEW)) mark_inode_dirty_sync(inode); } #endif } wakeup(&ip->i_ipin_wait); } } /* * This is called to wait for the given inode to be unpinned. * It will sleep until this happens. The caller must have the * inode locked in at least shared mode so that the buffer cannot * be subsequently pinned once someone is waiting for it to be * unpinned. */ STATIC void xfs_iunpin_wait( xfs_inode_t *ip) { xfs_inode_log_item_t *iip; xfs_lsn_t lsn; ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); if (atomic_read(&ip->i_pincount) == 0) { return; } iip = ip->i_itemp; if (iip && iip->ili_last_lsn) { lsn = iip->ili_last_lsn; } else { lsn = (xfs_lsn_t)0; } /* * Give the log a push so we don't wait here too long. */ xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); /* * XXXKAN: xfs_iunpin is not locking inode * at all? */ while(atomic_read(&ip->i_pincount) != 0) tsleep(&ip->i_ipin_wait, PRIBIO, "iunpin", 0); } /* * xfs_iextents_copy() * * This is called to copy the REAL extents (as opposed to the delayed * allocation extents) from the inode into the given buffer. It * returns the number of bytes copied into the buffer. * * If there are no delayed allocation extents, then we can just * memcpy() the extents into the buffer. Otherwise, we need to * examine each extent in turn and skip those which are delayed. */ int xfs_iextents_copy( xfs_inode_t *ip, xfs_bmbt_rec_t *buffer, int whichfork) { int copied; xfs_bmbt_rec_t *dest_ep; xfs_bmbt_rec_t *ep; #ifdef XFS_BMAP_TRACE static char fname[] = "xfs_iextents_copy"; #endif int i; xfs_ifork_t *ifp; int nrecs; xfs_fsblock_t start_block; ifp = XFS_IFORK_PTR(ip, whichfork); ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); ASSERT(ifp->if_bytes > 0); nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); ASSERT(nrecs > 0); /* * There are some delayed allocation extents in the * inode, so copy the extents one at a time and skip * the delayed ones. There must be at least one * non-delayed extent. */ dest_ep = buffer; copied = 0; for (i = 0; i < nrecs; i++) { ep = xfs_iext_get_ext(ifp, i); start_block = xfs_bmbt_get_startblock(ep); if (ISNULLSTARTBLOCK(start_block)) { /* * It's a delayed allocation extent, so skip it. */ continue; } /* Translate to on disk format */ put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), (__uint64_t*)&dest_ep->l0); put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), (__uint64_t*)&dest_ep->l1); dest_ep++; copied++; } ASSERT(copied != 0); xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip)); return (copied * (uint)sizeof(xfs_bmbt_rec_t)); } /* * Each of the following cases stores data into the same region * of the on-disk inode, so only one of them can be valid at * any given time. While it is possible to have conflicting formats * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is * in EXTENTS format, this can only happen when the fork has * changed formats after being modified but before being flushed. * In these cases, the format always takes precedence, because the * format indicates the current state of the fork. */ /*ARGSUSED*/ STATIC int xfs_iflush_fork( xfs_inode_t *ip, xfs_dinode_t *dip, xfs_inode_log_item_t *iip, int whichfork, xfs_buf_t *bp) { char *cp; xfs_ifork_t *ifp; xfs_mount_t *mp; #ifdef XFS_TRANS_DEBUG int first; #endif static const short brootflag[2] = { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; static const short dataflag[2] = { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; static const short extflag[2] = { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; if (iip == NULL) return 0; ifp = XFS_IFORK_PTR(ip, whichfork); /* * This can happen if we gave up in iformat in an error path, * for the attribute fork. */ if (ifp == NULL) { ASSERT(whichfork == XFS_ATTR_FORK); return 0; } cp = XFS_DFORK_PTR(dip, whichfork); mp = ip->i_mount; switch (XFS_IFORK_FORMAT(ip, whichfork)) { case XFS_DINODE_FMT_LOCAL: if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && (ifp->if_bytes > 0)) { ASSERT(ifp->if_u1.if_data != NULL); ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); } if (whichfork == XFS_DATA_FORK) { if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { XFS_ERROR_REPORT("xfs_iflush_fork", XFS_ERRLEVEL_LOW, mp); return XFS_ERROR(EFSCORRUPTED); } } break; case XFS_DINODE_FMT_EXTENTS: ASSERT((ifp->if_flags & XFS_IFEXTENTS) || !(iip->ili_format.ilf_fields & extflag[whichfork])); ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) || (ifp->if_bytes == 0)); ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) || (ifp->if_bytes > 0)); if ((iip->ili_format.ilf_fields & extflag[whichfork]) && (ifp->if_bytes > 0)) { ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, whichfork); } break; case XFS_DINODE_FMT_BTREE: if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && (ifp->if_broot_bytes > 0)) { ASSERT(ifp->if_broot != NULL); ASSERT(ifp->if_broot_bytes <= (XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ)); xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, (xfs_bmdr_block_t *)cp, XFS_DFORK_SIZE(dip, mp, whichfork)); } break; case XFS_DINODE_FMT_DEV: if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { ASSERT(whichfork == XFS_DATA_FORK); INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); } break; case XFS_DINODE_FMT_UUID: if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { ASSERT(whichfork == XFS_DATA_FORK); memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, sizeof(uuid_t)); } break; default: ASSERT(0); break; } return 0; } /* * xfs_iflush() will write a modified inode's changes out to the * inode's on disk home. The caller must have the inode lock held * in at least shared mode and the inode flush semaphore must be * held as well. The inode lock will still be held upon return from * the call and the caller is free to unlock it. * The inode flush lock will be unlocked when the inode reaches the disk. * The flags indicate how the inode's buffer should be written out. */ int xfs_iflush( xfs_inode_t *ip, uint flags) { xfs_inode_log_item_t *iip; xfs_buf_t *bp; xfs_dinode_t *dip; xfs_mount_t *mp; int error; /* REFERENCED */ xfs_chash_t *ch; xfs_inode_t *iq; int clcount; /* count of inodes clustered */ int bufwasdelwri; enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; SPLDECL(s); XFS_STATS_INC(xs_iflush_count); printf("xfs_iflush: ip %p i_ino %lld\n",ip,ip->i_ino); ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); ASSERT(valusema(&ip->i_flock) <= 0); ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || ip->i_d.di_nextents > ip->i_df.if_ext_max); iip = ip->i_itemp; mp = ip->i_mount; /* * If the inode isn't dirty, then just release the inode * flush lock and do nothing. */ if ((ip->i_update_core == 0) && ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { ASSERT((iip != NULL) ? !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); xfs_ifunlock(ip); return 0; } /* * We can't flush the inode until it is unpinned, so * wait for it. We know noone new can pin it, because * we are holding the inode lock shared and you need * to hold it exclusively to pin the inode. */ xfs_iunpin_wait(ip); /* * This may have been unpinned because the filesystem is shutting * down forcibly. If that's the case we must not write this inode * to disk, because the log record didn't make it to disk! */ if (XFS_FORCED_SHUTDOWN(mp)) { ip->i_update_core = 0; if (iip) iip->ili_format.ilf_fields = 0; xfs_ifunlock(ip); return XFS_ERROR(EIO); } /* * Get the buffer containing the on-disk inode. */ error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0); if (error) { xfs_ifunlock(ip); return error; } /* * Decide how buffer will be flushed out. This is done before * the call to xfs_iflush_int because this field is zeroed by it. */ if (iip != NULL && iip->ili_format.ilf_fields != 0) { /* * Flush out the inode buffer according to the directions * of the caller. In the cases where the caller has given * us a choice choose the non-delwri case. This is because * the inode is in the AIL and we need to get it out soon. */ switch (flags) { case XFS_IFLUSH_SYNC: case XFS_IFLUSH_DELWRI_ELSE_SYNC: flags = 0; break; case XFS_IFLUSH_ASYNC: case XFS_IFLUSH_DELWRI_ELSE_ASYNC: flags = INT_ASYNC; break; case XFS_IFLUSH_DELWRI: flags = INT_DELWRI; break; default: ASSERT(0); flags = 0; break; } } else { switch (flags) { case XFS_IFLUSH_DELWRI_ELSE_SYNC: case XFS_IFLUSH_DELWRI_ELSE_ASYNC: case XFS_IFLUSH_DELWRI: flags = INT_DELWRI; break; case XFS_IFLUSH_ASYNC: flags = INT_ASYNC; break; case XFS_IFLUSH_SYNC: flags = 0; break; default: ASSERT(0); flags = 0; break; } } /* * First flush out the inode that xfs_iflush was called with. */ error = xfs_iflush_int(ip, bp); if (error) { goto corrupt_out; } /* * inode clustering: * see if other inodes can be gathered into this write */ ip->i_chash->chl_buf = bp; ch = XFS_CHASH(mp, ip->i_blkno); s = mutex_spinlock(&ch->ch_lock); clcount = 0; for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { /* * Do an un-protected check to see if the inode is dirty and * is a candidate for flushing. These checks will be repeated * later after the appropriate locks are acquired. */ iip = iq->i_itemp; if ((iq->i_update_core == 0) && ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && xfs_ipincount(iq) == 0) { continue; } /* * Try to get locks. If any are unavailable, * then this inode cannot be flushed and is skipped. */ /* get inode locks (just i_lock) */ if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { /* get inode flush lock */ if (xfs_iflock_nowait(iq)) { /* check if pinned */ if (xfs_ipincount(iq) == 0) { /* arriving here means that * this inode can be flushed. * first re-check that it's * dirty */ iip = iq->i_itemp; if ((iq->i_update_core != 0)|| ((iip != NULL) && (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { clcount++; error = xfs_iflush_int(iq, bp); if (error) { xfs_iunlock(iq, XFS_ILOCK_SHARED); goto cluster_corrupt_out; } } else { xfs_ifunlock(iq); } } else { xfs_ifunlock(iq); } } xfs_iunlock(iq, XFS_ILOCK_SHARED); } } mutex_spinunlock(&ch->ch_lock, s); if (clcount) { XFS_STATS_INC(xs_icluster_flushcnt); XFS_STATS_ADD(xs_icluster_flushinode, clcount); } /* * If the buffer is pinned then push on the log so we won't * get stuck waiting in the write for too long. */ if (XFS_BUF_ISPINNED(bp)){ xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); } if (flags & INT_DELWRI) { xfs_bdwrite(mp, bp); } else if (flags & INT_ASYNC) { xfs_bawrite(mp, bp); } else { error = xfs_bwrite(mp, bp); } return error; corrupt_out: xfs_buf_relse(bp); xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); xfs_iflush_abort(ip); /* * Unlocks the flush lock */ return XFS_ERROR(EFSCORRUPTED); cluster_corrupt_out: /* Corruption detected in the clustering loop. Invalidate the * inode buffer and shut down the filesystem. */ mutex_spinunlock(&ch->ch_lock, s); /* * Clean up the buffer. If it was B_DELWRI, just release it -- * brelse can handle it with no problems. If not, shut down the * filesystem before releasing the buffer. */ if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { xfs_buf_relse(bp); } xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); if(!bufwasdelwri) { /* * Just like incore_relse: if we have b_iodone functions, * mark the buffer as an error and call them. Otherwise * mark it as stale and brelse. */ if (XFS_BUF_IODONE_FUNC(bp)) { XFS_BUF_CLR_BDSTRAT_FUNC(bp); XFS_BUF_UNDONE(bp); XFS_BUF_STALE(bp); XFS_BUF_SHUT(bp); XFS_BUF_ERROR(bp,EIO); xfs_biodone(bp); } else { XFS_BUF_STALE(bp); xfs_buf_relse(bp); } } xfs_iflush_abort(iq); /* * Unlocks the flush lock */ return XFS_ERROR(EFSCORRUPTED); } STATIC int xfs_iflush_int( xfs_inode_t *ip, xfs_buf_t *bp) { xfs_inode_log_item_t *iip; xfs_dinode_t *dip; xfs_mount_t *mp; #ifdef XFS_TRANS_DEBUG // int first; #endif SPLDECL(s); ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); ASSERT(valusema(&ip->i_flock) <= 0); ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || ip->i_d.di_nextents > ip->i_df.if_ext_max); iip = ip->i_itemp; mp = ip->i_mount; /* * If the inode isn't dirty, then just release the inode * flush lock and do nothing. */ if ((ip->i_update_core == 0) && ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { xfs_ifunlock(ip); return 0; } /* set *dip = inode's place in the buffer */ dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); /* * Clear i_update_core before copying out the data. * This is for coordination with our timestamp updates * that don't hold the inode lock. They will always * update the timestamps BEFORE setting i_update_core, * so if we clear i_update_core after they set it we * are guaranteed to see their updates to the timestamps. * I believe that this depends on strongly ordered memory * semantics, but we have that. We use the SYNCHRONIZE * macro to make sure that the compiler does not reorder * the i_update_core access below the data copy below. */ ip->i_update_core = 0; SYNCHRONIZE(); /* * Make sure to get the latest atime from the Linux inode. */ xfs_synchronize_atime(ip); if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); goto corrupt_out; } if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", ip->i_ino, ip, ip->i_d.di_magic); goto corrupt_out; } if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { if (XFS_TEST_ERROR( (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", ip->i_ino, ip); goto corrupt_out; } } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { if (XFS_TEST_ERROR( (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", ip->i_ino, ip); goto corrupt_out; } } if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, XFS_RANDOM_IFLUSH_5)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", ip->i_ino, ip->i_d.di_nextents + ip->i_d.di_anextents, ip->i_d.di_nblocks, ip); goto corrupt_out; } if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", ip->i_ino, ip->i_d.di_forkoff, ip); goto corrupt_out; } /* * bump the flush iteration count, used to detect flushes which * postdate a log record during recovery. */ ip->i_d.di_flushiter++; /* * Copy the dirty parts of the inode into the on-disk * inode. We always copy out the core of the inode, * because if the inode is dirty at all the core must * be. */ xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); /* Wrap, we never let the log put out DI_MAX_FLUSH */ if (ip->i_d.di_flushiter == DI_MAX_FLUSH) ip->i_d.di_flushiter = 0; /* * If this is really an old format inode and the superblock version * has not been updated to support only new format inodes, then * convert back to the old inode format. If the superblock version * has been updated, then make the conversion permanent. */ ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || XFS_SB_VERSION_HASNLINK(&mp->m_sb)); if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { /* * Convert it back. */ ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); } else { /* * The superblock version has already been bumped, * so just make the conversion to the new inode * format permanent. */ ip->i_d.di_version = XFS_DINODE_VERSION_2; INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); ip->i_d.di_onlink = 0; dip->di_core.di_onlink = 0; memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); memset(&(dip->di_core.di_pad[0]), 0, sizeof(dip->di_core.di_pad)); ASSERT(ip->i_d.di_projid == 0); } } if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { goto corrupt_out; } if (XFS_IFORK_Q(ip)) { /* * The only error from xfs_iflush_fork is on the data fork. */ (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); } xfs_inobp_check(mp, bp); /* * We've recorded everything logged in the inode, so we'd * like to clear the ilf_fields bits so we don't log and * flush things unnecessarily. However, we can't stop * logging all this information until the data we've copied * into the disk buffer is written to disk. If we did we might * overwrite the copy of the inode in the log with all the * data after re-logging only part of it, and in the face of * a crash we wouldn't have all the data we need to recover. * * What we do is move the bits to the ili_last_fields field. * When logging the inode, these bits are moved back to the * ilf_fields field. In the xfs_iflush_done() routine we * clear ili_last_fields, since we know that the information * those bits represent is permanently on disk. As long as * the flush completes before the inode is logged again, then * both ilf_fields and ili_last_fields will be cleared. * * We can play with the ilf_fields bits here, because the inode * lock must be held exclusively in order to set bits there * and the flush lock protects the ili_last_fields bits. * Set ili_logged so the flush done * routine can tell whether or not to look in the AIL. * Also, store the current LSN of the inode so that we can tell * whether the item has moved in the AIL from xfs_iflush_done(). * In order to read the lsn we need the AIL lock, because * it is a 64 bit value that cannot be read atomically. */ if (iip != NULL && iip->ili_format.ilf_fields != 0) { iip->ili_last_fields = iip->ili_format.ilf_fields; iip->ili_format.ilf_fields = 0; iip->ili_logged = 1; ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ AIL_LOCK(mp,s); iip->ili_flush_lsn = iip->ili_item.li_lsn; AIL_UNLOCK(mp, s); /* * Attach the function xfs_iflush_done to the inode's * buffer. This will remove the inode from the AIL * and unlock the inode's flush lock when the inode is * completely written to disk. */ xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_iflush_done, (xfs_log_item_t *)iip); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); } else { /* * We're flushing an inode which is not in the AIL and has * not been logged but has i_update_core set. For this * case we can use a B_DELWRI flush and immediately drop * the inode flush lock because we can avoid the whole * AIL state thing. It's OK to drop the flush lock now, * because we've already locked the buffer and to do anything * you really need both. */ if (iip != NULL) { ASSERT(iip->ili_logged == 0); ASSERT(iip->ili_last_fields == 0); ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); } xfs_ifunlock(ip); } return 0; corrupt_out: return XFS_ERROR(EFSCORRUPTED); } /* * Flush all inactive inodes in mp. */ void xfs_iflush_all( xfs_mount_t *mp) { int done; int purged; xfs_inode_t *ip; xfs_vnode_t *vp; done = 0; while (!done) { purged = 0; XFS_MOUNT_ILOCK(mp); ip = mp->m_inodes; if (ip == NULL) { break; } do { /* Make sure we skip markers inserted by sync */ if (ip->i_mount == NULL) { ip = ip->i_mnext; continue; } /* * It's up to our caller to purge the root * and quota vnodes later. */ vp = XFS_ITOV_NULL(ip); if (!vp) { XFS_MOUNT_IUNLOCK(mp); xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); purged = 1; break; } if (vn_count(vp) != 0) { if (vn_count(vp) == 1 && (ip == mp->m_rootip || (mp->m_quotainfo && (ip->i_ino == mp->m_sb.sb_uquotino || ip->i_ino == mp->m_sb.sb_gquotino)))) { ip = ip->i_mnext; continue; } /* * Ignore busy inodes but continue flushing * others. */ ip = ip->i_mnext; continue; } /* * Sample vp mapping while holding mp locked on MP * systems, so we don't purge a reclaimed or * nonexistent vnode. We break from the loop * since we know that we modify * it by pulling ourselves from it in xfs_reclaim() * called via vn_purge() below. Set ip to the next * entry in the list anyway so we'll know below * whether we reached the end or not. */ XFS_MOUNT_IUNLOCK(mp); vn_purge(vp); purged = 1; break; } while (ip != mp->m_inodes); /* * We need to distinguish between when we exit the loop * after a purge and when we simply hit the end of the * list. We can't use the (ip == mp->m_inodes) test, * because when we purge an inode at the start of the list * the next inode on the list becomes mp->m_inodes. That * would cause such a test to bail out early. The purged * variable tells us how we got out of the loop. */ if (!purged) { done = 1; } } XFS_MOUNT_IUNLOCK(mp); } /* * xfs_iaccess: check accessibility of inode for mode. * This function is quite linuxy now * probably should be move to a os specfic location */ int xfs_iaccess( xfs_inode_t *ip, accmode_t accmode, cred_t *cr) { xfs_vnode_t *vp; int error; mode_t imode; vp = XFS_ITOV(ip); /* FreeBSD local change here */ imode = (ip->i_d.di_mode & MODEMASK) | VTTOIF(vp->v_vnode->v_type); /* * Verify that the MAC policy allows the requested access. */ if ((error = _MAC_XFS_IACCESS(ip, accmode, cr))) return XFS_ERROR(error); if (accmode & VWRITE) { xfs_mount_t *mp = ip->i_mount; if ((XVFSTOMNT(XFS_MTOVFS(mp))->mnt_flag & MNT_RDONLY) && (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) return XFS_ERROR(EROFS); #ifdef XXXKAN if (IS_IMMUTABLE(inode)) return XFS_ERROR(EACCES); #endif } /* * If there's an Access Control List it's used instead of * the mode bits. */ if ((error = _ACL_XFS_IACCESS(ip, accmode, cr)) != -1) return error ? XFS_ERROR(error) : 0; /* FreeBSD local change here */ error = vaccess(vp->v_vnode->v_type, imode, ip->i_d.di_uid, ip->i_d.di_gid, accmode, cr, NULL); return (error); } /* * xfs_iroundup: round up argument to next power of two */ uint xfs_iroundup( uint v) { int i; uint m; if ((v & (v - 1)) == 0) return v; ASSERT((v & 0x80000000) == 0); if ((v & (v + 1)) == 0) return v + 1; for (i = 0, m = 1; i < 31; i++, m <<= 1) { if (v & m) continue; v |= m; if ((v & (v + 1)) == 0) return v + 1; } ASSERT(0); return( 0 ); } #ifdef XFS_ILOCK_TRACE ktrace_t *xfs_ilock_trace_buf; void xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) { ktrace_enter(ip->i_lock_trace, (void *)ip, (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ (void *)ra, /* caller of ilock */ (void *)(unsigned long)current_cpu(), (void *)(unsigned long)current_pid(), NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); } #endif /* * Return a pointer to the extent record at file index idx. */ xfs_bmbt_rec_t * xfs_iext_get_ext( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_extnum_t idx) /* index of target extent */ { ASSERT(idx >= 0); if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) { return ifp->if_u1.if_ext_irec->er_extbuf; } else if (ifp->if_flags & XFS_IFEXTIREC) { xfs_ext_irec_t *erp; /* irec pointer */ int erp_idx = 0; /* irec index */ xfs_extnum_t page_idx = idx; /* ext index in target list */ erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); return &erp->er_extbuf[page_idx]; } else if (ifp->if_bytes) { return &ifp->if_u1.if_extents[idx]; } else { return NULL; } } /* * Insert new item(s) into the extent records for incore inode * fork 'ifp'. 'count' new items are inserted at index 'idx'. */ void xfs_iext_insert( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_extnum_t idx, /* starting index of new items */ xfs_extnum_t count, /* number of inserted items */ xfs_bmbt_irec_t *new) /* items to insert */ { xfs_bmbt_rec_t *ep; /* extent record pointer */ xfs_extnum_t i; /* extent record index */ ASSERT(ifp->if_flags & XFS_IFEXTENTS); xfs_iext_add(ifp, idx, count); for (i = idx; i < idx + count; i++, new++) { ep = xfs_iext_get_ext(ifp, i); xfs_bmbt_set_all(ep, new); } } /* * This is called when the amount of space required for incore file * extents needs to be increased. The ext_diff parameter stores the * number of new extents being added and the idx parameter contains * the extent index where the new extents will be added. If the new * extents are being appended, then we just need to (re)allocate and * initialize the space. Otherwise, if the new extents are being * inserted into the middle of the existing entries, a bit more work * is required to make room for the new extents to be inserted. The * caller is responsible for filling in the new extent entries upon * return. */ void xfs_iext_add( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_extnum_t idx, /* index to begin adding exts */ int ext_diff) /* number of extents to add */ { int byte_diff; /* new bytes being added */ int new_size; /* size of extents after adding */ xfs_extnum_t nextents; /* number of extents in file */ nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); ASSERT((idx >= 0) && (idx <= nextents)); byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t); new_size = ifp->if_bytes + byte_diff; /* * If the new number of extents (nextents + ext_diff) * fits inside the inode, then continue to use the inline * extent buffer. */ if (nextents + ext_diff <= XFS_INLINE_EXTS) { if (idx < nextents) { memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff], &ifp->if_u2.if_inline_ext[idx], (nextents - idx) * sizeof(xfs_bmbt_rec_t)); memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff); } ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; ifp->if_real_bytes = 0; ifp->if_lastex = nextents + ext_diff; } /* * Otherwise use a linear (direct) extent list. * If the extents are currently inside the inode, * xfs_iext_realloc_direct will switch us from * inline to direct extent allocation mode. */ else if (nextents + ext_diff <= XFS_LINEAR_EXTS) { xfs_iext_realloc_direct(ifp, new_size); if (idx < nextents) { memmove(&ifp->if_u1.if_extents[idx + ext_diff], &ifp->if_u1.if_extents[idx], (nextents - idx) * sizeof(xfs_bmbt_rec_t)); memset(&ifp->if_u1.if_extents[idx], 0, byte_diff); } } /* Indirection array */ else { xfs_ext_irec_t *erp; int erp_idx = 0; int page_idx = idx; ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS); if (ifp->if_flags & XFS_IFEXTIREC) { erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1); } else { xfs_iext_irec_init(ifp); ASSERT(ifp->if_flags & XFS_IFEXTIREC); erp = ifp->if_u1.if_ext_irec; } /* Extents fit in target extent page */ if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) { if (page_idx < erp->er_extcount) { memmove(&erp->er_extbuf[page_idx + ext_diff], &erp->er_extbuf[page_idx], (erp->er_extcount - page_idx) * sizeof(xfs_bmbt_rec_t)); memset(&erp->er_extbuf[page_idx], 0, byte_diff); } erp->er_extcount += ext_diff; xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); } /* Insert a new extent page */ else if (erp) { xfs_iext_add_indirect_multi(ifp, erp_idx, page_idx, ext_diff); } /* * If extent(s) are being appended to the last page in * the indirection array and the new extent(s) don't fit * in the page, then erp is NULL and erp_idx is set to * the next index needed in the indirection array. */ else { int count = ext_diff; while (count) { erp = xfs_iext_irec_new(ifp, erp_idx); erp->er_extcount = count; count -= MIN(count, (int)XFS_LINEAR_EXTS); if (count) { erp_idx++; } } } } ifp->if_bytes = new_size; } /* * This is called when incore extents are being added to the indirection * array and the new extents do not fit in the target extent list. The * erp_idx parameter contains the irec index for the target extent list * in the indirection array, and the idx parameter contains the extent * index within the list. The number of extents being added is stored * in the count parameter. * * |-------| |-------| * | | | | idx - number of extents before idx * | idx | | count | * | | | | count - number of extents being inserted at idx * |-------| |-------| * | count | | nex2 | nex2 - number of extents after idx + count * |-------| |-------| */ void xfs_iext_add_indirect_multi( xfs_ifork_t *ifp, /* inode fork pointer */ int erp_idx, /* target extent irec index */ xfs_extnum_t idx, /* index within target list */ int count) /* new extents being added */ { int byte_diff; /* new bytes being added */ xfs_ext_irec_t *erp; /* pointer to irec entry */ xfs_extnum_t ext_diff; /* number of extents to add */ xfs_extnum_t ext_cnt; /* new extents still needed */ xfs_extnum_t nex2; /* extents after idx + count */ xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */ int nlists; /* number of irec's (lists) */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); erp = &ifp->if_u1.if_ext_irec[erp_idx]; nex2 = erp->er_extcount - idx; nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; /* * Save second part of target extent list * (all extents past */ if (nex2) { byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP); memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff); erp->er_extcount -= nex2; xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2); memset(&erp->er_extbuf[idx], 0, byte_diff); } /* * Add the new extents to the end of the target * list, then allocate new irec record(s) and * extent buffer(s) as needed to store the rest * of the new extents. */ ext_cnt = count; ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount); if (ext_diff) { erp->er_extcount += ext_diff; xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); ext_cnt -= ext_diff; } while (ext_cnt) { erp_idx++; erp = xfs_iext_irec_new(ifp, erp_idx); ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS); erp->er_extcount = ext_diff; xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff); ext_cnt -= ext_diff; } /* Add nex2 extents back to indirection array */ if (nex2) { xfs_extnum_t ext_avail; int i; byte_diff = nex2 * sizeof(xfs_bmbt_rec_t); ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; i = 0; /* * If nex2 extents fit in the current page, append * nex2_ep after the new extents. */ if (nex2 <= ext_avail) { i = erp->er_extcount; } /* * Otherwise, check if space is available in the * next page. */ else if ((erp_idx < nlists - 1) && (nex2 <= (ext_avail = XFS_LINEAR_EXTS - ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) { erp_idx++; erp++; /* Create a hole for nex2 extents */ memmove(&erp->er_extbuf[nex2], erp->er_extbuf, erp->er_extcount * sizeof(xfs_bmbt_rec_t)); } /* * Final choice, create a new extent page for * nex2 extents. */ else { erp_idx++; erp = xfs_iext_irec_new(ifp, erp_idx); } memmove(&erp->er_extbuf[i], nex2_ep, byte_diff); kmem_free(nex2_ep, byte_diff); erp->er_extcount += nex2; xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2); } } /* * This is called when the amount of space required for incore file * extents needs to be decreased. The ext_diff parameter stores the * number of extents to be removed and the idx parameter contains * the extent index where the extents will be removed from. * * If the amount of space needed has decreased below the linear * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous * extent array. Otherwise, use kmem_realloc() to adjust the * size to what is needed. */ void xfs_iext_remove( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_extnum_t idx, /* index to begin removing exts */ int ext_diff) /* number of extents to remove */ { xfs_extnum_t nextents; /* number of extents in file */ int new_size; /* size of extents after removal */ ASSERT(ext_diff > 0); nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t); if (new_size == 0) { xfs_iext_destroy(ifp); } else if (ifp->if_flags & XFS_IFEXTIREC) { xfs_iext_remove_indirect(ifp, idx, ext_diff); } else if (ifp->if_real_bytes) { xfs_iext_remove_direct(ifp, idx, ext_diff); } else { xfs_iext_remove_inline(ifp, idx, ext_diff); } ifp->if_bytes = new_size; } /* * This removes ext_diff extents from the inline buffer, beginning * at extent index idx. */ void xfs_iext_remove_inline( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_extnum_t idx, /* index to begin removing exts */ int ext_diff) /* number of extents to remove */ { int nextents; /* number of extents in file */ ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); ASSERT(idx < XFS_INLINE_EXTS); nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); ASSERT(((nextents - ext_diff) > 0) && (nextents - ext_diff) < XFS_INLINE_EXTS); if (idx + ext_diff < nextents) { memmove(&ifp->if_u2.if_inline_ext[idx], &ifp->if_u2.if_inline_ext[idx + ext_diff], (nextents - (idx + ext_diff)) * sizeof(xfs_bmbt_rec_t)); memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff], 0, ext_diff * sizeof(xfs_bmbt_rec_t)); } else { memset(&ifp->if_u2.if_inline_ext[idx], 0, ext_diff * sizeof(xfs_bmbt_rec_t)); } } /* * This removes ext_diff extents from a linear (direct) extent list, * beginning at extent index idx. If the extents are being removed * from the end of the list (ie. truncate) then we just need to re- * allocate the list to remove the extra space. Otherwise, if the * extents are being removed from the middle of the existing extent * entries, then we first need to move the extent records beginning * at idx + ext_diff up in the list to overwrite the records being * removed, then remove the extra space via kmem_realloc. */ void xfs_iext_remove_direct( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_extnum_t idx, /* index to begin removing exts */ int ext_diff) /* number of extents to remove */ { xfs_extnum_t nextents; /* number of extents in file */ int new_size; /* size of extents after removal */ ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); new_size = ifp->if_bytes - (ext_diff * sizeof(xfs_bmbt_rec_t)); nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); if (new_size == 0) { xfs_iext_destroy(ifp); return; } /* Move extents up in the list (if needed) */ if (idx + ext_diff < nextents) { memmove(&ifp->if_u1.if_extents[idx], &ifp->if_u1.if_extents[idx + ext_diff], (nextents - (idx + ext_diff)) * sizeof(xfs_bmbt_rec_t)); } memset(&ifp->if_u1.if_extents[nextents - ext_diff], 0, ext_diff * sizeof(xfs_bmbt_rec_t)); /* * Reallocate the direct extent list. If the extents * will fit inside the inode then xfs_iext_realloc_direct * will switch from direct to inline extent allocation * mode for us. */ xfs_iext_realloc_direct(ifp, new_size); ifp->if_bytes = new_size; } /* * This is called when incore extents are being removed from the * indirection array and the extents being removed span multiple extent * buffers. The idx parameter contains the file extent index where we * want to begin removing extents, and the count parameter contains * how many extents need to be removed. * * |-------| |-------| * | nex1 | | | nex1 - number of extents before idx * |-------| | count | * | | | | count - number of extents being removed at idx * | count | |-------| * | | | nex2 | nex2 - number of extents after idx + count * |-------| |-------| */ void xfs_iext_remove_indirect( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_extnum_t idx, /* index to begin removing extents */ int count) /* number of extents to remove */ { xfs_ext_irec_t *erp; /* indirection array pointer */ int erp_idx = 0; /* indirection array index */ xfs_extnum_t ext_cnt; /* extents left to remove */ xfs_extnum_t ext_diff; /* extents to remove in current list */ xfs_extnum_t nex1; /* number of extents before idx */ xfs_extnum_t nex2; /* extents after idx + count */ int nlists; /* entries in indirection array */ int page_idx = idx; /* index in target extent list */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0); ASSERT(erp != NULL); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; nex1 = page_idx; ext_cnt = count; while (ext_cnt) { nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0); ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1)); /* * Check for deletion of entire list; * xfs_iext_irec_remove() updates extent offsets. */ if (ext_diff == erp->er_extcount) { xfs_iext_irec_remove(ifp, erp_idx); ext_cnt -= ext_diff; nex1 = 0; if (ext_cnt) { ASSERT(erp_idx < ifp->if_real_bytes / XFS_IEXT_BUFSZ); erp = &ifp->if_u1.if_ext_irec[erp_idx]; nex1 = 0; continue; } else { break; } } /* Move extents up (if needed) */ if (nex2) { memmove(&erp->er_extbuf[nex1], &erp->er_extbuf[nex1 + ext_diff], nex2 * sizeof(xfs_bmbt_rec_t)); } /* Zero out rest of page */ memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ - ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t)))); /* Update remaining counters */ erp->er_extcount -= ext_diff; xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff); ext_cnt -= ext_diff; nex1 = 0; erp_idx++; erp++; } ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t); xfs_iext_irec_compact(ifp); } /* * Create, destroy, or resize a linear (direct) block of extents. */ void xfs_iext_realloc_direct( xfs_ifork_t *ifp, /* inode fork pointer */ int new_size) /* new size of extents */ { int rnew_size; /* real new size of extents */ rnew_size = new_size; ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) || ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) && (new_size != ifp->if_real_bytes))); /* Free extent records */ if (new_size == 0) { xfs_iext_destroy(ifp); } /* Resize direct extent list and zero any new bytes */ else if (ifp->if_real_bytes) { /* Check if extents will fit inside the inode */ if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) { xfs_iext_direct_to_inline(ifp, new_size / (uint)sizeof(xfs_bmbt_rec_t)); ifp->if_bytes = new_size; return; } if ((new_size & (new_size - 1)) != 0) { rnew_size = xfs_iroundup(new_size); } if (rnew_size != ifp->if_real_bytes) { ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) kmem_realloc(ifp->if_u1.if_extents, rnew_size, ifp->if_real_bytes, KM_SLEEP); } if (rnew_size > ifp->if_real_bytes) { memset(&ifp->if_u1.if_extents[ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)], 0, rnew_size - ifp->if_real_bytes); } } /* * Switch from the inline extent buffer to a direct * extent list. Be sure to include the inline extent * bytes in new_size. */ else { new_size += ifp->if_bytes; if ((new_size & (new_size - 1)) != 0) { rnew_size = xfs_iroundup(new_size); } xfs_iext_inline_to_direct(ifp, rnew_size); } ifp->if_real_bytes = rnew_size; ifp->if_bytes = new_size; } /* * Switch from linear (direct) extent records to inline buffer. */ void xfs_iext_direct_to_inline( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_extnum_t nextents) /* number of extents in file */ { ASSERT(ifp->if_flags & XFS_IFEXTENTS); ASSERT(nextents <= XFS_INLINE_EXTS); /* * The inline buffer was zeroed when we switched * from inline to direct extent allocation mode, * so we don't need to clear it here. */ memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, nextents * sizeof(xfs_bmbt_rec_t)); kmem_free(ifp->if_u1.if_extents, KM_SLEEP); ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; ifp->if_real_bytes = 0; } /* * Switch from inline buffer to linear (direct) extent records. * new_size should already be rounded up to the next power of 2 * by the caller (when appropriate), so use new_size as it is. * However, since new_size may be rounded up, we can't update * if_bytes here. It is the caller's responsibility to update * if_bytes upon return. */ void xfs_iext_inline_to_direct( xfs_ifork_t *ifp, /* inode fork pointer */ int new_size) /* number of extents in file */ { ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) kmem_alloc(new_size, KM_SLEEP); memset(ifp->if_u1.if_extents, 0, new_size); if (ifp->if_bytes) { memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, ifp->if_bytes); memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)); } ifp->if_real_bytes = new_size; } /* * Resize an extent indirection array to new_size bytes. */ void xfs_iext_realloc_indirect( xfs_ifork_t *ifp, /* inode fork pointer */ int new_size) /* new indirection array size */ { int nlists; /* number of irec's (ex lists) */ int size; /* current indirection array size */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; size = nlists * sizeof(xfs_ext_irec_t); ASSERT(ifp->if_real_bytes); ASSERT((new_size >= 0) && (new_size != size)); if (new_size == 0) { xfs_iext_destroy(ifp); } else { ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *) kmem_realloc(ifp->if_u1.if_ext_irec, new_size, size, KM_SLEEP); } } /* * Switch from indirection array to linear (direct) extent allocations. */ void xfs_iext_indirect_to_direct( xfs_ifork_t *ifp) /* inode fork pointer */ { xfs_bmbt_rec_t *ep; /* extent record pointer */ xfs_extnum_t nextents; /* number of extents in file */ int size; /* size of file extents */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); ASSERT(nextents <= XFS_LINEAR_EXTS); size = nextents * sizeof(xfs_bmbt_rec_t); xfs_iext_irec_compact_full(ifp); ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ); ep = ifp->if_u1.if_ext_irec->er_extbuf; kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t)); ifp->if_flags &= ~XFS_IFEXTIREC; ifp->if_u1.if_extents = ep; ifp->if_bytes = size; if (nextents < XFS_LINEAR_EXTS) { xfs_iext_realloc_direct(ifp, size); } } /* * Free incore file extents. */ void xfs_iext_destroy( xfs_ifork_t *ifp) /* inode fork pointer */ { if (ifp->if_flags & XFS_IFEXTIREC) { int erp_idx; int nlists; nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) { xfs_iext_irec_remove(ifp, erp_idx); } ifp->if_flags &= ~XFS_IFEXTIREC; } else if (ifp->if_real_bytes) { kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); } else if (ifp->if_bytes) { memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)); } ifp->if_u1.if_extents = NULL; ifp->if_real_bytes = 0; ifp->if_bytes = 0; } /* * Return a pointer to the extent record for file system block bno. */ xfs_bmbt_rec_t * /* pointer to found extent record */ xfs_iext_bno_to_ext( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_fileoff_t bno, /* block number to search for */ xfs_extnum_t *idxp) /* index of target extent */ { xfs_bmbt_rec_t *base; /* pointer to first extent */ xfs_filblks_t blockcount = 0; /* number of blocks in extent */ xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */ xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ int high; /* upper boundary in search */ xfs_extnum_t idx = 0; /* index of target extent */ int low; /* lower boundary in search */ xfs_extnum_t nextents; /* number of file extents */ xfs_fileoff_t startoff = 0; /* start offset of extent */ nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); if (nextents == 0) { *idxp = 0; return NULL; } low = 0; if (ifp->if_flags & XFS_IFEXTIREC) { /* Find target extent list */ int erp_idx = 0; erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx); base = erp->er_extbuf; high = erp->er_extcount - 1; } else { base = ifp->if_u1.if_extents; high = nextents - 1; } /* Binary search extent records */ while (low <= high) { idx = (low + high) >> 1; ep = base + idx; startoff = xfs_bmbt_get_startoff(ep); blockcount = xfs_bmbt_get_blockcount(ep); if (bno < startoff) { high = idx - 1; } else if (bno >= startoff + blockcount) { low = idx + 1; } else { /* Convert back to file-based extent index */ if (ifp->if_flags & XFS_IFEXTIREC) { idx += erp->er_extoff; } *idxp = idx; return ep; } } /* Convert back to file-based extent index */ if (ifp->if_flags & XFS_IFEXTIREC) { idx += erp->er_extoff; } if (bno >= startoff + blockcount) { if (++idx == nextents) { ep = NULL; } else { ep = xfs_iext_get_ext(ifp, idx); } } *idxp = idx; return ep; } /* * Return a pointer to the indirection array entry containing the * extent record for filesystem block bno. Store the index of the * target irec in *erp_idxp. */ xfs_ext_irec_t * /* pointer to found extent record */ xfs_iext_bno_to_irec( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_fileoff_t bno, /* block number to search for */ int *erp_idxp) /* irec index of target ext list */ { xfs_ext_irec_t *erp = NULL; /* indirection array pointer */ xfs_ext_irec_t *erp_next; /* next indirection array entry */ int erp_idx; /* indirection array index */ int nlists; /* number of extent irec's (lists) */ int high; /* binary search upper limit */ int low; /* binary search lower limit */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; erp_idx = 0; low = 0; high = nlists - 1; while (low <= high) { erp_idx = (low + high) >> 1; erp = &ifp->if_u1.if_ext_irec[erp_idx]; erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL; if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) { high = erp_idx - 1; } else if (erp_next && bno >= xfs_bmbt_get_startoff(erp_next->er_extbuf)) { low = erp_idx + 1; } else { break; } } *erp_idxp = erp_idx; return erp; } /* * Return a pointer to the indirection array entry containing the * extent record at file extent index *idxp. Store the index of the * target irec in *erp_idxp and store the page index of the target * extent record in *idxp. */ xfs_ext_irec_t * xfs_iext_idx_to_irec( xfs_ifork_t *ifp, /* inode fork pointer */ xfs_extnum_t *idxp, /* extent index (file -> page) */ int *erp_idxp, /* pointer to target irec */ int realloc) /* new bytes were just added */ { xfs_ext_irec_t *prev; /* pointer to previous irec */ xfs_ext_irec_t *erp = NULL; /* pointer to current irec */ int erp_idx; /* indirection array index */ int nlists; /* number of irec's (ex lists) */ int high; /* binary search upper limit */ int low; /* binary search lower limit */ xfs_extnum_t page_idx = *idxp; /* extent index in target list */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); ASSERT(page_idx >= 0 && page_idx <= ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; erp_idx = 0; low = 0; high = nlists - 1; /* Binary search extent irec's */ while (low <= high) { erp_idx = (low + high) >> 1; erp = &ifp->if_u1.if_ext_irec[erp_idx]; prev = erp_idx > 0 ? erp - 1 : NULL; if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff && realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) { high = erp_idx - 1; } else if (page_idx > erp->er_extoff + erp->er_extcount || (page_idx == erp->er_extoff + erp->er_extcount && !realloc)) { low = erp_idx + 1; } else if (page_idx == erp->er_extoff + erp->er_extcount && erp->er_extcount == XFS_LINEAR_EXTS) { ASSERT(realloc); page_idx = 0; erp_idx++; erp = erp_idx < nlists ? erp + 1 : NULL; break; } else { page_idx -= erp->er_extoff; break; } } *idxp = page_idx; *erp_idxp = erp_idx; return(erp); } /* * Allocate and initialize an indirection array once the space needed * for incore extents increases above XFS_IEXT_BUFSZ. */ void xfs_iext_irec_init( xfs_ifork_t *ifp) /* inode fork pointer */ { xfs_ext_irec_t *erp; /* indirection array pointer */ xfs_extnum_t nextents; /* number of extents in file */ ASSERT(!(ifp->if_flags & XFS_IFEXTIREC)); nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); ASSERT(nextents <= XFS_LINEAR_EXTS); erp = (xfs_ext_irec_t *) kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP); if (nextents == 0) { ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); } else if (!ifp->if_real_bytes) { xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ); } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) { xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ); } erp->er_extbuf = ifp->if_u1.if_extents; erp->er_extcount = nextents; erp->er_extoff = 0; ifp->if_flags |= XFS_IFEXTIREC; ifp->if_real_bytes = XFS_IEXT_BUFSZ; ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t); ifp->if_u1.if_ext_irec = erp; return; } /* * Allocate and initialize a new entry in the indirection array. */ xfs_ext_irec_t * xfs_iext_irec_new( xfs_ifork_t *ifp, /* inode fork pointer */ int erp_idx) /* index for new irec */ { xfs_ext_irec_t *erp; /* indirection array pointer */ int i; /* loop counter */ int nlists; /* number of irec's (ex lists) */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; /* Resize indirection array */ xfs_iext_realloc_indirect(ifp, ++nlists * sizeof(xfs_ext_irec_t)); /* * Move records down in the array so the * new page can use erp_idx. */ erp = ifp->if_u1.if_ext_irec; for (i = nlists - 1; i > erp_idx; i--) { memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t)); } ASSERT(i == erp_idx); /* Initialize new extent record */ erp = ifp->if_u1.if_ext_irec; erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *) kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP); ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ); erp[erp_idx].er_extcount = 0; erp[erp_idx].er_extoff = erp_idx > 0 ? erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0; return (&erp[erp_idx]); } /* * Remove a record from the indirection array. */ void xfs_iext_irec_remove( xfs_ifork_t *ifp, /* inode fork pointer */ int erp_idx) /* irec index to remove */ { xfs_ext_irec_t *erp; /* indirection array pointer */ int i; /* loop counter */ int nlists; /* number of irec's (ex lists) */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; erp = &ifp->if_u1.if_ext_irec[erp_idx]; if (erp->er_extbuf) { xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -erp->er_extcount); kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ); } /* Compact extent records */ erp = ifp->if_u1.if_ext_irec; for (i = erp_idx; i < nlists - 1; i++) { memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t)); } /* * Manually free the last extent record from the indirection * array. A call to xfs_iext_realloc_indirect() with a size * of zero would result in a call to xfs_iext_destroy() which * would in turn call this function again, creating a nasty * infinite loop. */ if (--nlists) { xfs_iext_realloc_indirect(ifp, nlists * sizeof(xfs_ext_irec_t)); } else { kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t)); } ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ; } /* * This is called to clean up large amounts of unused memory allocated * by the indirection array. Before compacting anything though, verify * that the indirection array is still needed and switch back to the * linear extent list (or even the inline buffer) if possible. The * compaction policy is as follows: * * Full Compaction: Extents fit into a single page (or inline buffer) * Full Compaction: Extents occupy less than 10% of allocated space * Partial Compaction: Extents occupy > 10% and < 50% of allocated space * No Compaction: Extents occupy at least 50% of allocated space */ void xfs_iext_irec_compact( xfs_ifork_t *ifp) /* inode fork pointer */ { xfs_extnum_t nextents; /* number of extents in file */ int nlists; /* number of irec's (ex lists) */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); if (nextents == 0) { xfs_iext_destroy(ifp); } else if (nextents <= XFS_INLINE_EXTS) { xfs_iext_indirect_to_direct(ifp); xfs_iext_direct_to_inline(ifp, nextents); } else if (nextents <= XFS_LINEAR_EXTS) { xfs_iext_indirect_to_direct(ifp); } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) { xfs_iext_irec_compact_full(ifp); } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) { xfs_iext_irec_compact_pages(ifp); } } /* * Combine extents from neighboring extent pages. */ void xfs_iext_irec_compact_pages( xfs_ifork_t *ifp) /* inode fork pointer */ { xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */ int erp_idx = 0; /* indirection array index */ int nlists; /* number of irec's (ex lists) */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; while (erp_idx < nlists - 1) { erp = &ifp->if_u1.if_ext_irec[erp_idx]; erp_next = erp + 1; if (erp_next->er_extcount <= (XFS_LINEAR_EXTS - erp->er_extcount)) { memmove(&erp->er_extbuf[erp->er_extcount], erp_next->er_extbuf, erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); erp->er_extcount += erp_next->er_extcount; /* * Free page before removing extent record * so er_extoffs don't get modified in * xfs_iext_irec_remove. */ kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ); erp_next->er_extbuf = NULL; xfs_iext_irec_remove(ifp, erp_idx + 1); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; } else { erp_idx++; } } } /* * Fully compact the extent records managed by the indirection array. */ void xfs_iext_irec_compact_full( xfs_ifork_t *ifp) /* inode fork pointer */ { xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */ xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */ int erp_idx = 0; /* extent irec index */ int ext_avail; /* empty entries in ex list */ int ext_diff; /* number of exts to add */ int nlists; /* number of irec's (ex lists) */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; erp = ifp->if_u1.if_ext_irec; ep = &erp->er_extbuf[erp->er_extcount]; erp_next = erp + 1; ep_next = erp_next->er_extbuf; while (erp_idx < nlists - 1) { ext_avail = XFS_LINEAR_EXTS - erp->er_extcount; ext_diff = MIN(ext_avail, erp_next->er_extcount); memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t)); erp->er_extcount += ext_diff; erp_next->er_extcount -= ext_diff; /* Remove next page */ if (erp_next->er_extcount == 0) { /* * Free page before removing extent record * so er_extoffs don't get modified in * xfs_iext_irec_remove. */ kmem_free(erp_next->er_extbuf, erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); erp_next->er_extbuf = NULL; xfs_iext_irec_remove(ifp, erp_idx + 1); erp = &ifp->if_u1.if_ext_irec[erp_idx]; nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; /* Update next page */ } else { /* Move rest of page up to become next new page */ memmove(erp_next->er_extbuf, ep_next, erp_next->er_extcount * sizeof(xfs_bmbt_rec_t)); ep_next = erp_next->er_extbuf; memset(&ep_next[erp_next->er_extcount], 0, (XFS_LINEAR_EXTS - erp_next->er_extcount) * sizeof(xfs_bmbt_rec_t)); } if (erp->er_extcount == XFS_LINEAR_EXTS) { erp_idx++; if (erp_idx < nlists) erp = &ifp->if_u1.if_ext_irec[erp_idx]; else break; } ep = &erp->er_extbuf[erp->er_extcount]; erp_next = erp + 1; ep_next = erp_next->er_extbuf; } } /* * This is called to update the er_extoff field in the indirection * array when extents have been added or removed from one of the * extent lists. erp_idx contains the irec index to begin updating * at and ext_diff contains the number of extents that were added * or removed. */ void xfs_iext_irec_update_extoffs( xfs_ifork_t *ifp, /* inode fork pointer */ int erp_idx, /* irec index to update */ int ext_diff) /* number of new extents */ { int i; /* loop counter */ int nlists; /* number of irec's (ex lists */ ASSERT(ifp->if_flags & XFS_IFEXTIREC); nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ; for (i = erp_idx; i < nlists; i++) { ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff; } }