Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mac_test/@/arm/arm/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mac_test/@/arm/arm/pmap.c |
/* From: $NetBSD: pmap.c,v 1.148 2004/04/03 04:35:48 bsh Exp $ */ /*- * Copyright 2004 Olivier Houchard. * Copyright 2003 Wasabi Systems, Inc. * All rights reserved. * * Written by Steve C. Woodford for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2002-2003 Wasabi Systems, Inc. * Copyright (c) 2001 Richard Earnshaw * Copyright (c) 2001-2002 Christopher Gilbert * All rights reserved. * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * * RiscBSD kernel project * * pmap.c * * Machine dependant vm stuff * * Created : 20/09/94 */ /* * Special compilation symbols * PMAP_DEBUG - Build in pmap_debug_level code */ /* Include header files */ #include "opt_vm.h" #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/arm/arm/pmap.c 232508 2012-03-04 17:00:46Z raj $"); #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/ktr.h> #include <sys/proc.h> #include <sys/malloc.h> #include <sys/msgbuf.h> #include <sys/vmmeter.h> #include <sys/mman.h> #include <sys/smp.h> #include <sys/sched.h> #include <vm/vm.h> #include <vm/uma.h> #include <vm/pmap.h> #include <vm/vm_kern.h> #include <vm/vm_object.h> #include <vm/vm_map.h> #include <vm/vm_page.h> #include <vm/vm_pageout.h> #include <vm/vm_extern.h> #include <sys/lock.h> #include <sys/mutex.h> #include <machine/md_var.h> #include <machine/vmparam.h> #include <machine/cpu.h> #include <machine/cpufunc.h> #include <machine/pcb.h> #ifdef PMAP_DEBUG #define PDEBUG(_lev_,_stat_) \ if (pmap_debug_level >= (_lev_)) \ ((_stat_)) #define dprintf printf int pmap_debug_level = 0; #define PMAP_INLINE #else /* PMAP_DEBUG */ #define PDEBUG(_lev_,_stat_) /* Nothing */ #define dprintf(x, arg...) #define PMAP_INLINE __inline #endif /* PMAP_DEBUG */ extern struct pv_addr systempage; /* * Internal function prototypes */ static void pmap_free_pv_entry (pv_entry_t); static pv_entry_t pmap_get_pv_entry(void); static void pmap_enter_locked(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t, int); static void pmap_fix_cache(struct vm_page *, pmap_t, vm_offset_t); static void pmap_alloc_l1(pmap_t); static void pmap_free_l1(pmap_t); static int pmap_clearbit(struct vm_page *, u_int); static struct l2_bucket *pmap_get_l2_bucket(pmap_t, vm_offset_t); static struct l2_bucket *pmap_alloc_l2_bucket(pmap_t, vm_offset_t); static void pmap_free_l2_bucket(pmap_t, struct l2_bucket *, u_int); static vm_offset_t kernel_pt_lookup(vm_paddr_t); static MALLOC_DEFINE(M_VMPMAP, "pmap", "PMAP L1"); vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */ vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */ vm_offset_t pmap_curmaxkvaddr; vm_paddr_t kernel_l1pa; extern void *end; vm_offset_t kernel_vm_end = 0; struct pmap kernel_pmap_store; static pt_entry_t *csrc_pte, *cdst_pte; static vm_offset_t csrcp, cdstp; static struct mtx cmtx; static void pmap_init_l1(struct l1_ttable *, pd_entry_t *); /* * These routines are called when the CPU type is identified to set up * the PTE prototypes, cache modes, etc. * * The variables are always here, just in case LKMs need to reference * them (though, they shouldn't). */ pt_entry_t pte_l1_s_cache_mode; pt_entry_t pte_l1_s_cache_mode_pt; pt_entry_t pte_l1_s_cache_mask; pt_entry_t pte_l2_l_cache_mode; pt_entry_t pte_l2_l_cache_mode_pt; pt_entry_t pte_l2_l_cache_mask; pt_entry_t pte_l2_s_cache_mode; pt_entry_t pte_l2_s_cache_mode_pt; pt_entry_t pte_l2_s_cache_mask; pt_entry_t pte_l2_s_prot_u; pt_entry_t pte_l2_s_prot_w; pt_entry_t pte_l2_s_prot_mask; pt_entry_t pte_l1_s_proto; pt_entry_t pte_l1_c_proto; pt_entry_t pte_l2_s_proto; void (*pmap_copy_page_func)(vm_paddr_t, vm_paddr_t); void (*pmap_zero_page_func)(vm_paddr_t, int, int); /* * Which pmap is currently 'live' in the cache * * XXXSCW: Fix for SMP ... */ union pmap_cache_state *pmap_cache_state; struct msgbuf *msgbufp = 0; /* * Crashdump maps. */ static caddr_t crashdumpmap; extern void bcopy_page(vm_offset_t, vm_offset_t); extern void bzero_page(vm_offset_t); extern vm_offset_t alloc_firstaddr; char *_tmppt; /* * Metadata for L1 translation tables. */ struct l1_ttable { /* Entry on the L1 Table list */ SLIST_ENTRY(l1_ttable) l1_link; /* Entry on the L1 Least Recently Used list */ TAILQ_ENTRY(l1_ttable) l1_lru; /* Track how many domains are allocated from this L1 */ volatile u_int l1_domain_use_count; /* * A free-list of domain numbers for this L1. * We avoid using ffs() and a bitmap to track domains since ffs() * is slow on ARM. */ u_int8_t l1_domain_first; u_int8_t l1_domain_free[PMAP_DOMAINS]; /* Physical address of this L1 page table */ vm_paddr_t l1_physaddr; /* KVA of this L1 page table */ pd_entry_t *l1_kva; }; /* * Convert a virtual address into its L1 table index. That is, the * index used to locate the L2 descriptor table pointer in an L1 table. * This is basically used to index l1->l1_kva[]. * * Each L2 descriptor table represents 1MB of VA space. */ #define L1_IDX(va) (((vm_offset_t)(va)) >> L1_S_SHIFT) /* * L1 Page Tables are tracked using a Least Recently Used list. * - New L1s are allocated from the HEAD. * - Freed L1s are added to the TAIl. * - Recently accessed L1s (where an 'access' is some change to one of * the userland pmaps which owns this L1) are moved to the TAIL. */ static TAILQ_HEAD(, l1_ttable) l1_lru_list; /* * A list of all L1 tables */ static SLIST_HEAD(, l1_ttable) l1_list; static struct mtx l1_lru_lock; /* * The l2_dtable tracks L2_BUCKET_SIZE worth of L1 slots. * * This is normally 16MB worth L2 page descriptors for any given pmap. * Reference counts are maintained for L2 descriptors so they can be * freed when empty. */ struct l2_dtable { /* The number of L2 page descriptors allocated to this l2_dtable */ u_int l2_occupancy; /* List of L2 page descriptors */ struct l2_bucket { pt_entry_t *l2b_kva; /* KVA of L2 Descriptor Table */ vm_paddr_t l2b_phys; /* Physical address of same */ u_short l2b_l1idx; /* This L2 table's L1 index */ u_short l2b_occupancy; /* How many active descriptors */ } l2_bucket[L2_BUCKET_SIZE]; }; /* pmap_kenter_internal flags */ #define KENTER_CACHE 0x1 #define KENTER_USER 0x2 /* * Given an L1 table index, calculate the corresponding l2_dtable index * and bucket index within the l2_dtable. */ #define L2_IDX(l1idx) (((l1idx) >> L2_BUCKET_LOG2) & \ (L2_SIZE - 1)) #define L2_BUCKET(l1idx) ((l1idx) & (L2_BUCKET_SIZE - 1)) /* * Given a virtual address, this macro returns the * virtual address required to drop into the next L2 bucket. */ #define L2_NEXT_BUCKET(va) (((va) & L1_S_FRAME) + L1_S_SIZE) /* * L2 allocation. */ #define pmap_alloc_l2_dtable() \ (void*)uma_zalloc(l2table_zone, M_NOWAIT|M_USE_RESERVE) #define pmap_free_l2_dtable(l2) \ uma_zfree(l2table_zone, l2) /* * We try to map the page tables write-through, if possible. However, not * all CPUs have a write-through cache mode, so on those we have to sync * the cache when we frob page tables. * * We try to evaluate this at compile time, if possible. However, it's * not always possible to do that, hence this run-time var. */ int pmap_needs_pte_sync; /* * Macro to determine if a mapping might be resident in the * instruction cache and/or TLB */ #define PV_BEEN_EXECD(f) (((f) & (PVF_REF | PVF_EXEC)) == (PVF_REF | PVF_EXEC)) /* * Macro to determine if a mapping might be resident in the * data cache and/or TLB */ #define PV_BEEN_REFD(f) (((f) & PVF_REF) != 0) #ifndef PMAP_SHPGPERPROC #define PMAP_SHPGPERPROC 200 #endif #define pmap_is_current(pm) ((pm) == pmap_kernel() || \ curproc->p_vmspace->vm_map.pmap == (pm)) static uma_zone_t pvzone = NULL; uma_zone_t l2zone; static uma_zone_t l2table_zone; static vm_offset_t pmap_kernel_l2dtable_kva; static vm_offset_t pmap_kernel_l2ptp_kva; static vm_paddr_t pmap_kernel_l2ptp_phys; static struct vm_object pvzone_obj; static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0; /* * This list exists for the benefit of pmap_map_chunk(). It keeps track * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can * find them as necessary. * * Note that the data on this list MUST remain valid after initarm() returns, * as pmap_bootstrap() uses it to contruct L2 table metadata. */ SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list); static void pmap_init_l1(struct l1_ttable *l1, pd_entry_t *l1pt) { int i; l1->l1_kva = l1pt; l1->l1_domain_use_count = 0; l1->l1_domain_first = 0; for (i = 0; i < PMAP_DOMAINS; i++) l1->l1_domain_free[i] = i + 1; /* * Copy the kernel's L1 entries to each new L1. */ if (l1pt != pmap_kernel()->pm_l1->l1_kva) memcpy(l1pt, pmap_kernel()->pm_l1->l1_kva, L1_TABLE_SIZE); if ((l1->l1_physaddr = pmap_extract(pmap_kernel(), (vm_offset_t)l1pt)) == 0) panic("pmap_init_l1: can't get PA of L1 at %p", l1pt); SLIST_INSERT_HEAD(&l1_list, l1, l1_link); TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); } static vm_offset_t kernel_pt_lookup(vm_paddr_t pa) { struct pv_addr *pv; SLIST_FOREACH(pv, &kernel_pt_list, pv_list) { if (pv->pv_pa == pa) return (pv->pv_va); } return (0); } #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 void pmap_pte_init_generic(void) { pte_l1_s_cache_mode = L1_S_B|L1_S_C; pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic; pte_l2_l_cache_mode = L2_B|L2_C; pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic; pte_l2_s_cache_mode = L2_B|L2_C; pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic; /* * If we have a write-through cache, set B and C. If * we have a write-back cache, then we assume setting * only C will make those pages write-through. */ if (cpufuncs.cf_dcache_wb_range == (void *) cpufunc_nullop) { pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; pte_l2_l_cache_mode_pt = L2_B|L2_C; pte_l2_s_cache_mode_pt = L2_B|L2_C; } else { pte_l1_s_cache_mode_pt = L1_S_C; pte_l2_l_cache_mode_pt = L2_C; pte_l2_s_cache_mode_pt = L2_C; } pte_l2_s_prot_u = L2_S_PROT_U_generic; pte_l2_s_prot_w = L2_S_PROT_W_generic; pte_l2_s_prot_mask = L2_S_PROT_MASK_generic; pte_l1_s_proto = L1_S_PROTO_generic; pte_l1_c_proto = L1_C_PROTO_generic; pte_l2_s_proto = L2_S_PROTO_generic; pmap_copy_page_func = pmap_copy_page_generic; pmap_zero_page_func = pmap_zero_page_generic; } #if defined(CPU_ARM8) void pmap_pte_init_arm8(void) { /* * ARM8 is compatible with generic, but we need to use * the page tables uncached. */ pmap_pte_init_generic(); pte_l1_s_cache_mode_pt = 0; pte_l2_l_cache_mode_pt = 0; pte_l2_s_cache_mode_pt = 0; } #endif /* CPU_ARM8 */ #if defined(CPU_ARM9) && defined(ARM9_CACHE_WRITE_THROUGH) void pmap_pte_init_arm9(void) { /* * ARM9 is compatible with generic, but we want to use * write-through caching for now. */ pmap_pte_init_generic(); pte_l1_s_cache_mode = L1_S_C; pte_l2_l_cache_mode = L2_C; pte_l2_s_cache_mode = L2_C; pte_l1_s_cache_mode_pt = L1_S_C; pte_l2_l_cache_mode_pt = L2_C; pte_l2_s_cache_mode_pt = L2_C; } #endif /* CPU_ARM9 */ #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ #if defined(CPU_ARM10) void pmap_pte_init_arm10(void) { /* * ARM10 is compatible with generic, but we want to use * write-through caching for now. */ pmap_pte_init_generic(); pte_l1_s_cache_mode = L1_S_B | L1_S_C; pte_l2_l_cache_mode = L2_B | L2_C; pte_l2_s_cache_mode = L2_B | L2_C; pte_l1_s_cache_mode_pt = L1_S_C; pte_l2_l_cache_mode_pt = L2_C; pte_l2_s_cache_mode_pt = L2_C; } #endif /* CPU_ARM10 */ #if ARM_MMU_SA1 == 1 void pmap_pte_init_sa1(void) { /* * The StrongARM SA-1 cache does not have a write-through * mode. So, do the generic initialization, then reset * the page table cache mode to B=1,C=1, and note that * the PTEs need to be sync'd. */ pmap_pte_init_generic(); pte_l1_s_cache_mode_pt = L1_S_B|L1_S_C; pte_l2_l_cache_mode_pt = L2_B|L2_C; pte_l2_s_cache_mode_pt = L2_B|L2_C; pmap_needs_pte_sync = 1; } #endif /* ARM_MMU_SA1 == 1*/ #if ARM_MMU_XSCALE == 1 #if (ARM_NMMUS > 1) || defined (CPU_XSCALE_CORE3) static u_int xscale_use_minidata; #endif void pmap_pte_init_xscale(void) { uint32_t auxctl; int write_through = 0; pte_l1_s_cache_mode = L1_S_B|L1_S_C|L1_S_XSCALE_P; pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale; pte_l2_l_cache_mode = L2_B|L2_C; pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale; pte_l2_s_cache_mode = L2_B|L2_C; pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale; pte_l1_s_cache_mode_pt = L1_S_C; pte_l2_l_cache_mode_pt = L2_C; pte_l2_s_cache_mode_pt = L2_C; #ifdef XSCALE_CACHE_READ_WRITE_ALLOCATE /* * The XScale core has an enhanced mode where writes that * miss the cache cause a cache line to be allocated. This * is significantly faster than the traditional, write-through * behavior of this case. */ pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_X); pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_X); pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_X); #endif /* XSCALE_CACHE_READ_WRITE_ALLOCATE */ #ifdef XSCALE_CACHE_WRITE_THROUGH /* * Some versions of the XScale core have various bugs in * their cache units, the work-around for which is to run * the cache in write-through mode. Unfortunately, this * has a major (negative) impact on performance. So, we * go ahead and run fast-and-loose, in the hopes that we * don't line up the planets in a way that will trip the * bugs. * * However, we give you the option to be slow-but-correct. */ write_through = 1; #elif defined(XSCALE_CACHE_WRITE_BACK) /* force write back cache mode */ write_through = 0; #elif defined(CPU_XSCALE_PXA2X0) /* * Intel PXA2[15]0 processors are known to have a bug in * write-back cache on revision 4 and earlier (stepping * A[01] and B[012]). Fixed for C0 and later. */ { uint32_t id, type; id = cpufunc_id(); type = id & ~(CPU_ID_XSCALE_COREREV_MASK|CPU_ID_REVISION_MASK); if (type == CPU_ID_PXA250 || type == CPU_ID_PXA210) { if ((id & CPU_ID_REVISION_MASK) < 5) { /* write through for stepping A0-1 and B0-2 */ write_through = 1; } } } #endif /* XSCALE_CACHE_WRITE_THROUGH */ if (write_through) { pte_l1_s_cache_mode = L1_S_C; pte_l2_l_cache_mode = L2_C; pte_l2_s_cache_mode = L2_C; } #if (ARM_NMMUS > 1) xscale_use_minidata = 1; #endif pte_l2_s_prot_u = L2_S_PROT_U_xscale; pte_l2_s_prot_w = L2_S_PROT_W_xscale; pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale; pte_l1_s_proto = L1_S_PROTO_xscale; pte_l1_c_proto = L1_C_PROTO_xscale; pte_l2_s_proto = L2_S_PROTO_xscale; #ifdef CPU_XSCALE_CORE3 pmap_copy_page_func = pmap_copy_page_generic; pmap_zero_page_func = pmap_zero_page_generic; xscale_use_minidata = 0; /* Make sure it is L2-cachable */ pte_l1_s_cache_mode |= L1_S_XSCALE_TEX(TEX_XSCALE_T); pte_l1_s_cache_mode_pt = pte_l1_s_cache_mode &~ L1_S_XSCALE_P; pte_l2_l_cache_mode |= L2_XSCALE_L_TEX(TEX_XSCALE_T) ; pte_l2_l_cache_mode_pt = pte_l1_s_cache_mode; pte_l2_s_cache_mode |= L2_XSCALE_T_TEX(TEX_XSCALE_T); pte_l2_s_cache_mode_pt = pte_l2_s_cache_mode; #else pmap_copy_page_func = pmap_copy_page_xscale; pmap_zero_page_func = pmap_zero_page_xscale; #endif /* * Disable ECC protection of page table access, for now. */ __asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl)); auxctl &= ~XSCALE_AUXCTL_P; __asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl)); } /* * xscale_setup_minidata: * * Set up the mini-data cache clean area. We require the * caller to allocate the right amount of physically and * virtually contiguous space. */ extern vm_offset_t xscale_minidata_clean_addr; extern vm_size_t xscale_minidata_clean_size; /* already initialized */ void xscale_setup_minidata(vm_offset_t l1pt, vm_offset_t va, vm_paddr_t pa) { pd_entry_t *pde = (pd_entry_t *) l1pt; pt_entry_t *pte; vm_size_t size; uint32_t auxctl; xscale_minidata_clean_addr = va; /* Round it to page size. */ size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME; for (; size != 0; va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) { pte = (pt_entry_t *) kernel_pt_lookup( pde[L1_IDX(va)] & L1_C_ADDR_MASK); if (pte == NULL) panic("xscale_setup_minidata: can't find L2 table for " "VA 0x%08x", (u_int32_t) va); pte[l2pte_index(va)] = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); } /* * Configure the mini-data cache for write-back with * read/write-allocate. * * NOTE: In order to reconfigure the mini-data cache, we must * make sure it contains no valid data! In order to do that, * we must issue a global data cache invalidate command! * * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED! * THIS IS VERY IMPORTANT! */ /* Invalidate data and mini-data. */ __asm __volatile("mcr p15, 0, %0, c7, c6, 0" : : "r" (0)); __asm __volatile("mrc p15, 0, %0, c1, c0, 1" : "=r" (auxctl)); auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA; __asm __volatile("mcr p15, 0, %0, c1, c0, 1" : : "r" (auxctl)); } #endif /* * Allocate an L1 translation table for the specified pmap. * This is called at pmap creation time. */ static void pmap_alloc_l1(pmap_t pm) { struct l1_ttable *l1; u_int8_t domain; /* * Remove the L1 at the head of the LRU list */ mtx_lock(&l1_lru_lock); l1 = TAILQ_FIRST(&l1_lru_list); TAILQ_REMOVE(&l1_lru_list, l1, l1_lru); /* * Pick the first available domain number, and update * the link to the next number. */ domain = l1->l1_domain_first; l1->l1_domain_first = l1->l1_domain_free[domain]; /* * If there are still free domain numbers in this L1, * put it back on the TAIL of the LRU list. */ if (++l1->l1_domain_use_count < PMAP_DOMAINS) TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); mtx_unlock(&l1_lru_lock); /* * Fix up the relevant bits in the pmap structure */ pm->pm_l1 = l1; pm->pm_domain = domain + 1; } /* * Free an L1 translation table. * This is called at pmap destruction time. */ static void pmap_free_l1(pmap_t pm) { struct l1_ttable *l1 = pm->pm_l1; mtx_lock(&l1_lru_lock); /* * If this L1 is currently on the LRU list, remove it. */ if (l1->l1_domain_use_count < PMAP_DOMAINS) TAILQ_REMOVE(&l1_lru_list, l1, l1_lru); /* * Free up the domain number which was allocated to the pmap */ l1->l1_domain_free[pm->pm_domain - 1] = l1->l1_domain_first; l1->l1_domain_first = pm->pm_domain - 1; l1->l1_domain_use_count--; /* * The L1 now must have at least 1 free domain, so add * it back to the LRU list. If the use count is zero, * put it at the head of the list, otherwise it goes * to the tail. */ if (l1->l1_domain_use_count == 0) { TAILQ_INSERT_HEAD(&l1_lru_list, l1, l1_lru); } else TAILQ_INSERT_TAIL(&l1_lru_list, l1, l1_lru); mtx_unlock(&l1_lru_lock); } /* * Returns a pointer to the L2 bucket associated with the specified pmap * and VA, or NULL if no L2 bucket exists for the address. */ static PMAP_INLINE struct l2_bucket * pmap_get_l2_bucket(pmap_t pm, vm_offset_t va) { struct l2_dtable *l2; struct l2_bucket *l2b; u_short l1idx; l1idx = L1_IDX(va); if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL || (l2b = &l2->l2_bucket[L2_BUCKET(l1idx)])->l2b_kva == NULL) return (NULL); return (l2b); } /* * Returns a pointer to the L2 bucket associated with the specified pmap * and VA. * * If no L2 bucket exists, perform the necessary allocations to put an L2 * bucket/page table in place. * * Note that if a new L2 bucket/page was allocated, the caller *must* * increment the bucket occupancy counter appropriately *before* * releasing the pmap's lock to ensure no other thread or cpu deallocates * the bucket/page in the meantime. */ static struct l2_bucket * pmap_alloc_l2_bucket(pmap_t pm, vm_offset_t va) { struct l2_dtable *l2; struct l2_bucket *l2b; u_short l1idx; l1idx = L1_IDX(va); PMAP_ASSERT_LOCKED(pm); mtx_assert(&vm_page_queue_mtx, MA_OWNED); if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) { /* * No mapping at this address, as there is * no entry in the L1 table. * Need to allocate a new l2_dtable. */ again_l2table: PMAP_UNLOCK(pm); vm_page_unlock_queues(); if ((l2 = pmap_alloc_l2_dtable()) == NULL) { vm_page_lock_queues(); PMAP_LOCK(pm); return (NULL); } vm_page_lock_queues(); PMAP_LOCK(pm); if (pm->pm_l2[L2_IDX(l1idx)] != NULL) { PMAP_UNLOCK(pm); vm_page_unlock_queues(); uma_zfree(l2table_zone, l2); vm_page_lock_queues(); PMAP_LOCK(pm); l2 = pm->pm_l2[L2_IDX(l1idx)]; if (l2 == NULL) goto again_l2table; /* * Someone already allocated the l2_dtable while * we were doing the same. */ } else { bzero(l2, sizeof(*l2)); /* * Link it into the parent pmap */ pm->pm_l2[L2_IDX(l1idx)] = l2; } } l2b = &l2->l2_bucket[L2_BUCKET(l1idx)]; /* * Fetch pointer to the L2 page table associated with the address. */ if (l2b->l2b_kva == NULL) { pt_entry_t *ptep; /* * No L2 page table has been allocated. Chances are, this * is because we just allocated the l2_dtable, above. */ again_ptep: PMAP_UNLOCK(pm); vm_page_unlock_queues(); ptep = (void*)uma_zalloc(l2zone, M_NOWAIT|M_USE_RESERVE); vm_page_lock_queues(); PMAP_LOCK(pm); if (l2b->l2b_kva != 0) { /* We lost the race. */ PMAP_UNLOCK(pm); vm_page_unlock_queues(); uma_zfree(l2zone, ptep); vm_page_lock_queues(); PMAP_LOCK(pm); if (l2b->l2b_kva == 0) goto again_ptep; return (l2b); } l2b->l2b_phys = vtophys(ptep); if (ptep == NULL) { /* * Oops, no more L2 page tables available at this * time. We may need to deallocate the l2_dtable * if we allocated a new one above. */ if (l2->l2_occupancy == 0) { pm->pm_l2[L2_IDX(l1idx)] = NULL; pmap_free_l2_dtable(l2); } return (NULL); } l2->l2_occupancy++; l2b->l2b_kva = ptep; l2b->l2b_l1idx = l1idx; } return (l2b); } static PMAP_INLINE void #ifndef PMAP_INCLUDE_PTE_SYNC pmap_free_l2_ptp(pt_entry_t *l2) #else pmap_free_l2_ptp(boolean_t need_sync, pt_entry_t *l2) #endif { #ifdef PMAP_INCLUDE_PTE_SYNC /* * Note: With a write-back cache, we may need to sync this * L2 table before re-using it. * This is because it may have belonged to a non-current * pmap, in which case the cache syncs would have been * skipped when the pages were being unmapped. If the * L2 table were then to be immediately re-allocated to * the *current* pmap, it may well contain stale mappings * which have not yet been cleared by a cache write-back * and so would still be visible to the mmu. */ if (need_sync) PTE_SYNC_RANGE(l2, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t)); #endif uma_zfree(l2zone, l2); } /* * One or more mappings in the specified L2 descriptor table have just been * invalidated. * * Garbage collect the metadata and descriptor table itself if necessary. * * The pmap lock must be acquired when this is called (not necessary * for the kernel pmap). */ static void pmap_free_l2_bucket(pmap_t pm, struct l2_bucket *l2b, u_int count) { struct l2_dtable *l2; pd_entry_t *pl1pd, l1pd; pt_entry_t *ptep; u_short l1idx; /* * Update the bucket's reference count according to how many * PTEs the caller has just invalidated. */ l2b->l2b_occupancy -= count; /* * Note: * * Level 2 page tables allocated to the kernel pmap are never freed * as that would require checking all Level 1 page tables and * removing any references to the Level 2 page table. See also the * comment elsewhere about never freeing bootstrap L2 descriptors. * * We make do with just invalidating the mapping in the L2 table. * * This isn't really a big deal in practice and, in fact, leads * to a performance win over time as we don't need to continually * alloc/free. */ if (l2b->l2b_occupancy > 0 || pm == pmap_kernel()) return; /* * There are no more valid mappings in this level 2 page table. * Go ahead and NULL-out the pointer in the bucket, then * free the page table. */ l1idx = l2b->l2b_l1idx; ptep = l2b->l2b_kva; l2b->l2b_kva = NULL; pl1pd = &pm->pm_l1->l1_kva[l1idx]; /* * If the L1 slot matches the pmap's domain * number, then invalidate it. */ l1pd = *pl1pd & (L1_TYPE_MASK | L1_C_DOM_MASK); if (l1pd == (L1_C_DOM(pm->pm_domain) | L1_TYPE_C)) { *pl1pd = 0; PTE_SYNC(pl1pd); } /* * Release the L2 descriptor table back to the pool cache. */ #ifndef PMAP_INCLUDE_PTE_SYNC pmap_free_l2_ptp(ptep); #else pmap_free_l2_ptp(!pmap_is_current(pm), ptep); #endif /* * Update the reference count in the associated l2_dtable */ l2 = pm->pm_l2[L2_IDX(l1idx)]; if (--l2->l2_occupancy > 0) return; /* * There are no more valid mappings in any of the Level 1 * slots managed by this l2_dtable. Go ahead and NULL-out * the pointer in the parent pmap and free the l2_dtable. */ pm->pm_l2[L2_IDX(l1idx)] = NULL; pmap_free_l2_dtable(l2); } /* * Pool cache constructors for L2 descriptor tables, metadata and pmap * structures. */ static int pmap_l2ptp_ctor(void *mem, int size, void *arg, int flags) { #ifndef PMAP_INCLUDE_PTE_SYNC struct l2_bucket *l2b; pt_entry_t *ptep, pte; #ifdef ARM_USE_SMALL_ALLOC pd_entry_t *pde; #endif vm_offset_t va = (vm_offset_t)mem & ~PAGE_MASK; /* * The mappings for these page tables were initially made using * pmap_kenter() by the pool subsystem. Therefore, the cache- * mode will not be right for page table mappings. To avoid * polluting the pmap_kenter() code with a special case for * page tables, we simply fix up the cache-mode here if it's not * correct. */ #ifdef ARM_USE_SMALL_ALLOC pde = &kernel_pmap->pm_l1->l1_kva[L1_IDX(va)]; if (!l1pte_section_p(*pde)) { #endif l2b = pmap_get_l2_bucket(pmap_kernel(), va); ptep = &l2b->l2b_kva[l2pte_index(va)]; pte = *ptep; if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) { /* * Page tables must have the cache-mode set to * Write-Thru. */ *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt; PTE_SYNC(ptep); cpu_tlb_flushD_SE(va); cpu_cpwait(); } #ifdef ARM_USE_SMALL_ALLOC } #endif #endif memset(mem, 0, L2_TABLE_SIZE_REAL); PTE_SYNC_RANGE(mem, L2_TABLE_SIZE_REAL / sizeof(pt_entry_t)); return (0); } /* * A bunch of routines to conditionally flush the caches/TLB depending * on whether the specified pmap actually needs to be flushed at any * given time. */ static PMAP_INLINE void pmap_tlb_flushID_SE(pmap_t pm, vm_offset_t va) { if (pmap_is_current(pm)) cpu_tlb_flushID_SE(va); } static PMAP_INLINE void pmap_tlb_flushD_SE(pmap_t pm, vm_offset_t va) { if (pmap_is_current(pm)) cpu_tlb_flushD_SE(va); } static PMAP_INLINE void pmap_tlb_flushID(pmap_t pm) { if (pmap_is_current(pm)) cpu_tlb_flushID(); } static PMAP_INLINE void pmap_tlb_flushD(pmap_t pm) { if (pmap_is_current(pm)) cpu_tlb_flushD(); } static int pmap_has_valid_mapping(pmap_t pm, vm_offset_t va) { pd_entry_t *pde; pt_entry_t *ptep; if (pmap_get_pde_pte(pm, va, &pde, &ptep) && ptep && ((*ptep & L2_TYPE_MASK) != L2_TYPE_INV)) return (1); return (0); } static PMAP_INLINE void pmap_idcache_wbinv_range(pmap_t pm, vm_offset_t va, vm_size_t len) { vm_size_t rest; CTR4(KTR_PMAP, "pmap_dcache_wbinv_range: pmap %p is_kernel %d va 0x%08x" " len 0x%x ", pm, pm == pmap_kernel(), va, len); if (pmap_is_current(pm) || pm == pmap_kernel()) { rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len); while (len > 0) { if (pmap_has_valid_mapping(pm, va)) { cpu_idcache_wbinv_range(va, rest); cpu_l2cache_wbinv_range(va, rest); } len -= rest; va += rest; rest = MIN(PAGE_SIZE, len); } } } static PMAP_INLINE void pmap_dcache_wb_range(pmap_t pm, vm_offset_t va, vm_size_t len, boolean_t do_inv, boolean_t rd_only) { vm_size_t rest; CTR4(KTR_PMAP, "pmap_dcache_wb_range: pmap %p is_kernel %d va 0x%08x " "len 0x%x ", pm, pm == pmap_kernel(), va, len); CTR2(KTR_PMAP, " do_inv %d rd_only %d", do_inv, rd_only); if (pmap_is_current(pm)) { rest = MIN(PAGE_SIZE - (va & PAGE_MASK), len); while (len > 0) { if (pmap_has_valid_mapping(pm, va)) { if (do_inv && rd_only) { cpu_dcache_inv_range(va, rest); cpu_l2cache_inv_range(va, rest); } else if (do_inv) { cpu_dcache_wbinv_range(va, rest); cpu_l2cache_wbinv_range(va, rest); } else if (!rd_only) { cpu_dcache_wb_range(va, rest); cpu_l2cache_wb_range(va, rest); } } len -= rest; va += rest; rest = MIN(PAGE_SIZE, len); } } } static PMAP_INLINE void pmap_idcache_wbinv_all(pmap_t pm) { if (pmap_is_current(pm)) { cpu_idcache_wbinv_all(); cpu_l2cache_wbinv_all(); } } #ifdef notyet static PMAP_INLINE void pmap_dcache_wbinv_all(pmap_t pm) { if (pmap_is_current(pm)) { cpu_dcache_wbinv_all(); cpu_l2cache_wbinv_all(); } } #endif /* * PTE_SYNC_CURRENT: * * Make sure the pte is written out to RAM. * We need to do this for one of two cases: * - We're dealing with the kernel pmap * - There is no pmap active in the cache/tlb. * - The specified pmap is 'active' in the cache/tlb. */ #ifdef PMAP_INCLUDE_PTE_SYNC #define PTE_SYNC_CURRENT(pm, ptep) \ do { \ if (PMAP_NEEDS_PTE_SYNC && \ pmap_is_current(pm)) \ PTE_SYNC(ptep); \ } while (/*CONSTCOND*/0) #else #define PTE_SYNC_CURRENT(pm, ptep) /* nothing */ #endif /* * cacheable == -1 means we must make the entry uncacheable, 1 means * cacheable; */ static __inline void pmap_set_cache_entry(pv_entry_t pv, pmap_t pm, vm_offset_t va, int cacheable) { struct l2_bucket *l2b; pt_entry_t *ptep, pte; l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va); ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; if (cacheable == 1) { pte = (*ptep & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode; if (l2pte_valid(pte)) { if (PV_BEEN_EXECD(pv->pv_flags)) { pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va); } else if (PV_BEEN_REFD(pv->pv_flags)) { pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va); } } } else { pte = *ptep &~ L2_S_CACHE_MASK; if ((va != pv->pv_va || pm != pv->pv_pmap) && l2pte_valid(pte)) { if (PV_BEEN_EXECD(pv->pv_flags)) { pmap_idcache_wbinv_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE); pmap_tlb_flushID_SE(pv->pv_pmap, pv->pv_va); } else if (PV_BEEN_REFD(pv->pv_flags)) { pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, TRUE, (pv->pv_flags & PVF_WRITE) == 0); pmap_tlb_flushD_SE(pv->pv_pmap, pv->pv_va); } } } *ptep = pte; PTE_SYNC_CURRENT(pv->pv_pmap, ptep); } static void pmap_fix_cache(struct vm_page *pg, pmap_t pm, vm_offset_t va) { int pmwc = 0; int writable = 0, kwritable = 0, uwritable = 0; int entries = 0, kentries = 0, uentries = 0; struct pv_entry *pv; mtx_assert(&vm_page_queue_mtx, MA_OWNED); /* the cache gets written back/invalidated on context switch. * therefore, if a user page shares an entry in the same page or * with the kernel map and at least one is writable, then the * cache entry must be set write-through. */ TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) { /* generate a count of the pv_entry uses */ if (pv->pv_flags & PVF_WRITE) { if (pv->pv_pmap == pmap_kernel()) kwritable++; else if (pv->pv_pmap == pm) uwritable++; writable++; } if (pv->pv_pmap == pmap_kernel()) kentries++; else { if (pv->pv_pmap == pm) uentries++; entries++; } } /* * check if the user duplicate mapping has * been removed. */ if ((pm != pmap_kernel()) && (((uentries > 1) && uwritable) || (uwritable > 1))) pmwc = 1; TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) { /* check for user uncachable conditions - order is important */ if (pm != pmap_kernel() && (pv->pv_pmap == pm || pv->pv_pmap == pmap_kernel())) { if ((uentries > 1 && uwritable) || uwritable > 1) { /* user duplicate mapping */ if (pv->pv_pmap != pmap_kernel()) pv->pv_flags |= PVF_MWC; if (!(pv->pv_flags & PVF_NC)) { pv->pv_flags |= PVF_NC; pmap_set_cache_entry(pv, pm, va, -1); } continue; } else /* no longer a duplicate user */ pv->pv_flags &= ~PVF_MWC; } /* * check for kernel uncachable conditions * kernel writable or kernel readable with writable user entry */ if ((kwritable && (entries || kentries > 1)) || (kwritable > 1) || ((kwritable != writable) && kentries && (pv->pv_pmap == pmap_kernel() || (pv->pv_flags & PVF_WRITE) || (pv->pv_flags & PVF_MWC)))) { if (!(pv->pv_flags & PVF_NC)) { pv->pv_flags |= PVF_NC; pmap_set_cache_entry(pv, pm, va, -1); } continue; } /* kernel and user are cachable */ if ((pm == pmap_kernel()) && !(pv->pv_flags & PVF_MWC) && (pv->pv_flags & PVF_NC)) { pv->pv_flags &= ~PVF_NC; pmap_set_cache_entry(pv, pm, va, 1); continue; } /* user is no longer sharable and writable */ if (pm != pmap_kernel() && (pv->pv_pmap == pm || pv->pv_pmap == pmap_kernel()) && !pmwc && (pv->pv_flags & PVF_NC)) { pv->pv_flags &= ~(PVF_NC | PVF_MWC); pmap_set_cache_entry(pv, pm, va, 1); } } if ((kwritable == 0) && (writable == 0)) { pg->md.pvh_attrs &= ~PVF_MOD; vm_page_aflag_clear(pg, PGA_WRITEABLE); return; } } /* * Modify pte bits for all ptes corresponding to the given physical address. * We use `maskbits' rather than `clearbits' because we're always passing * constants and the latter would require an extra inversion at run-time. */ static int pmap_clearbit(struct vm_page *pg, u_int maskbits) { struct l2_bucket *l2b; struct pv_entry *pv; pt_entry_t *ptep, npte, opte; pmap_t pm; vm_offset_t va; u_int oflags; int count = 0; vm_page_lock_queues(); if (maskbits & PVF_WRITE) maskbits |= PVF_MOD; /* * Clear saved attributes (modify, reference) */ pg->md.pvh_attrs &= ~(maskbits & (PVF_MOD | PVF_REF)); if (TAILQ_EMPTY(&pg->md.pv_list)) { vm_page_unlock_queues(); return (0); } /* * Loop over all current mappings setting/clearing as appropos */ TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) { va = pv->pv_va; pm = pv->pv_pmap; oflags = pv->pv_flags; if (!(oflags & maskbits)) { if ((maskbits & PVF_WRITE) && (pv->pv_flags & PVF_NC)) { /* It is safe to re-enable cacheing here. */ PMAP_LOCK(pm); l2b = pmap_get_l2_bucket(pm, va); ptep = &l2b->l2b_kva[l2pte_index(va)]; *ptep |= pte_l2_s_cache_mode; PTE_SYNC(ptep); PMAP_UNLOCK(pm); pv->pv_flags &= ~(PVF_NC | PVF_MWC); } continue; } pv->pv_flags &= ~maskbits; PMAP_LOCK(pm); l2b = pmap_get_l2_bucket(pm, va); ptep = &l2b->l2b_kva[l2pte_index(va)]; npte = opte = *ptep; if (maskbits & (PVF_WRITE|PVF_MOD)) { if ((pv->pv_flags & PVF_NC)) { /* * Entry is not cacheable: * * Don't turn caching on again if this is a * modified emulation. This would be * inconsitent with the settings created by * pmap_fix_cache(). Otherwise, it's safe * to re-enable cacheing. * * There's no need to call pmap_fix_cache() * here: all pages are losing their write * permission. */ if (maskbits & PVF_WRITE) { npte |= pte_l2_s_cache_mode; pv->pv_flags &= ~(PVF_NC | PVF_MWC); } } else if (opte & L2_S_PROT_W) { vm_page_dirty(pg); /* * Entry is writable/cacheable: check if pmap * is current if it is flush it, otherwise it * won't be in the cache */ if (PV_BEEN_EXECD(oflags)) pmap_idcache_wbinv_range(pm, pv->pv_va, PAGE_SIZE); else if (PV_BEEN_REFD(oflags)) pmap_dcache_wb_range(pm, pv->pv_va, PAGE_SIZE, (maskbits & PVF_REF) ? TRUE : FALSE, FALSE); } /* make the pte read only */ npte &= ~L2_S_PROT_W; } if (maskbits & PVF_REF) { if ((pv->pv_flags & PVF_NC) == 0 && (maskbits & (PVF_WRITE|PVF_MOD)) == 0) { /* * Check npte here; we may have already * done the wbinv above, and the validity * of the PTE is the same for opte and * npte. */ if (npte & L2_S_PROT_W) { if (PV_BEEN_EXECD(oflags)) pmap_idcache_wbinv_range(pm, pv->pv_va, PAGE_SIZE); else if (PV_BEEN_REFD(oflags)) pmap_dcache_wb_range(pm, pv->pv_va, PAGE_SIZE, TRUE, FALSE); } else if ((npte & L2_TYPE_MASK) != L2_TYPE_INV) { /* XXXJRT need idcache_inv_range */ if (PV_BEEN_EXECD(oflags)) pmap_idcache_wbinv_range(pm, pv->pv_va, PAGE_SIZE); else if (PV_BEEN_REFD(oflags)) pmap_dcache_wb_range(pm, pv->pv_va, PAGE_SIZE, TRUE, TRUE); } } /* * Make the PTE invalid so that we will take a * page fault the next time the mapping is * referenced. */ npte &= ~L2_TYPE_MASK; npte |= L2_TYPE_INV; } if (npte != opte) { count++; *ptep = npte; PTE_SYNC(ptep); /* Flush the TLB entry if a current pmap. */ if (PV_BEEN_EXECD(oflags)) pmap_tlb_flushID_SE(pm, pv->pv_va); else if (PV_BEEN_REFD(oflags)) pmap_tlb_flushD_SE(pm, pv->pv_va); } PMAP_UNLOCK(pm); } if (maskbits & PVF_WRITE) vm_page_aflag_clear(pg, PGA_WRITEABLE); vm_page_unlock_queues(); return (count); } /* * main pv_entry manipulation functions: * pmap_enter_pv: enter a mapping onto a vm_page list * pmap_remove_pv: remove a mappiing from a vm_page list * * NOTE: pmap_enter_pv expects to lock the pvh itself * pmap_remove_pv expects te caller to lock the pvh before calling */ /* * pmap_enter_pv: enter a mapping onto a vm_page lst * * => caller should hold the proper lock on pmap_main_lock * => caller should have pmap locked * => we will gain the lock on the vm_page and allocate the new pv_entry * => caller should adjust ptp's wire_count before calling * => caller should not adjust pmap's wire_count */ static void pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, pmap_t pm, vm_offset_t va, u_int flags) { int km; mtx_assert(&vm_page_queue_mtx, MA_OWNED); if (pg->md.pv_kva) { /* PMAP_ASSERT_LOCKED(pmap_kernel()); */ pve->pv_pmap = pmap_kernel(); pve->pv_va = pg->md.pv_kva; pve->pv_flags = PVF_WRITE | PVF_UNMAN; pg->md.pv_kva = 0; if (!(km = PMAP_OWNED(pmap_kernel()))) PMAP_LOCK(pmap_kernel()); TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list); TAILQ_INSERT_HEAD(&pve->pv_pmap->pm_pvlist, pve, pv_plist); PMAP_UNLOCK(pmap_kernel()); vm_page_unlock_queues(); if ((pve = pmap_get_pv_entry()) == NULL) panic("pmap_kenter_internal: no pv entries"); vm_page_lock_queues(); if (km) PMAP_LOCK(pmap_kernel()); } PMAP_ASSERT_LOCKED(pm); pve->pv_pmap = pm; pve->pv_va = va; pve->pv_flags = flags; TAILQ_INSERT_HEAD(&pg->md.pv_list, pve, pv_list); TAILQ_INSERT_HEAD(&pm->pm_pvlist, pve, pv_plist); pg->md.pvh_attrs |= flags & (PVF_REF | PVF_MOD); if (pve->pv_flags & PVF_WIRED) ++pm->pm_stats.wired_count; vm_page_aflag_set(pg, PGA_REFERENCED); } /* * * pmap_find_pv: Find a pv entry * * => caller should hold lock on vm_page */ static PMAP_INLINE struct pv_entry * pmap_find_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va) { struct pv_entry *pv; mtx_assert(&vm_page_queue_mtx, MA_OWNED); TAILQ_FOREACH(pv, &pg->md.pv_list, pv_list) if (pm == pv->pv_pmap && va == pv->pv_va) break; return (pv); } /* * vector_page_setprot: * * Manipulate the protection of the vector page. */ void vector_page_setprot(int prot) { struct l2_bucket *l2b; pt_entry_t *ptep; l2b = pmap_get_l2_bucket(pmap_kernel(), vector_page); ptep = &l2b->l2b_kva[l2pte_index(vector_page)]; *ptep = (*ptep & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot); PTE_SYNC(ptep); cpu_tlb_flushD_SE(vector_page); cpu_cpwait(); } /* * pmap_remove_pv: try to remove a mapping from a pv_list * * => caller should hold proper lock on pmap_main_lock * => pmap should be locked * => caller should hold lock on vm_page [so that attrs can be adjusted] * => caller should adjust ptp's wire_count and free PTP if needed * => caller should NOT adjust pmap's wire_count * => we return the removed pve */ static void pmap_nuke_pv(struct vm_page *pg, pmap_t pm, struct pv_entry *pve) { struct pv_entry *pv; mtx_assert(&vm_page_queue_mtx, MA_OWNED); PMAP_ASSERT_LOCKED(pm); TAILQ_REMOVE(&pg->md.pv_list, pve, pv_list); TAILQ_REMOVE(&pm->pm_pvlist, pve, pv_plist); if (pve->pv_flags & PVF_WIRED) --pm->pm_stats.wired_count; if (pg->md.pvh_attrs & PVF_MOD) vm_page_dirty(pg); if (TAILQ_FIRST(&pg->md.pv_list) == NULL) pg->md.pvh_attrs &= ~PVF_REF; else vm_page_aflag_set(pg, PGA_REFERENCED); if ((pve->pv_flags & PVF_NC) && ((pm == pmap_kernel()) || (pve->pv_flags & PVF_WRITE) || !(pve->pv_flags & PVF_MWC))) pmap_fix_cache(pg, pm, 0); else if (pve->pv_flags & PVF_WRITE) { TAILQ_FOREACH(pve, &pg->md.pv_list, pv_list) if (pve->pv_flags & PVF_WRITE) break; if (!pve) { pg->md.pvh_attrs &= ~PVF_MOD; vm_page_aflag_clear(pg, PGA_WRITEABLE); } } pv = TAILQ_FIRST(&pg->md.pv_list); if (pv != NULL && (pv->pv_flags & PVF_UNMAN) && TAILQ_NEXT(pv, pv_list) == NULL) { pm = kernel_pmap; pg->md.pv_kva = pv->pv_va; /* a recursive pmap_nuke_pv */ TAILQ_REMOVE(&pg->md.pv_list, pv, pv_list); TAILQ_REMOVE(&pm->pm_pvlist, pv, pv_plist); if (pv->pv_flags & PVF_WIRED) --pm->pm_stats.wired_count; pg->md.pvh_attrs &= ~PVF_REF; pg->md.pvh_attrs &= ~PVF_MOD; vm_page_aflag_clear(pg, PGA_WRITEABLE); pmap_free_pv_entry(pv); } } static struct pv_entry * pmap_remove_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va) { struct pv_entry *pve; mtx_assert(&vm_page_queue_mtx, MA_OWNED); pve = TAILQ_FIRST(&pg->md.pv_list); while (pve) { if (pve->pv_pmap == pm && pve->pv_va == va) { /* match? */ pmap_nuke_pv(pg, pm, pve); break; } pve = TAILQ_NEXT(pve, pv_list); } if (pve == NULL && pg->md.pv_kva == va) pg->md.pv_kva = 0; return(pve); /* return removed pve */ } /* * * pmap_modify_pv: Update pv flags * * => caller should hold lock on vm_page [so that attrs can be adjusted] * => caller should NOT adjust pmap's wire_count * => we return the old flags * * Modify a physical-virtual mapping in the pv table */ static u_int pmap_modify_pv(struct vm_page *pg, pmap_t pm, vm_offset_t va, u_int clr_mask, u_int set_mask) { struct pv_entry *npv; u_int flags, oflags; PMAP_ASSERT_LOCKED(pm); mtx_assert(&vm_page_queue_mtx, MA_OWNED); if ((npv = pmap_find_pv(pg, pm, va)) == NULL) return (0); /* * There is at least one VA mapping this page. */ if (clr_mask & (PVF_REF | PVF_MOD)) pg->md.pvh_attrs |= set_mask & (PVF_REF | PVF_MOD); oflags = npv->pv_flags; npv->pv_flags = flags = (oflags & ~clr_mask) | set_mask; if ((flags ^ oflags) & PVF_WIRED) { if (flags & PVF_WIRED) ++pm->pm_stats.wired_count; else --pm->pm_stats.wired_count; } if ((flags ^ oflags) & PVF_WRITE) pmap_fix_cache(pg, pm, 0); return (oflags); } /* Function to set the debug level of the pmap code */ #ifdef PMAP_DEBUG void pmap_debug(int level) { pmap_debug_level = level; dprintf("pmap_debug: level=%d\n", pmap_debug_level); } #endif /* PMAP_DEBUG */ void pmap_pinit0(struct pmap *pmap) { PDEBUG(1, printf("pmap_pinit0: pmap = %08x\n", (u_int32_t) pmap)); dprintf("pmap_pinit0: pmap = %08x, pm_pdir = %08x\n", (u_int32_t) pmap, (u_int32_t) pmap->pm_pdir); bcopy(kernel_pmap, pmap, sizeof(*pmap)); bzero(&pmap->pm_mtx, sizeof(pmap->pm_mtx)); PMAP_LOCK_INIT(pmap); } /* * Initialize a vm_page's machine-dependent fields. */ void pmap_page_init(vm_page_t m) { TAILQ_INIT(&m->md.pv_list); } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ void pmap_init(void) { int shpgperproc = PMAP_SHPGPERPROC; PDEBUG(1, printf("pmap_init: phys_start = %08x\n", PHYSADDR)); /* * init the pv free list */ pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); /* * Now it is safe to enable pv_table recording. */ PDEBUG(1, printf("pmap_init: done!\n")); TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); pv_entry_max = shpgperproc * maxproc + cnt.v_page_count; pv_entry_high_water = 9 * (pv_entry_max / 10); l2zone = uma_zcreate("L2 Table", L2_TABLE_SIZE_REAL, pmap_l2ptp_ctor, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); l2table_zone = uma_zcreate("L2 Table", sizeof(struct l2_dtable), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max); } int pmap_fault_fixup(pmap_t pm, vm_offset_t va, vm_prot_t ftype, int user) { struct l2_dtable *l2; struct l2_bucket *l2b; pd_entry_t *pl1pd, l1pd; pt_entry_t *ptep, pte; vm_paddr_t pa; u_int l1idx; int rv = 0; l1idx = L1_IDX(va); vm_page_lock_queues(); PMAP_LOCK(pm); /* * If there is no l2_dtable for this address, then the process * has no business accessing it. * * Note: This will catch userland processes trying to access * kernel addresses. */ l2 = pm->pm_l2[L2_IDX(l1idx)]; if (l2 == NULL) goto out; /* * Likewise if there is no L2 descriptor table */ l2b = &l2->l2_bucket[L2_BUCKET(l1idx)]; if (l2b->l2b_kva == NULL) goto out; /* * Check the PTE itself. */ ptep = &l2b->l2b_kva[l2pte_index(va)]; pte = *ptep; if (pte == 0) goto out; /* * Catch a userland access to the vector page mapped at 0x0 */ if (user && (pte & L2_S_PROT_U) == 0) goto out; if (va == vector_page) goto out; pa = l2pte_pa(pte); if ((ftype & VM_PROT_WRITE) && (pte & L2_S_PROT_W) == 0) { /* * This looks like a good candidate for "page modified" * emulation... */ struct pv_entry *pv; struct vm_page *pg; /* Extract the physical address of the page */ if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) { goto out; } /* Get the current flags for this page. */ pv = pmap_find_pv(pg, pm, va); if (pv == NULL) { goto out; } /* * Do the flags say this page is writable? If not then it * is a genuine write fault. If yes then the write fault is * our fault as we did not reflect the write access in the * PTE. Now we know a write has occurred we can correct this * and also set the modified bit */ if ((pv->pv_flags & PVF_WRITE) == 0) { goto out; } pg->md.pvh_attrs |= PVF_REF | PVF_MOD; vm_page_dirty(pg); pv->pv_flags |= PVF_REF | PVF_MOD; /* * Re-enable write permissions for the page. No need to call * pmap_fix_cache(), since this is just a * modified-emulation fault, and the PVF_WRITE bit isn't * changing. We've already set the cacheable bits based on * the assumption that we can write to this page. */ *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W; PTE_SYNC(ptep); rv = 1; } else if ((pte & L2_TYPE_MASK) == L2_TYPE_INV) { /* * This looks like a good candidate for "page referenced" * emulation. */ struct pv_entry *pv; struct vm_page *pg; /* Extract the physical address of the page */ if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL) goto out; /* Get the current flags for this page. */ pv = pmap_find_pv(pg, pm, va); if (pv == NULL) goto out; pg->md.pvh_attrs |= PVF_REF; pv->pv_flags |= PVF_REF; *ptep = (pte & ~L2_TYPE_MASK) | L2_S_PROTO; PTE_SYNC(ptep); rv = 1; } /* * We know there is a valid mapping here, so simply * fix up the L1 if necessary. */ pl1pd = &pm->pm_l1->l1_kva[l1idx]; l1pd = l2b->l2b_phys | L1_C_DOM(pm->pm_domain) | L1_C_PROTO; if (*pl1pd != l1pd) { *pl1pd = l1pd; PTE_SYNC(pl1pd); rv = 1; } #ifdef CPU_SA110 /* * There are bugs in the rev K SA110. This is a check for one * of them. */ if (rv == 0 && curcpu()->ci_arm_cputype == CPU_ID_SA110 && curcpu()->ci_arm_cpurev < 3) { /* Always current pmap */ if (l2pte_valid(pte)) { extern int kernel_debug; if (kernel_debug & 1) { struct proc *p = curlwp->l_proc; printf("prefetch_abort: page is already " "mapped - pte=%p *pte=%08x\n", ptep, pte); printf("prefetch_abort: pc=%08lx proc=%p " "process=%s\n", va, p, p->p_comm); printf("prefetch_abort: far=%08x fs=%x\n", cpu_faultaddress(), cpu_faultstatus()); } #ifdef DDB if (kernel_debug & 2) Debugger(); #endif rv = 1; } } #endif /* CPU_SA110 */ #ifdef DEBUG /* * If 'rv == 0' at this point, it generally indicates that there is a * stale TLB entry for the faulting address. This happens when two or * more processes are sharing an L1. Since we don't flush the TLB on * a context switch between such processes, we can take domain faults * for mappings which exist at the same VA in both processes. EVEN IF * WE'VE RECENTLY FIXED UP THE CORRESPONDING L1 in pmap_enter(), for * example. * * This is extremely likely to happen if pmap_enter() updated the L1 * entry for a recently entered mapping. In this case, the TLB is * flushed for the new mapping, but there may still be TLB entries for * other mappings belonging to other processes in the 1MB range * covered by the L1 entry. * * Since 'rv == 0', we know that the L1 already contains the correct * value, so the fault must be due to a stale TLB entry. * * Since we always need to flush the TLB anyway in the case where we * fixed up the L1, or frobbed the L2 PTE, we effectively deal with * stale TLB entries dynamically. * * However, the above condition can ONLY happen if the current L1 is * being shared. If it happens when the L1 is unshared, it indicates * that other parts of the pmap are not doing their job WRT managing * the TLB. */ if (rv == 0 && pm->pm_l1->l1_domain_use_count == 1) { extern int last_fault_code; printf("fixup: pm %p, va 0x%lx, ftype %d - nothing to do!\n", pm, va, ftype); printf("fixup: l2 %p, l2b %p, ptep %p, pl1pd %p\n", l2, l2b, ptep, pl1pd); printf("fixup: pte 0x%x, l1pd 0x%x, last code 0x%x\n", pte, l1pd, last_fault_code); #ifdef DDB Debugger(); #endif } #endif cpu_tlb_flushID_SE(va); cpu_cpwait(); rv = 1; out: vm_page_unlock_queues(); PMAP_UNLOCK(pm); return (rv); } void pmap_postinit(void) { struct l2_bucket *l2b; struct l1_ttable *l1; pd_entry_t *pl1pt; pt_entry_t *ptep, pte; vm_offset_t va, eva; u_int loop, needed; needed = (maxproc / PMAP_DOMAINS) + ((maxproc % PMAP_DOMAINS) ? 1 : 0); needed -= 1; l1 = malloc(sizeof(*l1) * needed, M_VMPMAP, M_WAITOK); for (loop = 0; loop < needed; loop++, l1++) { /* Allocate a L1 page table */ va = (vm_offset_t)contigmalloc(L1_TABLE_SIZE, M_VMPMAP, 0, 0x0, 0xffffffff, L1_TABLE_SIZE, 0); if (va == 0) panic("Cannot allocate L1 KVM"); eva = va + L1_TABLE_SIZE; pl1pt = (pd_entry_t *)va; while (va < eva) { l2b = pmap_get_l2_bucket(pmap_kernel(), va); ptep = &l2b->l2b_kva[l2pte_index(va)]; pte = *ptep; pte = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt; *ptep = pte; PTE_SYNC(ptep); cpu_tlb_flushD_SE(va); va += PAGE_SIZE; } pmap_init_l1(l1, pl1pt); } #ifdef DEBUG printf("pmap_postinit: Allocated %d static L1 descriptor tables\n", needed); #endif } /* * This is used to stuff certain critical values into the PCB where they * can be accessed quickly from cpu_switch() et al. */ void pmap_set_pcb_pagedir(pmap_t pm, struct pcb *pcb) { struct l2_bucket *l2b; pcb->pcb_pagedir = pm->pm_l1->l1_physaddr; pcb->pcb_dacr = (DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | (DOMAIN_CLIENT << (pm->pm_domain * 2)); if (vector_page < KERNBASE) { pcb->pcb_pl1vec = &pm->pm_l1->l1_kva[L1_IDX(vector_page)]; l2b = pmap_get_l2_bucket(pm, vector_page); pcb->pcb_l1vec = l2b->l2b_phys | L1_C_PROTO | L1_C_DOM(pm->pm_domain) | L1_C_DOM(PMAP_DOMAIN_KERNEL); } else pcb->pcb_pl1vec = NULL; } void pmap_activate(struct thread *td) { pmap_t pm; struct pcb *pcb; pm = vmspace_pmap(td->td_proc->p_vmspace); pcb = td->td_pcb; critical_enter(); pmap_set_pcb_pagedir(pm, pcb); if (td == curthread) { u_int cur_dacr, cur_ttb; __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(cur_ttb)); __asm __volatile("mrc p15, 0, %0, c3, c0, 0" : "=r"(cur_dacr)); cur_ttb &= ~(L1_TABLE_SIZE - 1); if (cur_ttb == (u_int)pcb->pcb_pagedir && cur_dacr == pcb->pcb_dacr) { /* * No need to switch address spaces. */ critical_exit(); return; } /* * We MUST, I repeat, MUST fix up the L1 entry corresponding * to 'vector_page' in the incoming L1 table before switching * to it otherwise subsequent interrupts/exceptions (including * domain faults!) will jump into hyperspace. */ if (pcb->pcb_pl1vec) { *pcb->pcb_pl1vec = pcb->pcb_l1vec; /* * Don't need to PTE_SYNC() at this point since * cpu_setttb() is about to flush both the cache * and the TLB. */ } cpu_domains(pcb->pcb_dacr); cpu_setttb(pcb->pcb_pagedir); } critical_exit(); } static int pmap_set_pt_cache_mode(pd_entry_t *kl1, vm_offset_t va) { pd_entry_t *pdep, pde; pt_entry_t *ptep, pte; vm_offset_t pa; int rv = 0; /* * Make sure the descriptor itself has the correct cache mode */ pdep = &kl1[L1_IDX(va)]; pde = *pdep; if (l1pte_section_p(pde)) { if ((pde & L1_S_CACHE_MASK) != pte_l1_s_cache_mode_pt) { *pdep = (pde & ~L1_S_CACHE_MASK) | pte_l1_s_cache_mode_pt; PTE_SYNC(pdep); cpu_dcache_wbinv_range((vm_offset_t)pdep, sizeof(*pdep)); cpu_l2cache_wbinv_range((vm_offset_t)pdep, sizeof(*pdep)); rv = 1; } } else { pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK); ptep = (pt_entry_t *)kernel_pt_lookup(pa); if (ptep == NULL) panic("pmap_bootstrap: No L2 for L2 @ va %p\n", ptep); ptep = &ptep[l2pte_index(va)]; pte = *ptep; if ((pte & L2_S_CACHE_MASK) != pte_l2_s_cache_mode_pt) { *ptep = (pte & ~L2_S_CACHE_MASK) | pte_l2_s_cache_mode_pt; PTE_SYNC(ptep); cpu_dcache_wbinv_range((vm_offset_t)ptep, sizeof(*ptep)); cpu_l2cache_wbinv_range((vm_offset_t)ptep, sizeof(*ptep)); rv = 1; } } return (rv); } static void pmap_alloc_specials(vm_offset_t *availp, int pages, vm_offset_t *vap, pt_entry_t **ptep) { vm_offset_t va = *availp; struct l2_bucket *l2b; if (ptep) { l2b = pmap_get_l2_bucket(pmap_kernel(), va); if (l2b == NULL) panic("pmap_alloc_specials: no l2b for 0x%x", va); *ptep = &l2b->l2b_kva[l2pte_index(va)]; } *vap = va; *availp = va + (PAGE_SIZE * pages); } /* * Bootstrap the system enough to run with virtual memory. * * On the arm this is called after mapping has already been enabled * and just syncs the pmap module with what has already been done. * [We can't call it easily with mapping off since the kernel is not * mapped with PA == VA, hence we would have to relocate every address * from the linked base (virtual) address "KERNBASE" to the actual * (physical) address starting relative to 0] */ #define PMAP_STATIC_L2_SIZE 16 #ifdef ARM_USE_SMALL_ALLOC extern struct mtx smallalloc_mtx; #endif void pmap_bootstrap(vm_offset_t firstaddr, vm_offset_t lastaddr, struct pv_addr *l1pt) { static struct l1_ttable static_l1; static struct l2_dtable static_l2[PMAP_STATIC_L2_SIZE]; struct l1_ttable *l1 = &static_l1; struct l2_dtable *l2; struct l2_bucket *l2b; pd_entry_t pde; pd_entry_t *kernel_l1pt = (pd_entry_t *)l1pt->pv_va; pt_entry_t *ptep; vm_paddr_t pa; vm_offset_t va; vm_size_t size; int l1idx, l2idx, l2next = 0; PDEBUG(1, printf("firstaddr = %08x, lastaddr = %08x\n", firstaddr, lastaddr)); virtual_avail = firstaddr; kernel_pmap->pm_l1 = l1; kernel_l1pa = l1pt->pv_pa; /* * Scan the L1 translation table created by initarm() and create * the required metadata for all valid mappings found in it. */ for (l1idx = 0; l1idx < (L1_TABLE_SIZE / sizeof(pd_entry_t)); l1idx++) { pde = kernel_l1pt[l1idx]; /* * We're only interested in Coarse mappings. * pmap_extract() can deal with section mappings without * recourse to checking L2 metadata. */ if ((pde & L1_TYPE_MASK) != L1_TYPE_C) continue; /* * Lookup the KVA of this L2 descriptor table */ pa = (vm_paddr_t)(pde & L1_C_ADDR_MASK); ptep = (pt_entry_t *)kernel_pt_lookup(pa); if (ptep == NULL) { panic("pmap_bootstrap: No L2 for va 0x%x, pa 0x%lx", (u_int)l1idx << L1_S_SHIFT, (long unsigned int)pa); } /* * Fetch the associated L2 metadata structure. * Allocate a new one if necessary. */ if ((l2 = kernel_pmap->pm_l2[L2_IDX(l1idx)]) == NULL) { if (l2next == PMAP_STATIC_L2_SIZE) panic("pmap_bootstrap: out of static L2s"); kernel_pmap->pm_l2[L2_IDX(l1idx)] = l2 = &static_l2[l2next++]; } /* * One more L1 slot tracked... */ l2->l2_occupancy++; /* * Fill in the details of the L2 descriptor in the * appropriate bucket. */ l2b = &l2->l2_bucket[L2_BUCKET(l1idx)]; l2b->l2b_kva = ptep; l2b->l2b_phys = pa; l2b->l2b_l1idx = l1idx; /* * Establish an initial occupancy count for this descriptor */ for (l2idx = 0; l2idx < (L2_TABLE_SIZE_REAL / sizeof(pt_entry_t)); l2idx++) { if ((ptep[l2idx] & L2_TYPE_MASK) != L2_TYPE_INV) { l2b->l2b_occupancy++; } } /* * Make sure the descriptor itself has the correct cache mode. * If not, fix it, but whine about the problem. Port-meisters * should consider this a clue to fix up their initarm() * function. :) */ if (pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)ptep)) { printf("pmap_bootstrap: WARNING! wrong cache mode for " "L2 pte @ %p\n", ptep); } } /* * Ensure the primary (kernel) L1 has the correct cache mode for * a page table. Bitch if it is not correctly set. */ for (va = (vm_offset_t)kernel_l1pt; va < ((vm_offset_t)kernel_l1pt + L1_TABLE_SIZE); va += PAGE_SIZE) { if (pmap_set_pt_cache_mode(kernel_l1pt, va)) printf("pmap_bootstrap: WARNING! wrong cache mode for " "primary L1 @ 0x%x\n", va); } cpu_dcache_wbinv_all(); cpu_l2cache_wbinv_all(); cpu_tlb_flushID(); cpu_cpwait(); PMAP_LOCK_INIT(kernel_pmap); CPU_FILL(&kernel_pmap->pm_active); kernel_pmap->pm_domain = PMAP_DOMAIN_KERNEL; TAILQ_INIT(&kernel_pmap->pm_pvlist); /* * Reserve some special page table entries/VA space for temporary * mapping of pages. */ #define SYSMAP(c, p, v, n) \ v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n); pmap_alloc_specials(&virtual_avail, 1, &csrcp, &csrc_pte); pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)csrc_pte); pmap_alloc_specials(&virtual_avail, 1, &cdstp, &cdst_pte); pmap_set_pt_cache_mode(kernel_l1pt, (vm_offset_t)cdst_pte); size = ((lastaddr - pmap_curmaxkvaddr) + L1_S_OFFSET) / L1_S_SIZE; pmap_alloc_specials(&virtual_avail, round_page(size * L2_TABLE_SIZE_REAL) / PAGE_SIZE, &pmap_kernel_l2ptp_kva, NULL); size = (size + (L2_BUCKET_SIZE - 1)) / L2_BUCKET_SIZE; pmap_alloc_specials(&virtual_avail, round_page(size * sizeof(struct l2_dtable)) / PAGE_SIZE, &pmap_kernel_l2dtable_kva, NULL); pmap_alloc_specials(&virtual_avail, 1, (vm_offset_t*)&_tmppt, NULL); pmap_alloc_specials(&virtual_avail, MAXDUMPPGS, (vm_offset_t *)&crashdumpmap, NULL); SLIST_INIT(&l1_list); TAILQ_INIT(&l1_lru_list); mtx_init(&l1_lru_lock, "l1 list lock", NULL, MTX_DEF); pmap_init_l1(l1, kernel_l1pt); cpu_dcache_wbinv_all(); cpu_l2cache_wbinv_all(); virtual_avail = round_page(virtual_avail); virtual_end = lastaddr; kernel_vm_end = pmap_curmaxkvaddr; arm_nocache_startaddr = lastaddr; mtx_init(&cmtx, "TMP mappings mtx", NULL, MTX_DEF); #ifdef ARM_USE_SMALL_ALLOC mtx_init(&smallalloc_mtx, "Small alloc page list", NULL, MTX_DEF); arm_init_smallalloc(); #endif pmap_set_pcb_pagedir(kernel_pmap, thread0.td_pcb); } /*************************************************** * Pmap allocation/deallocation routines. ***************************************************/ /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. * Should only be called if the map contains no valid mappings. */ void pmap_release(pmap_t pmap) { struct pcb *pcb; pmap_idcache_wbinv_all(pmap); cpu_l2cache_wbinv_all(); pmap_tlb_flushID(pmap); cpu_cpwait(); if (vector_page < KERNBASE) { struct pcb *curpcb = PCPU_GET(curpcb); pcb = thread0.td_pcb; if (pmap_is_current(pmap)) { /* * Frob the L1 entry corresponding to the vector * page so that it contains the kernel pmap's domain * number. This will ensure pmap_remove() does not * pull the current vector page out from under us. */ critical_enter(); *pcb->pcb_pl1vec = pcb->pcb_l1vec; cpu_domains(pcb->pcb_dacr); cpu_setttb(pcb->pcb_pagedir); critical_exit(); } pmap_remove(pmap, vector_page, vector_page + PAGE_SIZE); /* * Make sure cpu_switch(), et al, DTRT. This is safe to do * since this process has no remaining mappings of its own. */ curpcb->pcb_pl1vec = pcb->pcb_pl1vec; curpcb->pcb_l1vec = pcb->pcb_l1vec; curpcb->pcb_dacr = pcb->pcb_dacr; curpcb->pcb_pagedir = pcb->pcb_pagedir; } pmap_free_l1(pmap); PMAP_LOCK_DESTROY(pmap); dprintf("pmap_release()\n"); } /* * Helper function for pmap_grow_l2_bucket() */ static __inline int pmap_grow_map(vm_offset_t va, pt_entry_t cache_mode, vm_paddr_t *pap) { struct l2_bucket *l2b; pt_entry_t *ptep; vm_paddr_t pa; struct vm_page *pg; pg = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); if (pg == NULL) return (1); pa = VM_PAGE_TO_PHYS(pg); if (pap) *pap = pa; l2b = pmap_get_l2_bucket(pmap_kernel(), va); ptep = &l2b->l2b_kva[l2pte_index(va)]; *ptep = L2_S_PROTO | pa | cache_mode | L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE); PTE_SYNC(ptep); return (0); } /* * This is the same as pmap_alloc_l2_bucket(), except that it is only * used by pmap_growkernel(). */ static __inline struct l2_bucket * pmap_grow_l2_bucket(pmap_t pm, vm_offset_t va) { struct l2_dtable *l2; struct l2_bucket *l2b; struct l1_ttable *l1; pd_entry_t *pl1pd; u_short l1idx; vm_offset_t nva; l1idx = L1_IDX(va); if ((l2 = pm->pm_l2[L2_IDX(l1idx)]) == NULL) { /* * No mapping at this address, as there is * no entry in the L1 table. * Need to allocate a new l2_dtable. */ nva = pmap_kernel_l2dtable_kva; if ((nva & PAGE_MASK) == 0) { /* * Need to allocate a backing page */ if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL)) return (NULL); } l2 = (struct l2_dtable *)nva; nva += sizeof(struct l2_dtable); if ((nva & PAGE_MASK) < (pmap_kernel_l2dtable_kva & PAGE_MASK)) { /* * The new l2_dtable straddles a page boundary. * Map in another page to cover it. */ if (pmap_grow_map(nva, pte_l2_s_cache_mode, NULL)) return (NULL); } pmap_kernel_l2dtable_kva = nva; /* * Link it into the parent pmap */ pm->pm_l2[L2_IDX(l1idx)] = l2; memset(l2, 0, sizeof(*l2)); } l2b = &l2->l2_bucket[L2_BUCKET(l1idx)]; /* * Fetch pointer to the L2 page table associated with the address. */ if (l2b->l2b_kva == NULL) { pt_entry_t *ptep; /* * No L2 page table has been allocated. Chances are, this * is because we just allocated the l2_dtable, above. */ nva = pmap_kernel_l2ptp_kva; ptep = (pt_entry_t *)nva; if ((nva & PAGE_MASK) == 0) { /* * Need to allocate a backing page */ if (pmap_grow_map(nva, pte_l2_s_cache_mode_pt, &pmap_kernel_l2ptp_phys)) return (NULL); PTE_SYNC_RANGE(ptep, PAGE_SIZE / sizeof(pt_entry_t)); } memset(ptep, 0, L2_TABLE_SIZE_REAL); l2->l2_occupancy++; l2b->l2b_kva = ptep; l2b->l2b_l1idx = l1idx; l2b->l2b_phys = pmap_kernel_l2ptp_phys; pmap_kernel_l2ptp_kva += L2_TABLE_SIZE_REAL; pmap_kernel_l2ptp_phys += L2_TABLE_SIZE_REAL; } /* Distribute new L1 entry to all other L1s */ SLIST_FOREACH(l1, &l1_list, l1_link) { pl1pd = &l1->l1_kva[L1_IDX(va)]; *pl1pd = l2b->l2b_phys | L1_C_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO; PTE_SYNC(pl1pd); } return (l2b); } /* * grow the number of kernel page table entries, if needed */ void pmap_growkernel(vm_offset_t addr) { pmap_t kpm = pmap_kernel(); if (addr <= pmap_curmaxkvaddr) return; /* we are OK */ /* * whoops! we need to add kernel PTPs */ /* Map 1MB at a time */ for (; pmap_curmaxkvaddr < addr; pmap_curmaxkvaddr += L1_S_SIZE) pmap_grow_l2_bucket(kpm, pmap_curmaxkvaddr); /* * flush out the cache, expensive but growkernel will happen so * rarely */ cpu_dcache_wbinv_all(); cpu_l2cache_wbinv_all(); cpu_tlb_flushD(); cpu_cpwait(); kernel_vm_end = pmap_curmaxkvaddr; } /* * Remove all pages from specified address space * this aids process exit speeds. Also, this code * is special cased for current process only, but * can have the more generic (and slightly slower) * mode enabled. This is much faster than pmap_remove * in the case of running down an entire address space. */ void pmap_remove_pages(pmap_t pmap) { struct pv_entry *pv, *npv; struct l2_bucket *l2b = NULL; vm_page_t m; pt_entry_t *pt; vm_page_lock_queues(); PMAP_LOCK(pmap); cpu_idcache_wbinv_all(); cpu_l2cache_wbinv_all(); for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) { if (pv->pv_flags & PVF_WIRED || pv->pv_flags & PVF_UNMAN) { /* Cannot remove wired or unmanaged pages now. */ npv = TAILQ_NEXT(pv, pv_plist); continue; } pmap->pm_stats.resident_count--; l2b = pmap_get_l2_bucket(pmap, pv->pv_va); KASSERT(l2b != NULL, ("No L2 bucket in pmap_remove_pages")); pt = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; m = PHYS_TO_VM_PAGE(*pt & L2_ADDR_MASK); #ifdef ARM_USE_SMALL_ALLOC KASSERT((vm_offset_t)m >= alloc_firstaddr, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt)); #else KASSERT((vm_offset_t)m >= KERNBASE, ("Trying to access non-existent page va %x pte %x", pv->pv_va, *pt)); #endif *pt = 0; PTE_SYNC(pt); npv = TAILQ_NEXT(pv, pv_plist); pmap_nuke_pv(m, pmap, pv); if (TAILQ_EMPTY(&m->md.pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); pmap_free_pv_entry(pv); pmap_free_l2_bucket(pmap, l2b, 1); } vm_page_unlock_queues(); cpu_tlb_flushID(); cpu_cpwait(); PMAP_UNLOCK(pmap); } /*************************************************** * Low level mapping routines..... ***************************************************/ #ifdef ARM_HAVE_SUPERSECTIONS /* Map a super section into the KVA. */ void pmap_kenter_supersection(vm_offset_t va, uint64_t pa, int flags) { pd_entry_t pd = L1_S_PROTO | L1_S_SUPERSEC | (pa & L1_SUP_FRAME) | (((pa >> 32) & 0xf) << 20) | L1_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL); struct l1_ttable *l1; vm_offset_t va0, va_end; KASSERT(((va | pa) & L1_SUP_OFFSET) == 0, ("Not a valid super section mapping")); if (flags & SECTION_CACHE) pd |= pte_l1_s_cache_mode; else if (flags & SECTION_PT) pd |= pte_l1_s_cache_mode_pt; va0 = va & L1_SUP_FRAME; va_end = va + L1_SUP_SIZE; SLIST_FOREACH(l1, &l1_list, l1_link) { va = va0; for (; va < va_end; va += L1_S_SIZE) { l1->l1_kva[L1_IDX(va)] = pd; PTE_SYNC(&l1->l1_kva[L1_IDX(va)]); } } } #endif /* Map a section into the KVA. */ void pmap_kenter_section(vm_offset_t va, vm_offset_t pa, int flags) { pd_entry_t pd = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE) | L1_S_DOM(PMAP_DOMAIN_KERNEL); struct l1_ttable *l1; KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("Not a valid section mapping")); if (flags & SECTION_CACHE) pd |= pte_l1_s_cache_mode; else if (flags & SECTION_PT) pd |= pte_l1_s_cache_mode_pt; SLIST_FOREACH(l1, &l1_list, l1_link) { l1->l1_kva[L1_IDX(va)] = pd; PTE_SYNC(&l1->l1_kva[L1_IDX(va)]); } } /* * Make a temporary mapping for a physical address. This is only intended * to be used for panic dumps. */ void * pmap_kenter_temp(vm_paddr_t pa, int i) { vm_offset_t va; va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE); pmap_kenter(va, pa); return ((void *)crashdumpmap); } /* * add a wired page to the kva * note that in order for the mapping to take effect -- you * should do a invltlb after doing the pmap_kenter... */ static PMAP_INLINE void pmap_kenter_internal(vm_offset_t va, vm_offset_t pa, int flags) { struct l2_bucket *l2b; pt_entry_t *pte; pt_entry_t opte; struct pv_entry *pve; vm_page_t m; PDEBUG(1, printf("pmap_kenter: va = %08x, pa = %08x\n", (uint32_t) va, (uint32_t) pa)); l2b = pmap_get_l2_bucket(pmap_kernel(), va); if (l2b == NULL) l2b = pmap_grow_l2_bucket(pmap_kernel(), va); KASSERT(l2b != NULL, ("No L2 Bucket")); pte = &l2b->l2b_kva[l2pte_index(va)]; opte = *pte; PDEBUG(1, printf("pmap_kenter: pte = %08x, opte = %08x, npte = %08x\n", (uint32_t) pte, opte, *pte)); if (l2pte_valid(opte)) { pmap_kremove(va); } else { if (opte == 0) l2b->l2b_occupancy++; } *pte = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, VM_PROT_READ | VM_PROT_WRITE); if (flags & KENTER_CACHE) *pte |= pte_l2_s_cache_mode; if (flags & KENTER_USER) *pte |= L2_S_PROT_U; PTE_SYNC(pte); /* kernel direct mappings can be shared, so use a pv_entry * to ensure proper caching. * * The pvzone is used to delay the recording of kernel * mappings until the VM is running. * * This expects the physical memory to have vm_page_array entry. */ if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa))) { vm_page_lock_queues(); if (!TAILQ_EMPTY(&m->md.pv_list) || m->md.pv_kva) { /* release vm_page lock for pv_entry UMA */ vm_page_unlock_queues(); if ((pve = pmap_get_pv_entry()) == NULL) panic("pmap_kenter_internal: no pv entries"); vm_page_lock_queues(); PMAP_LOCK(pmap_kernel()); pmap_enter_pv(m, pve, pmap_kernel(), va, PVF_WRITE | PVF_UNMAN); pmap_fix_cache(m, pmap_kernel(), va); PMAP_UNLOCK(pmap_kernel()); } else { m->md.pv_kva = va; } vm_page_unlock_queues(); } } void pmap_kenter(vm_offset_t va, vm_paddr_t pa) { pmap_kenter_internal(va, pa, KENTER_CACHE); } void pmap_kenter_nocache(vm_offset_t va, vm_paddr_t pa) { pmap_kenter_internal(va, pa, 0); } void pmap_kenter_user(vm_offset_t va, vm_paddr_t pa) { pmap_kenter_internal(va, pa, KENTER_CACHE|KENTER_USER); /* * Call pmap_fault_fixup now, to make sure we'll have no exception * at the first use of the new address, or bad things will happen, * as we use one of these addresses in the exception handlers. */ pmap_fault_fixup(pmap_kernel(), va, VM_PROT_READ|VM_PROT_WRITE, 1); } /* * remove a page from the kernel pagetables */ void pmap_kremove(vm_offset_t va) { struct l2_bucket *l2b; pt_entry_t *pte, opte; struct pv_entry *pve; vm_page_t m; vm_offset_t pa; l2b = pmap_get_l2_bucket(pmap_kernel(), va); if (!l2b) return; KASSERT(l2b != NULL, ("No L2 Bucket")); pte = &l2b->l2b_kva[l2pte_index(va)]; opte = *pte; if (l2pte_valid(opte)) { /* pa = vtophs(va) taken from pmap_extract() */ switch (opte & L2_TYPE_MASK) { case L2_TYPE_L: pa = (opte & L2_L_FRAME) | (va & L2_L_OFFSET); break; default: pa = (opte & L2_S_FRAME) | (va & L2_S_OFFSET); break; } /* note: should never have to remove an allocation * before the pvzone is initialized. */ vm_page_lock_queues(); PMAP_LOCK(pmap_kernel()); if (pvzone != NULL && (m = vm_phys_paddr_to_vm_page(pa)) && (pve = pmap_remove_pv(m, pmap_kernel(), va))) pmap_free_pv_entry(pve); PMAP_UNLOCK(pmap_kernel()); vm_page_unlock_queues(); va = va & ~PAGE_MASK; cpu_dcache_wbinv_range(va, PAGE_SIZE); cpu_l2cache_wbinv_range(va, PAGE_SIZE); cpu_tlb_flushD_SE(va); cpu_cpwait(); *pte = 0; } } /* * Used to map a range of physical addresses into kernel * virtual address space. * * The value passed in '*virt' is a suggested virtual address for * the mapping. Architectures which can support a direct-mapped * physical to virtual region can return the appropriate address * within that region, leaving '*virt' unchanged. Other * architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped * region. */ vm_offset_t pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot) { #ifdef ARM_USE_SMALL_ALLOC return (arm_ptovirt(start)); #else vm_offset_t sva = *virt; vm_offset_t va = sva; PDEBUG(1, printf("pmap_map: virt = %08x, start = %08x, end = %08x, " "prot = %d\n", (uint32_t) *virt, (uint32_t) start, (uint32_t) end, prot)); while (start < end) { pmap_kenter(va, start); va += PAGE_SIZE; start += PAGE_SIZE; } *virt = va; return (sva); #endif } static void pmap_wb_page(vm_page_t m) { struct pv_entry *pv; TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, FALSE, (pv->pv_flags & PVF_WRITE) == 0); } static void pmap_inv_page(vm_page_t m) { struct pv_entry *pv; TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) pmap_dcache_wb_range(pv->pv_pmap, pv->pv_va, PAGE_SIZE, TRUE, TRUE); } /* * Add a list of wired pages to the kva * this routine is only used for temporary * kernel mappings that do not need to have * page modification or references recorded. * Note that old mappings are simply written * over. The page *must* be wired. */ void pmap_qenter(vm_offset_t va, vm_page_t *m, int count) { int i; for (i = 0; i < count; i++) { pmap_wb_page(m[i]); pmap_kenter_internal(va, VM_PAGE_TO_PHYS(m[i]), KENTER_CACHE); va += PAGE_SIZE; } } /* * this routine jerks page mappings from the * kernel -- it is meant only for temporary mappings. */ void pmap_qremove(vm_offset_t va, int count) { vm_paddr_t pa; int i; for (i = 0; i < count; i++) { pa = vtophys(va); if (pa) { pmap_inv_page(PHYS_TO_VM_PAGE(pa)); pmap_kremove(va); } va += PAGE_SIZE; } } /* * pmap_object_init_pt preloads the ptes for a given object * into the specified pmap. This eliminates the blast of soft * faults on process startup and immediately after an mmap. */ void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("pmap_object_init_pt: non-device object")); } /* * pmap_is_prefaultable: * * Return whether or not the specified virtual address is elgible * for prefault. */ boolean_t pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr) { pd_entry_t *pde; pt_entry_t *pte; if (!pmap_get_pde_pte(pmap, addr, &pde, &pte)) return (FALSE); KASSERT(pte != NULL, ("Valid mapping but no pte ?")); if (*pte == 0) return (TRUE); return (FALSE); } /* * Fetch pointers to the PDE/PTE for the given pmap/VA pair. * Returns TRUE if the mapping exists, else FALSE. * * NOTE: This function is only used by a couple of arm-specific modules. * It is not safe to take any pmap locks here, since we could be right * in the middle of debugging the pmap anyway... * * It is possible for this routine to return FALSE even though a valid * mapping does exist. This is because we don't lock, so the metadata * state may be inconsistent. * * NOTE: We can return a NULL *ptp in the case where the L1 pde is * a "section" mapping. */ boolean_t pmap_get_pde_pte(pmap_t pm, vm_offset_t va, pd_entry_t **pdp, pt_entry_t **ptp) { struct l2_dtable *l2; pd_entry_t *pl1pd, l1pd; pt_entry_t *ptep; u_short l1idx; if (pm->pm_l1 == NULL) return (FALSE); l1idx = L1_IDX(va); *pdp = pl1pd = &pm->pm_l1->l1_kva[l1idx]; l1pd = *pl1pd; if (l1pte_section_p(l1pd)) { *ptp = NULL; return (TRUE); } if (pm->pm_l2 == NULL) return (FALSE); l2 = pm->pm_l2[L2_IDX(l1idx)]; if (l2 == NULL || (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) { return (FALSE); } *ptp = &ptep[l2pte_index(va)]; return (TRUE); } /* * Routine: pmap_remove_all * Function: * Removes this physical page from * all physical maps in which it resides. * Reflects back modify bits to the pager. * * Notes: * Original versions of this routine were very * inefficient because they iteratively called * pmap_remove (slow...) */ void pmap_remove_all(vm_page_t m) { pv_entry_t pv; pt_entry_t *ptep; struct l2_bucket *l2b; boolean_t flush = FALSE; pmap_t curpm; int flags = 0; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_all: page %p is not managed", m)); if (TAILQ_EMPTY(&m->md.pv_list)) return; vm_page_lock_queues(); pmap_remove_write(m); curpm = vmspace_pmap(curproc->p_vmspace); while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { if (flush == FALSE && (pv->pv_pmap == curpm || pv->pv_pmap == pmap_kernel())) flush = TRUE; PMAP_LOCK(pv->pv_pmap); /* * Cached contents were written-back in pmap_remove_write(), * but we still have to invalidate the cache entry to make * sure stale data are not retrieved when another page will be * mapped under this virtual address. */ if (pmap_is_current(pv->pv_pmap)) { cpu_dcache_inv_range(pv->pv_va, PAGE_SIZE); if (pmap_has_valid_mapping(pv->pv_pmap, pv->pv_va)) cpu_l2cache_inv_range(pv->pv_va, PAGE_SIZE); } if (pv->pv_flags & PVF_UNMAN) { /* remove the pv entry, but do not remove the mapping * and remember this is a kernel mapped page */ m->md.pv_kva = pv->pv_va; } else { /* remove the mapping and pv entry */ l2b = pmap_get_l2_bucket(pv->pv_pmap, pv->pv_va); KASSERT(l2b != NULL, ("No l2 bucket")); ptep = &l2b->l2b_kva[l2pte_index(pv->pv_va)]; *ptep = 0; PTE_SYNC_CURRENT(pv->pv_pmap, ptep); pmap_free_l2_bucket(pv->pv_pmap, l2b, 1); pv->pv_pmap->pm_stats.resident_count--; flags |= pv->pv_flags; } pmap_nuke_pv(m, pv->pv_pmap, pv); PMAP_UNLOCK(pv->pv_pmap); pmap_free_pv_entry(pv); } if (flush) { if (PV_BEEN_EXECD(flags)) pmap_tlb_flushID(curpm); else pmap_tlb_flushD(curpm); } vm_page_aflag_clear(m, PGA_WRITEABLE); vm_page_unlock_queues(); } /* * Set the physical protection on the * specified range of this map as requested. */ void pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { struct l2_bucket *l2b; pt_entry_t *ptep, pte; vm_offset_t next_bucket; u_int flags; int flush; CTR4(KTR_PMAP, "pmap_protect: pmap %p sva 0x%08x eva 0x%08x prot %x", pm, sva, eva, prot); if ((prot & VM_PROT_READ) == 0) { pmap_remove(pm, sva, eva); return; } if (prot & VM_PROT_WRITE) { /* * If this is a read->write transition, just ignore it and let * vm_fault() take care of it later. */ return; } vm_page_lock_queues(); PMAP_LOCK(pm); /* * OK, at this point, we know we're doing write-protect operation. * If the pmap is active, write-back the range. */ pmap_dcache_wb_range(pm, sva, eva - sva, FALSE, FALSE); flush = ((eva - sva) >= (PAGE_SIZE * 4)) ? 0 : -1; flags = 0; while (sva < eva) { next_bucket = L2_NEXT_BUCKET(sva); if (next_bucket > eva) next_bucket = eva; l2b = pmap_get_l2_bucket(pm, sva); if (l2b == NULL) { sva = next_bucket; continue; } ptep = &l2b->l2b_kva[l2pte_index(sva)]; while (sva < next_bucket) { if ((pte = *ptep) != 0 && (pte & L2_S_PROT_W) != 0) { struct vm_page *pg; u_int f; pg = PHYS_TO_VM_PAGE(l2pte_pa(pte)); pte &= ~L2_S_PROT_W; *ptep = pte; PTE_SYNC(ptep); if (pg != NULL) { if (!(pg->oflags & VPO_UNMANAGED)) { f = pmap_modify_pv(pg, pm, sva, PVF_WRITE, 0); vm_page_dirty(pg); } else f = 0; } else f = PVF_REF | PVF_EXEC; if (flush >= 0) { flush++; flags |= f; } else if (PV_BEEN_EXECD(f)) pmap_tlb_flushID_SE(pm, sva); else if (PV_BEEN_REFD(f)) pmap_tlb_flushD_SE(pm, sva); } sva += PAGE_SIZE; ptep++; } } if (flush) { if (PV_BEEN_EXECD(flags)) pmap_tlb_flushID(pm); else if (PV_BEEN_REFD(flags)) pmap_tlb_flushD(pm); } vm_page_unlock_queues(); PMAP_UNLOCK(pm); } /* * Insert the given physical page (p) at * the specified virtual address (v) in the * target physical map with the protection requested. * * If specified, the page will be wired down, meaning * that the related pte can not be reclaimed. * * NB: This is the only routine which MAY NOT lazy-evaluate * or lose information. That is, this routine must actually * insert this page into the given map NOW. */ void pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m, vm_prot_t prot, boolean_t wired) { vm_page_lock_queues(); PMAP_LOCK(pmap); pmap_enter_locked(pmap, va, m, prot, wired, M_WAITOK); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * The page queues and pmap must be locked. */ static void pmap_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, boolean_t wired, int flags) { struct l2_bucket *l2b = NULL; struct vm_page *opg; struct pv_entry *pve = NULL; pt_entry_t *ptep, npte, opte; u_int nflags; u_int oflags; vm_paddr_t pa; PMAP_ASSERT_LOCKED(pmap); mtx_assert(&vm_page_queue_mtx, MA_OWNED); if (va == vector_page) { pa = systempage.pv_pa; m = NULL; } else { KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 || (flags & M_NOWAIT) != 0, ("pmap_enter_locked: page %p is not busy", m)); pa = VM_PAGE_TO_PHYS(m); } nflags = 0; if (prot & VM_PROT_WRITE) nflags |= PVF_WRITE; if (prot & VM_PROT_EXECUTE) nflags |= PVF_EXEC; if (wired) nflags |= PVF_WIRED; PDEBUG(1, printf("pmap_enter: pmap = %08x, va = %08x, m = %08x, prot = %x, " "wired = %x\n", (uint32_t) pmap, va, (uint32_t) m, prot, wired)); if (pmap == pmap_kernel()) { l2b = pmap_get_l2_bucket(pmap, va); if (l2b == NULL) l2b = pmap_grow_l2_bucket(pmap, va); } else { do_l2b_alloc: l2b = pmap_alloc_l2_bucket(pmap, va); if (l2b == NULL) { if (flags & M_WAITOK) { PMAP_UNLOCK(pmap); vm_page_unlock_queues(); VM_WAIT; vm_page_lock_queues(); PMAP_LOCK(pmap); goto do_l2b_alloc; } return; } } ptep = &l2b->l2b_kva[l2pte_index(va)]; opte = *ptep; npte = pa; oflags = 0; if (opte) { /* * There is already a mapping at this address. * If the physical address is different, lookup the * vm_page. */ if (l2pte_pa(opte) != pa) opg = PHYS_TO_VM_PAGE(l2pte_pa(opte)); else opg = m; } else opg = NULL; if ((prot & (VM_PROT_ALL)) || (!m || m->md.pvh_attrs & PVF_REF)) { /* * - The access type indicates that we don't need * to do referenced emulation. * OR * - The physical page has already been referenced * so no need to re-do referenced emulation here. */ npte |= L2_S_PROTO; nflags |= PVF_REF; if (m && ((prot & VM_PROT_WRITE) != 0 || (m->md.pvh_attrs & PVF_MOD))) { /* * This is a writable mapping, and the * page's mod state indicates it has * already been modified. Make it * writable from the outset. */ nflags |= PVF_MOD; if (!(m->md.pvh_attrs & PVF_MOD)) vm_page_dirty(m); } if (m && opte) vm_page_aflag_set(m, PGA_REFERENCED); } else { /* * Need to do page referenced emulation. */ npte |= L2_TYPE_INV; } if (prot & VM_PROT_WRITE) { npte |= L2_S_PROT_W; if (m != NULL && (m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_WRITEABLE); } npte |= pte_l2_s_cache_mode; if (m && m == opg) { /* * We're changing the attrs of an existing mapping. */ oflags = pmap_modify_pv(m, pmap, va, PVF_WRITE | PVF_EXEC | PVF_WIRED | PVF_MOD | PVF_REF, nflags); /* * We may need to flush the cache if we're * doing rw-ro... */ if (pmap_is_current(pmap) && (oflags & PVF_NC) == 0 && (opte & L2_S_PROT_W) != 0 && (prot & VM_PROT_WRITE) == 0 && (opte & L2_TYPE_MASK) != L2_TYPE_INV) { cpu_dcache_wb_range(va, PAGE_SIZE); cpu_l2cache_wb_range(va, PAGE_SIZE); } } else { /* * New mapping, or changing the backing page * of an existing mapping. */ if (opg) { /* * Replacing an existing mapping with a new one. * It is part of our managed memory so we * must remove it from the PV list */ if ((pve = pmap_remove_pv(opg, pmap, va))) { /* note for patch: the oflags/invalidation was moved * because PG_FICTITIOUS pages could free the pve */ oflags = pve->pv_flags; /* * If the old mapping was valid (ref/mod * emulation creates 'invalid' mappings * initially) then make sure to frob * the cache. */ if ((oflags & PVF_NC) == 0 && l2pte_valid(opte)) { if (PV_BEEN_EXECD(oflags)) { pmap_idcache_wbinv_range(pmap, va, PAGE_SIZE); } else if (PV_BEEN_REFD(oflags)) { pmap_dcache_wb_range(pmap, va, PAGE_SIZE, TRUE, (oflags & PVF_WRITE) == 0); } } /* free/allocate a pv_entry for UNMANAGED pages if * this physical page is not/is already mapped. */ if (m && (m->oflags & VPO_UNMANAGED) && !m->md.pv_kva && TAILQ_EMPTY(&m->md.pv_list)) { pmap_free_pv_entry(pve); pve = NULL; } } else if (m && (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva || !TAILQ_EMPTY(&m->md.pv_list))) pve = pmap_get_pv_entry(); } else if (m && (!(m->oflags & VPO_UNMANAGED) || m->md.pv_kva || !TAILQ_EMPTY(&m->md.pv_list))) pve = pmap_get_pv_entry(); if (m) { if ((m->oflags & VPO_UNMANAGED)) { if (!TAILQ_EMPTY(&m->md.pv_list) || m->md.pv_kva) { KASSERT(pve != NULL, ("No pv")); nflags |= PVF_UNMAN; pmap_enter_pv(m, pve, pmap, va, nflags); } else m->md.pv_kva = va; } else { KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva, ("pmap_enter: managed mapping within the clean submap")); KASSERT(pve != NULL, ("No pv")); pmap_enter_pv(m, pve, pmap, va, nflags); } } } /* * Make sure userland mappings get the right permissions */ if (pmap != pmap_kernel() && va != vector_page) { npte |= L2_S_PROT_U; } /* * Keep the stats up to date */ if (opte == 0) { l2b->l2b_occupancy++; pmap->pm_stats.resident_count++; } /* * If this is just a wiring change, the two PTEs will be * identical, so there's no need to update the page table. */ if (npte != opte) { boolean_t is_cached = pmap_is_current(pmap); *ptep = npte; if (is_cached) { /* * We only need to frob the cache/tlb if this pmap * is current */ PTE_SYNC(ptep); if (L1_IDX(va) != L1_IDX(vector_page) && l2pte_valid(npte)) { /* * This mapping is likely to be accessed as * soon as we return to userland. Fix up the * L1 entry to avoid taking another * page/domain fault. */ pd_entry_t *pl1pd, l1pd; pl1pd = &pmap->pm_l1->l1_kva[L1_IDX(va)]; l1pd = l2b->l2b_phys | L1_C_DOM(pmap->pm_domain) | L1_C_PROTO; if (*pl1pd != l1pd) { *pl1pd = l1pd; PTE_SYNC(pl1pd); } } } if (PV_BEEN_EXECD(oflags)) pmap_tlb_flushID_SE(pmap, va); else if (PV_BEEN_REFD(oflags)) pmap_tlb_flushD_SE(pmap, va); if (m) pmap_fix_cache(m, pmap, va); } } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m; vm_pindex_t diff, psize; psize = atop(end - start); m = m_start; vm_page_lock_queues(); PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { pmap_enter_locked(pmap, start + ptoa(diff), m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE, M_NOWAIT); m = TAILQ_NEXT(m, listq); } vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * this code makes some *MAJOR* assumptions: * 1. Current pmap & pmap exists. * 2. Not wired. * 3. Read access. * 4. No page table pages. * but is *MUCH* faster than pmap_enter... */ void pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { vm_page_lock_queues(); PMAP_LOCK(pmap); pmap_enter_locked(pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE, M_NOWAIT); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * Routine: pmap_change_wiring * Function: Change the wiring attribute for a map/virtual-address * pair. * In/out conditions: * The mapping must already exist in the pmap. */ void pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired) { struct l2_bucket *l2b; pt_entry_t *ptep, pte; vm_page_t pg; vm_page_lock_queues(); PMAP_LOCK(pmap); l2b = pmap_get_l2_bucket(pmap, va); KASSERT(l2b, ("No l2b bucket in pmap_change_wiring")); ptep = &l2b->l2b_kva[l2pte_index(va)]; pte = *ptep; pg = PHYS_TO_VM_PAGE(l2pte_pa(pte)); if (pg) pmap_modify_pv(pg, pmap, va, PVF_WIRED, wired ? PVF_WIRED : 0); vm_page_unlock_queues(); PMAP_UNLOCK(pmap); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { } /* * Routine: pmap_extract * Function: * Extract the physical page address associated * with the given map/virtual_address pair. */ vm_paddr_t pmap_extract(pmap_t pm, vm_offset_t va) { struct l2_dtable *l2; pd_entry_t l1pd; pt_entry_t *ptep, pte; vm_paddr_t pa; u_int l1idx; l1idx = L1_IDX(va); PMAP_LOCK(pm); l1pd = pm->pm_l1->l1_kva[l1idx]; if (l1pte_section_p(l1pd)) { /* * These should only happen for pmap_kernel() */ KASSERT(pm == pmap_kernel(), ("huh")); /* XXX: what to do about the bits > 32 ? */ if (l1pd & L1_S_SUPERSEC) pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET); else pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET); } else { /* * Note that we can't rely on the validity of the L1 * descriptor as an indication that a mapping exists. * We have to look it up in the L2 dtable. */ l2 = pm->pm_l2[L2_IDX(l1idx)]; if (l2 == NULL || (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) { PMAP_UNLOCK(pm); return (0); } ptep = &ptep[l2pte_index(va)]; pte = *ptep; if (pte == 0) { PMAP_UNLOCK(pm); return (0); } switch (pte & L2_TYPE_MASK) { case L2_TYPE_L: pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET); break; default: pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET); break; } } PMAP_UNLOCK(pm); return (pa); } /* * Atomically extract and hold the physical page with the given * pmap and virtual address pair if that mapping permits the given * protection. * */ vm_page_t pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { struct l2_dtable *l2; pd_entry_t l1pd; pt_entry_t *ptep, pte; vm_paddr_t pa, paddr; vm_page_t m = NULL; u_int l1idx; l1idx = L1_IDX(va); paddr = 0; PMAP_LOCK(pmap); retry: l1pd = pmap->pm_l1->l1_kva[l1idx]; if (l1pte_section_p(l1pd)) { /* * These should only happen for pmap_kernel() */ KASSERT(pmap == pmap_kernel(), ("huh")); /* XXX: what to do about the bits > 32 ? */ if (l1pd & L1_S_SUPERSEC) pa = (l1pd & L1_SUP_FRAME) | (va & L1_SUP_OFFSET); else pa = (l1pd & L1_S_FRAME) | (va & L1_S_OFFSET); if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr)) goto retry; if (l1pd & L1_S_PROT_W || (prot & VM_PROT_WRITE) == 0) { m = PHYS_TO_VM_PAGE(pa); vm_page_hold(m); } } else { /* * Note that we can't rely on the validity of the L1 * descriptor as an indication that a mapping exists. * We have to look it up in the L2 dtable. */ l2 = pmap->pm_l2[L2_IDX(l1idx)]; if (l2 == NULL || (ptep = l2->l2_bucket[L2_BUCKET(l1idx)].l2b_kva) == NULL) { PMAP_UNLOCK(pmap); return (NULL); } ptep = &ptep[l2pte_index(va)]; pte = *ptep; if (pte == 0) { PMAP_UNLOCK(pmap); return (NULL); } if (pte & L2_S_PROT_W || (prot & VM_PROT_WRITE) == 0) { switch (pte & L2_TYPE_MASK) { case L2_TYPE_L: pa = (pte & L2_L_FRAME) | (va & L2_L_OFFSET); break; default: pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET); break; } if (vm_page_pa_tryrelock(pmap, pa & PG_FRAME, &paddr)) goto retry; m = PHYS_TO_VM_PAGE(pa); vm_page_hold(m); } } PMAP_UNLOCK(pmap); PA_UNLOCK_COND(paddr); return (m); } /* * Initialize a preallocated and zeroed pmap structure, * such as one in a vmspace structure. */ int pmap_pinit(pmap_t pmap) { PDEBUG(1, printf("pmap_pinit: pmap = %08x\n", (uint32_t) pmap)); PMAP_LOCK_INIT(pmap); pmap_alloc_l1(pmap); bzero(pmap->pm_l2, sizeof(pmap->pm_l2)); CPU_ZERO(&pmap->pm_active); TAILQ_INIT(&pmap->pm_pvlist); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); pmap->pm_stats.resident_count = 1; if (vector_page < KERNBASE) { pmap_enter(pmap, vector_page, VM_PROT_READ, PHYS_TO_VM_PAGE(systempage.pv_pa), VM_PROT_READ, 1); } return (1); } /*************************************************** * page management routines. ***************************************************/ static void pmap_free_pv_entry(pv_entry_t pv) { pv_entry_count--; uma_zfree(pvzone, pv); } /* * get a new pv_entry, allocating a block from the system * when needed. * the memory allocation is performed bypassing the malloc code * because of the possibility of allocations at interrupt time. */ static pv_entry_t pmap_get_pv_entry(void) { pv_entry_t ret_value; pv_entry_count++; if (pv_entry_count > pv_entry_high_water) pagedaemon_wakeup(); ret_value = uma_zalloc(pvzone, M_NOWAIT); return ret_value; } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly * rounded to the page size. */ #define PMAP_REMOVE_CLEAN_LIST_SIZE 3 void pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct l2_bucket *l2b; vm_offset_t next_bucket; pt_entry_t *ptep; u_int total; u_int mappings, is_exec, is_refd; int flushall = 0; /* * we lock in the pmap => pv_head direction */ vm_page_lock_queues(); PMAP_LOCK(pm); total = 0; while (sva < eva) { /* * Do one L2 bucket's worth at a time. */ next_bucket = L2_NEXT_BUCKET(sva); if (next_bucket > eva) next_bucket = eva; l2b = pmap_get_l2_bucket(pm, sva); if (l2b == NULL) { sva = next_bucket; continue; } ptep = &l2b->l2b_kva[l2pte_index(sva)]; mappings = 0; while (sva < next_bucket) { struct vm_page *pg; pt_entry_t pte; vm_paddr_t pa; pte = *ptep; if (pte == 0) { /* * Nothing here, move along */ sva += PAGE_SIZE; ptep++; continue; } pm->pm_stats.resident_count--; pa = l2pte_pa(pte); is_exec = 0; is_refd = 1; /* * Update flags. In a number of circumstances, * we could cluster a lot of these and do a * number of sequential pages in one go. */ if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) { struct pv_entry *pve; pve = pmap_remove_pv(pg, pm, sva); if (pve) { is_exec = PV_BEEN_EXECD(pve->pv_flags); is_refd = PV_BEEN_REFD(pve->pv_flags); pmap_free_pv_entry(pve); } } if (l2pte_valid(pte) && pmap_is_current(pm)) { if (total < PMAP_REMOVE_CLEAN_LIST_SIZE) { total++; if (is_exec) { cpu_idcache_wbinv_range(sva, PAGE_SIZE); cpu_l2cache_wbinv_range(sva, PAGE_SIZE); cpu_tlb_flushID_SE(sva); } else if (is_refd) { cpu_dcache_wbinv_range(sva, PAGE_SIZE); cpu_l2cache_wbinv_range(sva, PAGE_SIZE); cpu_tlb_flushD_SE(sva); } } else if (total == PMAP_REMOVE_CLEAN_LIST_SIZE) { /* flushall will also only get set for * for a current pmap */ cpu_idcache_wbinv_all(); cpu_l2cache_wbinv_all(); flushall = 1; total++; } } *ptep = 0; PTE_SYNC(ptep); sva += PAGE_SIZE; ptep++; mappings++; } pmap_free_l2_bucket(pm, l2b, mappings); } vm_page_unlock_queues(); if (flushall) cpu_tlb_flushID(); PMAP_UNLOCK(pm); } /* * pmap_zero_page() * * Zero a given physical page by mapping it at a page hook point. * In doing the zero page op, the page we zero is mapped cachable, as with * StrongARM accesses to non-cached pages are non-burst making writing * _any_ bulk data very slow. */ #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined(CPU_XSCALE_CORE3) void pmap_zero_page_generic(vm_paddr_t phys, int off, int size) { #ifdef ARM_USE_SMALL_ALLOC char *dstpg; #endif #ifdef DEBUG struct vm_page *pg = PHYS_TO_VM_PAGE(phys); if (pg->md.pvh_list != NULL) panic("pmap_zero_page: page has mappings"); #endif if (_arm_bzero && size >= _min_bzero_size && _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0) return; #ifdef ARM_USE_SMALL_ALLOC dstpg = (char *)arm_ptovirt(phys); if (off || size != PAGE_SIZE) { bzero(dstpg + off, size); cpu_dcache_wbinv_range((vm_offset_t)(dstpg + off), size); cpu_l2cache_wbinv_range((vm_offset_t)(dstpg + off), size); } else { bzero_page((vm_offset_t)dstpg); cpu_dcache_wbinv_range((vm_offset_t)dstpg, PAGE_SIZE); cpu_l2cache_wbinv_range((vm_offset_t)dstpg, PAGE_SIZE); } #else mtx_lock(&cmtx); /* * Hook in the page, zero it, invalidate the TLB as needed. * * Note the temporary zero-page mapping must be a non-cached page in * order to work without corruption when write-allocate is enabled. */ *cdst_pte = L2_S_PROTO | phys | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE); PTE_SYNC(cdst_pte); cpu_tlb_flushD_SE(cdstp); cpu_cpwait(); if (off || size != PAGE_SIZE) bzero((void *)(cdstp + off), size); else bzero_page(cdstp); mtx_unlock(&cmtx); #endif } #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ #if ARM_MMU_XSCALE == 1 void pmap_zero_page_xscale(vm_paddr_t phys, int off, int size) { #ifdef ARM_USE_SMALL_ALLOC char *dstpg; #endif if (_arm_bzero && size >= _min_bzero_size && _arm_bzero((void *)(phys + off), size, IS_PHYSICAL) == 0) return; #ifdef ARM_USE_SMALL_ALLOC dstpg = (char *)arm_ptovirt(phys); if (off || size != PAGE_SIZE) { bzero(dstpg + off, size); cpu_dcache_wbinv_range((vm_offset_t)(dstpg + off), size); } else { bzero_page((vm_offset_t)dstpg); cpu_dcache_wbinv_range((vm_offset_t)dstpg, PAGE_SIZE); } #else mtx_lock(&cmtx); /* * Hook in the page, zero it, and purge the cache for that * zeroed page. Invalidate the TLB as needed. */ *cdst_pte = L2_S_PROTO | phys | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */ PTE_SYNC(cdst_pte); cpu_tlb_flushD_SE(cdstp); cpu_cpwait(); if (off || size != PAGE_SIZE) bzero((void *)(cdstp + off), size); else bzero_page(cdstp); mtx_unlock(&cmtx); xscale_cache_clean_minidata(); #endif } /* * Change the PTEs for the specified kernel mappings such that they * will use the mini data cache instead of the main data cache. */ void pmap_use_minicache(vm_offset_t va, vm_size_t size) { struct l2_bucket *l2b; pt_entry_t *ptep, *sptep, pte; vm_offset_t next_bucket, eva; #if (ARM_NMMUS > 1) || defined(CPU_XSCALE_CORE3) if (xscale_use_minidata == 0) return; #endif eva = va + size; while (va < eva) { next_bucket = L2_NEXT_BUCKET(va); if (next_bucket > eva) next_bucket = eva; l2b = pmap_get_l2_bucket(pmap_kernel(), va); sptep = ptep = &l2b->l2b_kva[l2pte_index(va)]; while (va < next_bucket) { pte = *ptep; if (!l2pte_minidata(pte)) { cpu_dcache_wbinv_range(va, PAGE_SIZE); cpu_tlb_flushD_SE(va); *ptep = pte & ~L2_B; } ptep++; va += PAGE_SIZE; } PTE_SYNC_RANGE(sptep, (u_int)(ptep - sptep)); } cpu_cpwait(); } #endif /* ARM_MMU_XSCALE == 1 */ /* * pmap_zero_page zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. */ void pmap_zero_page(vm_page_t m) { pmap_zero_page_func(VM_PAGE_TO_PHYS(m), 0, PAGE_SIZE); } /* * pmap_zero_page_area zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. * * off and size may not cover an area beyond a single hardware page. */ void pmap_zero_page_area(vm_page_t m, int off, int size) { pmap_zero_page_func(VM_PAGE_TO_PHYS(m), off, size); } /* * pmap_zero_page_idle zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. This * is intended to be called from the vm_pagezero process only and * outside of Giant. */ void pmap_zero_page_idle(vm_page_t m) { pmap_zero_page(m); } #if 0 /* * pmap_clean_page() * * This is a local function used to work out the best strategy to clean * a single page referenced by its entry in the PV table. It should be used by * pmap_copy_page, pmap_zero page and maybe some others later on. * * Its policy is effectively: * o If there are no mappings, we don't bother doing anything with the cache. * o If there is one mapping, we clean just that page. * o If there are multiple mappings, we clean the entire cache. * * So that some functions can be further optimised, it returns 0 if it didn't * clean the entire cache, or 1 if it did. * * XXX One bug in this routine is that if the pv_entry has a single page * mapped at 0x00000000 a whole cache clean will be performed rather than * just the 1 page. Since this should not occur in everyday use and if it does * it will just result in not the most efficient clean for the page. * * We don't yet use this function but may want to. */ static int pmap_clean_page(struct pv_entry *pv, boolean_t is_src) { pmap_t pm, pm_to_clean = NULL; struct pv_entry *npv; u_int cache_needs_cleaning = 0; u_int flags = 0; vm_offset_t page_to_clean = 0; if (pv == NULL) { /* nothing mapped in so nothing to flush */ return (0); } /* * Since we flush the cache each time we change to a different * user vmspace, we only need to flush the page if it is in the * current pmap. */ if (curthread) pm = vmspace_pmap(curproc->p_vmspace); else pm = pmap_kernel(); for (npv = pv; npv; npv = TAILQ_NEXT(npv, pv_list)) { if (npv->pv_pmap == pmap_kernel() || npv->pv_pmap == pm) { flags |= npv->pv_flags; /* * The page is mapped non-cacheable in * this map. No need to flush the cache. */ if (npv->pv_flags & PVF_NC) { #ifdef DIAGNOSTIC if (cache_needs_cleaning) panic("pmap_clean_page: " "cache inconsistency"); #endif break; } else if (is_src && (npv->pv_flags & PVF_WRITE) == 0) continue; if (cache_needs_cleaning) { page_to_clean = 0; break; } else { page_to_clean = npv->pv_va; pm_to_clean = npv->pv_pmap; } cache_needs_cleaning = 1; } } if (page_to_clean) { if (PV_BEEN_EXECD(flags)) pmap_idcache_wbinv_range(pm_to_clean, page_to_clean, PAGE_SIZE); else pmap_dcache_wb_range(pm_to_clean, page_to_clean, PAGE_SIZE, !is_src, (flags & PVF_WRITE) == 0); } else if (cache_needs_cleaning) { if (PV_BEEN_EXECD(flags)) pmap_idcache_wbinv_all(pm); else pmap_dcache_wbinv_all(pm); return (1); } return (0); } #endif /* * pmap_copy_page copies the specified (machine independent) * page by mapping the page into virtual memory and using * bcopy to copy the page, one machine dependent page at a * time. */ /* * pmap_copy_page() * * Copy one physical page into another, by mapping the pages into * hook points. The same comment regarding cachability as in * pmap_zero_page also applies here. */ #if (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 || defined (CPU_XSCALE_CORE3) void pmap_copy_page_generic(vm_paddr_t src, vm_paddr_t dst) { #if 0 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src); #endif #ifdef DEBUG struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst); if (dst_pg->md.pvh_list != NULL) panic("pmap_copy_page: dst page has mappings"); #endif /* * Clean the source page. Hold the source page's lock for * the duration of the copy so that no other mappings can * be created while we have a potentially aliased mapping. */ #if 0 /* * XXX: Not needed while we call cpu_dcache_wbinv_all() in * pmap_copy_page(). */ (void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE); #endif /* * Map the pages into the page hook points, copy them, and purge * the cache for the appropriate page. Invalidate the TLB * as required. */ mtx_lock(&cmtx); *csrc_pte = L2_S_PROTO | src | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode; PTE_SYNC(csrc_pte); *cdst_pte = L2_S_PROTO | dst | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode; PTE_SYNC(cdst_pte); cpu_tlb_flushD_SE(csrcp); cpu_tlb_flushD_SE(cdstp); cpu_cpwait(); bcopy_page(csrcp, cdstp); mtx_unlock(&cmtx); cpu_dcache_inv_range(csrcp, PAGE_SIZE); cpu_dcache_wbinv_range(cdstp, PAGE_SIZE); cpu_l2cache_inv_range(csrcp, PAGE_SIZE); cpu_l2cache_wbinv_range(cdstp, PAGE_SIZE); } #endif /* (ARM_MMU_GENERIC + ARM_MMU_SA1) != 0 */ #if ARM_MMU_XSCALE == 1 void pmap_copy_page_xscale(vm_paddr_t src, vm_paddr_t dst) { #if 0 /* XXX: Only needed for pmap_clean_page(), which is commented out. */ struct vm_page *src_pg = PHYS_TO_VM_PAGE(src); #endif #ifdef DEBUG struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst); if (dst_pg->md.pvh_list != NULL) panic("pmap_copy_page: dst page has mappings"); #endif /* * Clean the source page. Hold the source page's lock for * the duration of the copy so that no other mappings can * be created while we have a potentially aliased mapping. */ #if 0 /* * XXX: Not needed while we call cpu_dcache_wbinv_all() in * pmap_copy_page(). */ (void) pmap_clean_page(TAILQ_FIRST(&src_pg->md.pv_list), TRUE); #endif /* * Map the pages into the page hook points, copy them, and purge * the cache for the appropriate page. Invalidate the TLB * as required. */ mtx_lock(&cmtx); *csrc_pte = L2_S_PROTO | src | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */ PTE_SYNC(csrc_pte); *cdst_pte = L2_S_PROTO | dst | L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */ PTE_SYNC(cdst_pte); cpu_tlb_flushD_SE(csrcp); cpu_tlb_flushD_SE(cdstp); cpu_cpwait(); bcopy_page(csrcp, cdstp); mtx_unlock(&cmtx); xscale_cache_clean_minidata(); } #endif /* ARM_MMU_XSCALE == 1 */ void pmap_copy_page(vm_page_t src, vm_page_t dst) { #ifdef ARM_USE_SMALL_ALLOC vm_offset_t srcpg, dstpg; #endif cpu_dcache_wbinv_all(); cpu_l2cache_wbinv_all(); if (_arm_memcpy && PAGE_SIZE >= _min_memcpy_size && _arm_memcpy((void *)VM_PAGE_TO_PHYS(dst), (void *)VM_PAGE_TO_PHYS(src), PAGE_SIZE, IS_PHYSICAL) == 0) return; #ifdef ARM_USE_SMALL_ALLOC srcpg = arm_ptovirt(VM_PAGE_TO_PHYS(src)); dstpg = arm_ptovirt(VM_PAGE_TO_PHYS(dst)); bcopy_page(srcpg, dstpg); cpu_dcache_wbinv_range(dstpg, PAGE_SIZE); cpu_l2cache_wbinv_range(dstpg, PAGE_SIZE); #else pmap_copy_page_func(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst)); #endif } /* * this routine returns true if a physical page resides * in the given pmap. */ boolean_t pmap_page_exists_quick(pmap_t pmap, vm_page_t m) { pv_entry_t pv; int loops = 0; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_page_exists_quick: page %p is not managed", m)); rv = FALSE; vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) { if (pv->pv_pmap == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } vm_page_unlock_queues(); return (rv); } /* * pmap_page_wired_mappings: * * Return the number of managed mappings to the given physical page * that are wired. */ int pmap_page_wired_mappings(vm_page_t m) { pv_entry_t pv; int count; count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); vm_page_lock_queues(); TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) if ((pv->pv_flags & PVF_WIRED) != 0) count++; vm_page_unlock_queues(); return (count); } /* * pmap_ts_referenced: * * Return the count of reference bits for a page, clearing all of them. */ int pmap_ts_referenced(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_ts_referenced: page %p is not managed", m)); return (pmap_clearbit(m, PVF_REF)); } boolean_t pmap_is_modified(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_modified: page %p is not managed", m)); if (m->md.pvh_attrs & PVF_MOD) return (TRUE); return(FALSE); } /* * Clear the modify bits on the specified physical page. */ void pmap_clear_modify(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_clear_modify: page %p is not managed", m)); VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); KASSERT((m->oflags & VPO_BUSY) == 0, ("pmap_clear_modify: page %p is busy", m)); /* * If the page is not PGA_WRITEABLE, then no mappings can be modified. * If the object containing the page is locked and the page is not * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set. */ if ((m->aflags & PGA_WRITEABLE) == 0) return; if (m->md.pvh_attrs & PVF_MOD) pmap_clearbit(m, PVF_MOD); } /* * pmap_is_referenced: * * Return whether or not the specified physical page was referenced * in any physical maps. */ boolean_t pmap_is_referenced(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_referenced: page %p is not managed", m)); return ((m->md.pvh_attrs & PVF_REF) != 0); } /* * pmap_clear_reference: * * Clear the reference bit on the specified physical page. */ void pmap_clear_reference(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_clear_reference: page %p is not managed", m)); if (m->md.pvh_attrs & PVF_REF) pmap_clearbit(m, PVF_REF); } /* * Clear the write and modified bits in each of the given page's mappings. */ void pmap_remove_write(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_write: page %p is not managed", m)); /* * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by * another thread while the object is locked. Thus, if PGA_WRITEABLE * is clear, no page table entries need updating. */ VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); if ((m->oflags & VPO_BUSY) != 0 || (m->aflags & PGA_WRITEABLE) != 0) pmap_clearbit(m, PVF_WRITE); } /* * perform the pmap work for mincore */ int pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa) { printf("pmap_mincore()\n"); return (0); } void pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) { } /* * Increase the starting virtual address of the given mapping if a * different alignment might result in more superpage mappings. */ void pmap_align_superpage(vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t size) { } /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ void * pmap_mapdev(vm_offset_t pa, vm_size_t size) { vm_offset_t va, tmpva, offset; offset = pa & PAGE_MASK; size = roundup(size, PAGE_SIZE); GIANT_REQUIRED; va = kmem_alloc_nofault(kernel_map, size); if (!va) panic("pmap_mapdev: Couldn't alloc kernel virtual memory"); for (tmpva = va; size > 0;) { pmap_kenter_internal(tmpva, pa, 0); size -= PAGE_SIZE; tmpva += PAGE_SIZE; pa += PAGE_SIZE; } return ((void *)(va + offset)); } #define BOOTSTRAP_DEBUG /* * pmap_map_section: * * Create a single section mapping. */ void pmap_map_section(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot, int cache) { pd_entry_t *pde = (pd_entry_t *) l1pt; pd_entry_t fl; KASSERT(((va | pa) & L1_S_OFFSET) == 0, ("ouin2")); switch (cache) { case PTE_NOCACHE: default: fl = 0; break; case PTE_CACHE: fl = pte_l1_s_cache_mode; break; case PTE_PAGETABLE: fl = pte_l1_s_cache_mode_pt; break; } pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL, prot) | fl | L1_S_DOM(PMAP_DOMAIN_KERNEL); PTE_SYNC(&pde[va >> L1_S_SHIFT]); } /* * pmap_link_l2pt: * * Link the L2 page table specified by l2pv.pv_pa into the L1 * page table at the slot for "va". */ void pmap_link_l2pt(vm_offset_t l1pt, vm_offset_t va, struct pv_addr *l2pv) { pd_entry_t *pde = (pd_entry_t *) l1pt, proto; u_int slot = va >> L1_S_SHIFT; proto = L1_S_DOM(PMAP_DOMAIN_KERNEL) | L1_C_PROTO; #ifdef VERBOSE_INIT_ARM printf("pmap_link_l2pt: pa=0x%x va=0x%x\n", l2pv->pv_pa, l2pv->pv_va); #endif pde[slot + 0] = proto | (l2pv->pv_pa + 0x000); PTE_SYNC(&pde[slot]); SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list); } /* * pmap_map_entry * * Create a single page mapping. */ void pmap_map_entry(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, int prot, int cache) { pd_entry_t *pde = (pd_entry_t *) l1pt; pt_entry_t fl; pt_entry_t *pte; KASSERT(((va | pa) & PAGE_MASK) == 0, ("ouin")); switch (cache) { case PTE_NOCACHE: default: fl = 0; break; case PTE_CACHE: fl = pte_l2_s_cache_mode; break; case PTE_PAGETABLE: fl = pte_l2_s_cache_mode_pt; break; } if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C) panic("pmap_map_entry: no L2 table for VA 0x%08x", va); pte = (pt_entry_t *) kernel_pt_lookup(pde[L1_IDX(va)] & L1_C_ADDR_MASK); if (pte == NULL) panic("pmap_map_entry: can't find L2 table for VA 0x%08x", va); pte[l2pte_index(va)] = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | fl; PTE_SYNC(&pte[l2pte_index(va)]); } /* * pmap_map_chunk: * * Map a chunk of memory using the most efficient mappings * possible (section. large page, small page) into the * provided L1 and L2 tables at the specified virtual address. */ vm_size_t pmap_map_chunk(vm_offset_t l1pt, vm_offset_t va, vm_offset_t pa, vm_size_t size, int prot, int cache) { pd_entry_t *pde = (pd_entry_t *) l1pt; pt_entry_t *pte, f1, f2s, f2l; vm_size_t resid; int i; resid = (size + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1); if (l1pt == 0) panic("pmap_map_chunk: no L1 table provided"); #ifdef VERBOSE_INIT_ARM printf("pmap_map_chunk: pa=0x%x va=0x%x size=0x%x resid=0x%x " "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache); #endif switch (cache) { case PTE_NOCACHE: default: f1 = 0; f2l = 0; f2s = 0; break; case PTE_CACHE: f1 = pte_l1_s_cache_mode; f2l = pte_l2_l_cache_mode; f2s = pte_l2_s_cache_mode; break; case PTE_PAGETABLE: f1 = pte_l1_s_cache_mode_pt; f2l = pte_l2_l_cache_mode_pt; f2s = pte_l2_s_cache_mode_pt; break; } size = resid; while (resid > 0) { /* See if we can use a section mapping. */ if (L1_S_MAPPABLE_P(va, pa, resid)) { #ifdef VERBOSE_INIT_ARM printf("S"); #endif pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa | L1_S_PROT(PTE_KERNEL, prot) | f1 | L1_S_DOM(PMAP_DOMAIN_KERNEL); PTE_SYNC(&pde[va >> L1_S_SHIFT]); va += L1_S_SIZE; pa += L1_S_SIZE; resid -= L1_S_SIZE; continue; } /* * Ok, we're going to use an L2 table. Make sure * one is actually in the corresponding L1 slot * for the current VA. */ if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C) panic("pmap_map_chunk: no L2 table for VA 0x%08x", va); pte = (pt_entry_t *) kernel_pt_lookup( pde[L1_IDX(va)] & L1_C_ADDR_MASK); if (pte == NULL) panic("pmap_map_chunk: can't find L2 table for VA" "0x%08x", va); /* See if we can use a L2 large page mapping. */ if (L2_L_MAPPABLE_P(va, pa, resid)) { #ifdef VERBOSE_INIT_ARM printf("L"); #endif for (i = 0; i < 16; i++) { pte[l2pte_index(va) + i] = L2_L_PROTO | pa | L2_L_PROT(PTE_KERNEL, prot) | f2l; PTE_SYNC(&pte[l2pte_index(va) + i]); } va += L2_L_SIZE; pa += L2_L_SIZE; resid -= L2_L_SIZE; continue; } /* Use a small page mapping. */ #ifdef VERBOSE_INIT_ARM printf("P"); #endif pte[l2pte_index(va)] = L2_S_PROTO | pa | L2_S_PROT(PTE_KERNEL, prot) | f2s; PTE_SYNC(&pte[l2pte_index(va)]); va += PAGE_SIZE; pa += PAGE_SIZE; resid -= PAGE_SIZE; } #ifdef VERBOSE_INIT_ARM printf("\n"); #endif return (size); } /********************** Static device map routines ***************************/ static const struct pmap_devmap *pmap_devmap_table; /* * Register the devmap table. This is provided in case early console * initialization needs to register mappings created by bootstrap code * before pmap_devmap_bootstrap() is called. */ void pmap_devmap_register(const struct pmap_devmap *table) { pmap_devmap_table = table; } /* * Map all of the static regions in the devmap table, and remember * the devmap table so other parts of the kernel can look up entries * later. */ void pmap_devmap_bootstrap(vm_offset_t l1pt, const struct pmap_devmap *table) { int i; pmap_devmap_table = table; for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) { #ifdef VERBOSE_INIT_ARM printf("devmap: %08x -> %08x @ %08x\n", pmap_devmap_table[i].pd_pa, pmap_devmap_table[i].pd_pa + pmap_devmap_table[i].pd_size - 1, pmap_devmap_table[i].pd_va); #endif pmap_map_chunk(l1pt, pmap_devmap_table[i].pd_va, pmap_devmap_table[i].pd_pa, pmap_devmap_table[i].pd_size, pmap_devmap_table[i].pd_prot, pmap_devmap_table[i].pd_cache); } } const struct pmap_devmap * pmap_devmap_find_pa(vm_paddr_t pa, vm_size_t size) { int i; if (pmap_devmap_table == NULL) return (NULL); for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) { if (pa >= pmap_devmap_table[i].pd_pa && pa + size <= pmap_devmap_table[i].pd_pa + pmap_devmap_table[i].pd_size) return (&pmap_devmap_table[i]); } return (NULL); } const struct pmap_devmap * pmap_devmap_find_va(vm_offset_t va, vm_size_t size) { int i; if (pmap_devmap_table == NULL) return (NULL); for (i = 0; pmap_devmap_table[i].pd_size != 0; i++) { if (va >= pmap_devmap_table[i].pd_va && va + size <= pmap_devmap_table[i].pd_va + pmap_devmap_table[i].pd_size) return (&pmap_devmap_table[i]); } return (NULL); }