Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mlx/@/amd64/compile/hs32/modules/usr/src/sys/modules/coretemp/@/dev/sfxge/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mlx/@/amd64/compile/hs32/modules/usr/src/sys/modules/coretemp/@/dev/sfxge/sfxge_tx.c |
/*- * Copyright (c) 2010-2011 Solarflare Communications, Inc. * All rights reserved. * * This software was developed in part by Philip Paeps under contract for * Solarflare Communications, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD: release/9.1.0/sys/dev/sfxge/sfxge_tx.c 228100 2011-11-28 20:28:23Z philip $"); #include <sys/types.h> #include <sys/mbuf.h> #include <sys/smp.h> #include <sys/socket.h> #include <sys/sysctl.h> #include <net/bpf.h> #include <net/ethernet.h> #include <net/if.h> #include <net/if_vlan_var.h> #include <netinet/in.h> #include <netinet/ip.h> #include <netinet/ip6.h> #include <netinet/tcp.h> #include "common/efx.h" #include "sfxge.h" #include "sfxge_tx.h" /* Set the block level to ensure there is space to generate a * large number of descriptors for TSO. With minimum MSS and * maximum mbuf length we might need more than a ring-ful of * descriptors, but this should not happen in practice except * due to deliberate attack. In that case we will truncate * the output at a packet boundary. Allow for a reasonable * minimum MSS of 512. */ #define SFXGE_TSO_MAX_DESC ((65535 / 512) * 2 + SFXGE_TX_MAPPING_MAX_SEG - 1) #define SFXGE_TXQ_BLOCK_LEVEL (SFXGE_NDESCS - SFXGE_TSO_MAX_DESC) /* Forward declarations. */ static inline void sfxge_tx_qdpl_service(struct sfxge_txq *txq); static void sfxge_tx_qlist_post(struct sfxge_txq *txq); static void sfxge_tx_qunblock(struct sfxge_txq *txq); static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, const bus_dma_segment_t *dma_seg, int n_dma_seg); void sfxge_tx_qcomplete(struct sfxge_txq *txq) { struct sfxge_softc *sc; struct sfxge_evq *evq; unsigned int completed; sc = txq->sc; evq = sc->evq[txq->evq_index]; mtx_assert(&evq->lock, MA_OWNED); completed = txq->completed; while (completed != txq->pending) { struct sfxge_tx_mapping *stmp; unsigned int id; id = completed++ & (SFXGE_NDESCS - 1); stmp = &txq->stmp[id]; if (stmp->flags & TX_BUF_UNMAP) { bus_dmamap_unload(txq->packet_dma_tag, stmp->map); if (stmp->flags & TX_BUF_MBUF) { struct mbuf *m = stmp->u.mbuf; do m = m_free(m); while (m != NULL); } else { free(stmp->u.heap_buf, M_SFXGE); } stmp->flags = 0; } } txq->completed = completed; /* Check whether we need to unblock the queue. */ mb(); if (txq->blocked) { unsigned int level; level = txq->added - txq->completed; if (level <= SFXGE_TXQ_UNBLOCK_LEVEL) sfxge_tx_qunblock(txq); } } #ifdef SFXGE_HAVE_MQ /* * Reorder the put list and append it to the get list. */ static void sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq) { struct sfxge_tx_dpl *stdp; struct mbuf *mbuf, *get_next, **get_tailp; volatile uintptr_t *putp; uintptr_t put; unsigned int count; mtx_assert(&txq->lock, MA_OWNED); stdp = &txq->dpl; /* Acquire the put list. */ putp = &stdp->std_put; put = atomic_readandclear_ptr(putp); mbuf = (void *)put; if (mbuf == NULL) return; /* Reverse the put list. */ get_tailp = &mbuf->m_nextpkt; get_next = NULL; count = 0; do { struct mbuf *put_next; put_next = mbuf->m_nextpkt; mbuf->m_nextpkt = get_next; get_next = mbuf; mbuf = put_next; count++; } while (mbuf != NULL); /* Append the reversed put list to the get list. */ KASSERT(*get_tailp == NULL, ("*get_tailp != NULL")); *stdp->std_getp = get_next; stdp->std_getp = get_tailp; stdp->std_count += count; } #endif /* SFXGE_HAVE_MQ */ static void sfxge_tx_qreap(struct sfxge_txq *txq) { mtx_assert(SFXGE_TXQ_LOCK(txq), MA_OWNED); txq->reaped = txq->completed; } static void sfxge_tx_qlist_post(struct sfxge_txq *txq) { unsigned int old_added; unsigned int level; int rc; mtx_assert(SFXGE_TXQ_LOCK(txq), MA_OWNED); KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0")); KASSERT(txq->n_pend_desc <= SFXGE_TSO_MAX_DESC, ("txq->n_pend_desc too large")); KASSERT(!txq->blocked, ("txq->blocked")); old_added = txq->added; /* Post the fragment list. */ rc = efx_tx_qpost(txq->common, txq->pend_desc, txq->n_pend_desc, txq->reaped, &txq->added); KASSERT(rc == 0, ("efx_tx_qpost() failed")); /* If efx_tx_qpost() had to refragment, our information about * buffers to free may be associated with the wrong * descriptors. */ KASSERT(txq->added - old_added == txq->n_pend_desc, ("efx_tx_qpost() refragmented descriptors")); level = txq->added - txq->reaped; KASSERT(level <= SFXGE_NDESCS, ("overfilled TX queue")); /* Clear the fragment list. */ txq->n_pend_desc = 0; /* Have we reached the block level? */ if (level < SFXGE_TXQ_BLOCK_LEVEL) return; /* Reap, and check again */ sfxge_tx_qreap(txq); level = txq->added - txq->reaped; if (level < SFXGE_TXQ_BLOCK_LEVEL) return; txq->blocked = 1; /* * Avoid a race with completion interrupt handling that could leave * the queue blocked. */ mb(); sfxge_tx_qreap(txq); level = txq->added - txq->reaped; if (level < SFXGE_TXQ_BLOCK_LEVEL) { mb(); txq->blocked = 0; } } static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf) { bus_dmamap_t *used_map; bus_dmamap_t map; bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG]; unsigned int id; struct sfxge_tx_mapping *stmp; efx_buffer_t *desc; int n_dma_seg; int rc; int i; KASSERT(!txq->blocked, ("txq->blocked")); if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) prefetch_read_many(mbuf->m_data); if (txq->init_state != SFXGE_TXQ_STARTED) { rc = EINTR; goto reject; } /* Load the packet for DMA. */ id = txq->added & (SFXGE_NDESCS - 1); stmp = &txq->stmp[id]; rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map, mbuf, dma_seg, &n_dma_seg, 0); if (rc == EFBIG) { /* Try again. */ struct mbuf *new_mbuf = m_collapse(mbuf, M_DONTWAIT, SFXGE_TX_MAPPING_MAX_SEG); if (new_mbuf == NULL) goto reject; ++txq->collapses; mbuf = new_mbuf; rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map, mbuf, dma_seg, &n_dma_seg, 0); } if (rc != 0) goto reject; /* Make the packet visible to the hardware. */ bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE); used_map = &stmp->map; if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) { rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg); if (rc < 0) goto reject_mapped; stmp = &txq->stmp[rc]; } else { /* Add the mapping to the fragment list, and set flags * for the buffer. */ i = 0; for (;;) { desc = &txq->pend_desc[i]; desc->eb_addr = dma_seg[i].ds_addr; desc->eb_size = dma_seg[i].ds_len; if (i == n_dma_seg - 1) { desc->eb_eop = 1; break; } desc->eb_eop = 0; i++; stmp->flags = 0; if (__predict_false(stmp == &txq->stmp[SFXGE_NDESCS - 1])) stmp = &txq->stmp[0]; else stmp++; } txq->n_pend_desc = n_dma_seg; } /* * If the mapping required more than one descriptor * then we need to associate the DMA map with the last * descriptor, not the first. */ if (used_map != &stmp->map) { map = stmp->map; stmp->map = *used_map; *used_map = map; } stmp->u.mbuf = mbuf; stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF; /* Post the fragment list. */ sfxge_tx_qlist_post(txq); return 0; reject_mapped: bus_dmamap_unload(txq->packet_dma_tag, *used_map); reject: /* Drop the packet on the floor. */ m_freem(mbuf); ++txq->drops; return rc; } #ifdef SFXGE_HAVE_MQ /* * Drain the deferred packet list into the transmit queue. */ static void sfxge_tx_qdpl_drain(struct sfxge_txq *txq) { struct sfxge_softc *sc; struct sfxge_tx_dpl *stdp; struct mbuf *mbuf, *next; unsigned int count; unsigned int pushed; int rc; mtx_assert(&txq->lock, MA_OWNED); sc = txq->sc; stdp = &txq->dpl; pushed = txq->added; prefetch_read_many(sc->enp); prefetch_read_many(txq->common); mbuf = stdp->std_get; count = stdp->std_count; while (count != 0) { KASSERT(mbuf != NULL, ("mbuf == NULL")); next = mbuf->m_nextpkt; mbuf->m_nextpkt = NULL; ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */ if (next != NULL) prefetch_read_many(next); rc = sfxge_tx_queue_mbuf(txq, mbuf); --count; mbuf = next; if (rc != 0) continue; if (txq->blocked) break; /* Push the fragments to the hardware in batches. */ if (txq->added - pushed >= SFXGE_TX_BATCH) { efx_tx_qpush(txq->common, txq->added); pushed = txq->added; } } if (count == 0) { KASSERT(mbuf == NULL, ("mbuf != NULL")); stdp->std_get = NULL; stdp->std_count = 0; stdp->std_getp = &stdp->std_get; } else { stdp->std_get = mbuf; stdp->std_count = count; } if (txq->added != pushed) efx_tx_qpush(txq->common, txq->added); KASSERT(txq->blocked || stdp->std_count == 0, ("queue unblocked but count is non-zero")); } #define SFXGE_TX_QDPL_PENDING(_txq) \ ((_txq)->dpl.std_put != 0) /* * Service the deferred packet list. * * NOTE: drops the txq mutex! */ static inline void sfxge_tx_qdpl_service(struct sfxge_txq *txq) { mtx_assert(&txq->lock, MA_OWNED); do { if (SFXGE_TX_QDPL_PENDING(txq)) sfxge_tx_qdpl_swizzle(txq); if (!txq->blocked) sfxge_tx_qdpl_drain(txq); mtx_unlock(&txq->lock); } while (SFXGE_TX_QDPL_PENDING(txq) && mtx_trylock(&txq->lock)); } /* * Put a packet on the deferred packet list. * * If we are called with the txq lock held, we put the packet on the "get * list", otherwise we atomically push it on the "put list". The swizzle * function takes care of ordering. * * The length of the put list is bounded by SFXGE_TX_MAX_DEFFERED. We * overload the csum_data field in the mbuf to keep track of this length * because there is no cheap alternative to avoid races. */ static inline int sfxge_tx_qdpl_put(struct sfxge_txq *txq, struct mbuf *mbuf, int locked) { struct sfxge_tx_dpl *stdp; stdp = &txq->dpl; KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL")); if (locked) { mtx_assert(&txq->lock, MA_OWNED); sfxge_tx_qdpl_swizzle(txq); *(stdp->std_getp) = mbuf; stdp->std_getp = &mbuf->m_nextpkt; stdp->std_count++; } else { volatile uintptr_t *putp; uintptr_t old; uintptr_t new; unsigned old_len; putp = &stdp->std_put; new = (uintptr_t)mbuf; do { old = *putp; if (old) { struct mbuf *mp = (struct mbuf *)old; old_len = mp->m_pkthdr.csum_data; } else old_len = 0; if (old_len >= SFXGE_TX_MAX_DEFERRED) return ENOBUFS; mbuf->m_pkthdr.csum_data = old_len + 1; mbuf->m_nextpkt = (void *)old; } while (atomic_cmpset_ptr(putp, old, new) == 0); } return (0); } /* * Called from if_transmit - will try to grab the txq lock and enqueue to the * put list if it succeeds, otherwise will push onto the defer list. */ int sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m) { int locked; int rc; /* * Try to grab the txq lock. If we are able to get the lock, * the packet will be appended to the "get list" of the deferred * packet list. Otherwise, it will be pushed on the "put list". */ locked = mtx_trylock(&txq->lock); /* * Can only fail if we weren't able to get the lock. */ if (sfxge_tx_qdpl_put(txq, m, locked) != 0) { KASSERT(!locked, ("sfxge_tx_qdpl_put() failed locked")); rc = ENOBUFS; goto fail; } /* * Try to grab the lock again. * * If we are able to get the lock, we need to process the deferred * packet list. If we are not able to get the lock, another thread * is processing the list. */ if (!locked) locked = mtx_trylock(&txq->lock); if (locked) { /* Try to service the list. */ sfxge_tx_qdpl_service(txq); /* Lock has been dropped. */ } return (0); fail: return (rc); } static void sfxge_tx_qdpl_flush(struct sfxge_txq *txq) { struct sfxge_tx_dpl *stdp = &txq->dpl; struct mbuf *mbuf, *next; mtx_lock(&txq->lock); sfxge_tx_qdpl_swizzle(txq); for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) { next = mbuf->m_nextpkt; m_freem(mbuf); } stdp->std_get = NULL; stdp->std_count = 0; stdp->std_getp = &stdp->std_get; mtx_unlock(&txq->lock); } void sfxge_if_qflush(struct ifnet *ifp) { struct sfxge_softc *sc; int i; sc = ifp->if_softc; for (i = 0; i < SFXGE_TX_SCALE(sc); i++) sfxge_tx_qdpl_flush(sc->txq[i]); } /* * TX start -- called by the stack. */ int sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m) { struct sfxge_softc *sc; struct sfxge_txq *txq; int rc; sc = (struct sfxge_softc *)ifp->if_softc; KASSERT(ifp->if_flags & IFF_UP, ("interface not up")); if (!SFXGE_LINK_UP(sc)) { m_freem(m); return (0); } /* Pick the desired transmit queue. */ if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO)) { int index = 0; if (m->m_flags & M_FLOWID) { uint32_t hash = m->m_pkthdr.flowid; index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX]; } txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index]; } else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) { txq = sc->txq[SFXGE_TXQ_IP_CKSUM]; } else { txq = sc->txq[SFXGE_TXQ_NON_CKSUM]; } rc = sfxge_tx_packet_add(txq, m); return (rc); } #else /* !SFXGE_HAVE_MQ */ static void sfxge_if_start_locked(struct ifnet *ifp) { struct sfxge_softc *sc = ifp->if_softc; struct sfxge_txq *txq; struct mbuf *mbuf; unsigned int pushed[SFXGE_TXQ_NTYPES]; unsigned int q_index; if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; if (!sc->port.link_up) return; for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) { txq = sc->txq[q_index]; pushed[q_index] = txq->added; } while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { IFQ_DRV_DEQUEUE(&ifp->if_snd, mbuf); if (mbuf == NULL) break; ETHER_BPF_MTAP(ifp, mbuf); /* packet capture */ /* Pick the desired transmit queue. */ if (mbuf->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO)) q_index = SFXGE_TXQ_IP_TCP_UDP_CKSUM; else if (mbuf->m_pkthdr.csum_flags & CSUM_DELAY_IP) q_index = SFXGE_TXQ_IP_CKSUM; else q_index = SFXGE_TXQ_NON_CKSUM; txq = sc->txq[q_index]; if (sfxge_tx_queue_mbuf(txq, mbuf) != 0) continue; if (txq->blocked) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } /* Push the fragments to the hardware in batches. */ if (txq->added - pushed[q_index] >= SFXGE_TX_BATCH) { efx_tx_qpush(txq->common, txq->added); pushed[q_index] = txq->added; } } for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) { txq = sc->txq[q_index]; if (txq->added != pushed[q_index]) efx_tx_qpush(txq->common, txq->added); } } void sfxge_if_start(struct ifnet *ifp) { struct sfxge_softc *sc = ifp->if_softc; mtx_lock(&sc->tx_lock); sfxge_if_start_locked(ifp); mtx_unlock(&sc->tx_lock); } static inline void sfxge_tx_qdpl_service(struct sfxge_txq *txq) { struct sfxge_softc *sc = txq->sc; struct ifnet *ifp = sc->ifnet; mtx_assert(&sc->tx_lock, MA_OWNED); ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sfxge_if_start_locked(ifp); mtx_unlock(&sc->tx_lock); } #endif /* SFXGE_HAVE_MQ */ /* * Software "TSO". Not quite as good as doing it in hardware, but * still faster than segmenting in the stack. */ struct sfxge_tso_state { /* Output position */ unsigned out_len; /* Remaining length in current segment */ unsigned seqnum; /* Current sequence number */ unsigned packet_space; /* Remaining space in current packet */ /* Input position */ unsigned dma_seg_i; /* Current DMA segment number */ uint64_t dma_addr; /* DMA address of current position */ unsigned in_len; /* Remaining length in current mbuf */ const struct mbuf *mbuf; /* Input mbuf (head of chain) */ u_short protocol; /* Network protocol (after VLAN decap) */ ssize_t nh_off; /* Offset of network header */ ssize_t tcph_off; /* Offset of TCP header */ unsigned header_len; /* Number of bytes of header */ int full_packet_size; /* Number of bytes to put in each outgoing * segment */ }; static inline const struct ip *tso_iph(const struct sfxge_tso_state *tso) { KASSERT(tso->protocol == htons(ETHERTYPE_IP), ("tso_iph() in non-IPv4 state")); return (const struct ip *)(tso->mbuf->m_data + tso->nh_off); } static inline const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso) { KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), ("tso_ip6h() in non-IPv6 state")); return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off); } static inline const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso) { return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off); } /* Size of preallocated TSO header buffers. Larger blocks must be * allocated from the heap. */ #define TSOH_STD_SIZE 128 /* At most half the descriptors in the queue at any time will refer to * a TSO header buffer, since they must always be followed by a * payload descriptor referring to an mbuf. */ #define TSOH_COUNT (SFXGE_NDESCS / 2u) #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE) #define TSOH_PAGE_COUNT ((TSOH_COUNT + TSOH_PER_PAGE - 1) / TSOH_PER_PAGE) static int tso_init(struct sfxge_txq *txq) { struct sfxge_softc *sc = txq->sc; int i, rc; /* Allocate TSO header buffers */ txq->tsoh_buffer = malloc(TSOH_PAGE_COUNT * sizeof(txq->tsoh_buffer[0]), M_SFXGE, M_WAITOK); for (i = 0; i < TSOH_PAGE_COUNT; i++) { rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]); if (rc) goto fail; } return 0; fail: while (i-- > 0) sfxge_dma_free(&txq->tsoh_buffer[i]); free(txq->tsoh_buffer, M_SFXGE); txq->tsoh_buffer = NULL; return rc; } static void tso_fini(struct sfxge_txq *txq) { int i; if (txq->tsoh_buffer) { for (i = 0; i < TSOH_PAGE_COUNT; i++) sfxge_dma_free(&txq->tsoh_buffer[i]); free(txq->tsoh_buffer, M_SFXGE); } } static void tso_start(struct sfxge_tso_state *tso, struct mbuf *mbuf) { struct ether_header *eh = mtod(mbuf, struct ether_header *); tso->mbuf = mbuf; /* Find network protocol and header */ tso->protocol = eh->ether_type; if (tso->protocol == htons(ETHERTYPE_VLAN)) { struct ether_vlan_header *veh = mtod(mbuf, struct ether_vlan_header *); tso->protocol = veh->evl_proto; tso->nh_off = sizeof(*veh); } else { tso->nh_off = sizeof(*eh); } /* Find TCP header */ if (tso->protocol == htons(ETHERTYPE_IP)) { KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP, ("TSO required on non-TCP packet")); tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl; } else { KASSERT(tso->protocol == htons(ETHERTYPE_IPV6), ("TSO required on non-IP packet")); KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP, ("TSO required on non-TCP packet")); tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr); } /* We assume all headers are linear in the head mbuf */ tso->header_len = tso->tcph_off + 4 * tso_tcph(tso)->th_off; KASSERT(tso->header_len <= mbuf->m_len, ("packet headers fragmented")); tso->full_packet_size = tso->header_len + mbuf->m_pkthdr.tso_segsz; tso->seqnum = ntohl(tso_tcph(tso)->th_seq); /* These flags must not be duplicated */ KASSERT(!(tso_tcph(tso)->th_flags & (TH_URG | TH_SYN | TH_RST)), ("incompatible TCP flag on TSO packet")); tso->out_len = mbuf->m_pkthdr.len - tso->header_len; } /* * tso_fill_packet_with_fragment - form descriptors for the current fragment * * Form descriptors for the current fragment, until we reach the end * of fragment or end-of-packet. Return 0 on success, 1 if not enough * space. */ static void tso_fill_packet_with_fragment(struct sfxge_txq *txq, struct sfxge_tso_state *tso) { efx_buffer_t *desc; int n; if (tso->in_len == 0 || tso->packet_space == 0) return; KASSERT(tso->in_len > 0, ("TSO input length went negative")); KASSERT(tso->packet_space > 0, ("TSO packet space went negative")); n = min(tso->in_len, tso->packet_space); tso->packet_space -= n; tso->out_len -= n; tso->in_len -= n; desc = &txq->pend_desc[txq->n_pend_desc++]; desc->eb_addr = tso->dma_addr; desc->eb_size = n; desc->eb_eop = tso->out_len == 0 || tso->packet_space == 0; tso->dma_addr += n; } /* Callback from bus_dmamap_load() for long TSO headers. */ static void tso_map_long_header(void *dma_addr_ret, bus_dma_segment_t *segs, int nseg, int error) { *(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) && __predict_true(nseg == 1)) ? segs->ds_addr : 0); } /* * tso_start_new_packet - generate a new header and prepare for the new packet * * Generate a new header and prepare for the new packet. Return 0 on * success, or an error code if failed to alloc header. */ static int tso_start_new_packet(struct sfxge_txq *txq, struct sfxge_tso_state *tso, unsigned int id) { struct sfxge_tx_mapping *stmp = &txq->stmp[id]; struct tcphdr *tsoh_th; unsigned ip_length; caddr_t header; uint64_t dma_addr; bus_dmamap_t map; efx_buffer_t *desc; int rc; /* Allocate a DMA-mapped header buffer. */ if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) { unsigned int page_index = (id / 2) / TSOH_PER_PAGE; unsigned int buf_index = (id / 2) % TSOH_PER_PAGE; header = (txq->tsoh_buffer[page_index].esm_base + buf_index * TSOH_STD_SIZE); dma_addr = (txq->tsoh_buffer[page_index].esm_addr + buf_index * TSOH_STD_SIZE); map = txq->tsoh_buffer[page_index].esm_map; stmp->flags = 0; } else { /* We cannot use bus_dmamem_alloc() as that may sleep */ header = malloc(tso->header_len, M_SFXGE, M_NOWAIT); if (__predict_false(!header)) return ENOMEM; rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map, header, tso->header_len, tso_map_long_header, &dma_addr, BUS_DMA_NOWAIT); if (__predict_false(dma_addr == 0)) { if (rc == 0) { /* Succeeded but got >1 segment */ bus_dmamap_unload(txq->packet_dma_tag, stmp->map); rc = EINVAL; } free(header, M_SFXGE); return rc; } map = stmp->map; txq->tso_long_headers++; stmp->u.heap_buf = header; stmp->flags = TX_BUF_UNMAP; } tsoh_th = (struct tcphdr *)(header + tso->tcph_off); /* Copy and update the headers. */ memcpy(header, tso->mbuf->m_data, tso->header_len); tsoh_th->th_seq = htonl(tso->seqnum); tso->seqnum += tso->mbuf->m_pkthdr.tso_segsz; if (tso->out_len > tso->mbuf->m_pkthdr.tso_segsz) { /* This packet will not finish the TSO burst. */ ip_length = tso->full_packet_size - tso->nh_off; tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH); } else { /* This packet will be the last in the TSO burst. */ ip_length = tso->header_len - tso->nh_off + tso->out_len; } if (tso->protocol == htons(ETHERTYPE_IP)) { struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off); tsoh_iph->ip_len = htons(ip_length); /* XXX We should increment ip_id, but FreeBSD doesn't * currently allocate extra IDs for multiple segments. */ } else { struct ip6_hdr *tsoh_iph = (struct ip6_hdr *)(header + tso->nh_off); tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph)); } /* Make the header visible to the hardware. */ bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE); tso->packet_space = tso->mbuf->m_pkthdr.tso_segsz; txq->tso_packets++; /* Form a descriptor for this header. */ desc = &txq->pend_desc[txq->n_pend_desc++]; desc->eb_addr = dma_addr; desc->eb_size = tso->header_len; desc->eb_eop = 0; return 0; } static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf, const bus_dma_segment_t *dma_seg, int n_dma_seg) { struct sfxge_tso_state tso; unsigned int id, next_id; tso_start(&tso, mbuf); /* Grab the first payload fragment. */ if (dma_seg->ds_len == tso.header_len) { --n_dma_seg; KASSERT(n_dma_seg, ("no payload found in TSO packet")); ++dma_seg; tso.in_len = dma_seg->ds_len; tso.dma_addr = dma_seg->ds_addr; } else { tso.in_len = dma_seg->ds_len - tso.header_len; tso.dma_addr = dma_seg->ds_addr + tso.header_len; } id = txq->added & (SFXGE_NDESCS - 1); if (__predict_false(tso_start_new_packet(txq, &tso, id))) return -1; while (1) { id = (id + 1) & (SFXGE_NDESCS - 1); tso_fill_packet_with_fragment(txq, &tso); /* Move onto the next fragment? */ if (tso.in_len == 0) { --n_dma_seg; if (n_dma_seg == 0) break; ++dma_seg; tso.in_len = dma_seg->ds_len; tso.dma_addr = dma_seg->ds_addr; } /* End of packet? */ if (tso.packet_space == 0) { /* If the queue is now full due to tiny MSS, * or we can't create another header, discard * the remainder of the input mbuf but do not * roll back the work we have done. */ if (txq->n_pend_desc > SFXGE_TSO_MAX_DESC - (1 + SFXGE_TX_MAPPING_MAX_SEG)) break; next_id = (id + 1) & (SFXGE_NDESCS - 1); if (__predict_false(tso_start_new_packet(txq, &tso, next_id))) break; id = next_id; } } txq->tso_bursts++; return id; } static void sfxge_tx_qunblock(struct sfxge_txq *txq) { struct sfxge_softc *sc; struct sfxge_evq *evq; sc = txq->sc; evq = sc->evq[txq->evq_index]; mtx_assert(&evq->lock, MA_OWNED); if (txq->init_state != SFXGE_TXQ_STARTED) return; mtx_lock(SFXGE_TXQ_LOCK(txq)); if (txq->blocked) { unsigned int level; level = txq->added - txq->completed; if (level <= SFXGE_TXQ_UNBLOCK_LEVEL) txq->blocked = 0; } sfxge_tx_qdpl_service(txq); /* note: lock has been dropped */ } void sfxge_tx_qflush_done(struct sfxge_txq *txq) { txq->flush_state = SFXGE_FLUSH_DONE; } static void sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index) { struct sfxge_txq *txq; struct sfxge_evq *evq; unsigned int count; txq = sc->txq[index]; evq = sc->evq[txq->evq_index]; mtx_lock(SFXGE_TXQ_LOCK(txq)); KASSERT(txq->init_state == SFXGE_TXQ_STARTED, ("txq->init_state != SFXGE_TXQ_STARTED")); txq->init_state = SFXGE_TXQ_INITIALIZED; txq->flush_state = SFXGE_FLUSH_PENDING; /* Flush the transmit queue. */ efx_tx_qflush(txq->common); mtx_unlock(SFXGE_TXQ_LOCK(txq)); count = 0; do { /* Spin for 100ms. */ DELAY(100000); if (txq->flush_state != SFXGE_FLUSH_PENDING) break; } while (++count < 20); mtx_lock(&evq->lock); mtx_lock(SFXGE_TXQ_LOCK(txq)); KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED, ("txq->flush_state == SFXGE_FLUSH_FAILED")); txq->flush_state = SFXGE_FLUSH_DONE; txq->blocked = 0; txq->pending = txq->added; sfxge_tx_qcomplete(txq); KASSERT(txq->completed == txq->added, ("txq->completed != txq->added")); sfxge_tx_qreap(txq); KASSERT(txq->reaped == txq->completed, ("txq->reaped != txq->completed")); txq->added = 0; txq->pending = 0; txq->completed = 0; txq->reaped = 0; /* Destroy the common code transmit queue. */ efx_tx_qdestroy(txq->common); txq->common = NULL; efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, EFX_TXQ_NBUFS(SFXGE_NDESCS)); mtx_unlock(&evq->lock); mtx_unlock(SFXGE_TXQ_LOCK(txq)); } static int sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index) { struct sfxge_txq *txq; efsys_mem_t *esmp; uint16_t flags; struct sfxge_evq *evq; int rc; txq = sc->txq[index]; esmp = &txq->mem; evq = sc->evq[txq->evq_index]; KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, ("txq->init_state != SFXGE_TXQ_INITIALIZED")); KASSERT(evq->init_state == SFXGE_EVQ_STARTED, ("evq->init_state != SFXGE_EVQ_STARTED")); /* Program the buffer table. */ if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp, EFX_TXQ_NBUFS(SFXGE_NDESCS))) != 0) return rc; /* Determine the kind of queue we are creating. */ switch (txq->type) { case SFXGE_TXQ_NON_CKSUM: flags = 0; break; case SFXGE_TXQ_IP_CKSUM: flags = EFX_CKSUM_IPV4; break; case SFXGE_TXQ_IP_TCP_UDP_CKSUM: flags = EFX_CKSUM_IPV4 | EFX_CKSUM_TCPUDP; break; default: KASSERT(0, ("Impossible TX queue")); flags = 0; break; } /* Create the common code transmit queue. */ if ((rc = efx_tx_qcreate(sc->enp, index, index, esmp, SFXGE_NDESCS, txq->buf_base_id, flags, evq->common, &txq->common)) != 0) goto fail; mtx_lock(SFXGE_TXQ_LOCK(txq)); /* Enable the transmit queue. */ efx_tx_qenable(txq->common); txq->init_state = SFXGE_TXQ_STARTED; mtx_unlock(SFXGE_TXQ_LOCK(txq)); return (0); fail: efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id, EFX_TXQ_NBUFS(SFXGE_NDESCS)); return rc; } void sfxge_tx_stop(struct sfxge_softc *sc) { const efx_nic_cfg_t *encp; int index; index = SFXGE_TX_SCALE(sc); while (--index >= 0) sfxge_tx_qstop(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index); sfxge_tx_qstop(sc, SFXGE_TXQ_IP_CKSUM); encp = efx_nic_cfg_get(sc->enp); sfxge_tx_qstop(sc, SFXGE_TXQ_NON_CKSUM); /* Tear down the transmit module */ efx_tx_fini(sc->enp); } int sfxge_tx_start(struct sfxge_softc *sc) { int index; int rc; /* Initialize the common code transmit module. */ if ((rc = efx_tx_init(sc->enp)) != 0) return (rc); if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_NON_CKSUM)) != 0) goto fail; if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_IP_CKSUM)) != 0) goto fail2; for (index = 0; index < SFXGE_TX_SCALE(sc); index++) { if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index)) != 0) goto fail3; } return (0); fail3: while (--index >= 0) sfxge_tx_qstop(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index); sfxge_tx_qstop(sc, SFXGE_TXQ_IP_CKSUM); fail2: sfxge_tx_qstop(sc, SFXGE_TXQ_NON_CKSUM); fail: efx_tx_fini(sc->enp); return (rc); } /** * Destroy a transmit queue. */ static void sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index) { struct sfxge_txq *txq; unsigned int nmaps = SFXGE_NDESCS; txq = sc->txq[index]; KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED, ("txq->init_state != SFXGE_TXQ_INITIALIZED")); if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) tso_fini(txq); /* Free the context arrays. */ free(txq->pend_desc, M_SFXGE); while (nmaps--) bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); free(txq->stmp, M_SFXGE); /* Release DMA memory mapping. */ sfxge_dma_free(&txq->mem); sc->txq[index] = NULL; #ifdef SFXGE_HAVE_MQ mtx_destroy(&txq->lock); #endif free(txq, M_SFXGE); } static int sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index, enum sfxge_txq_type type, unsigned int evq_index) { struct sfxge_txq *txq; struct sfxge_evq *evq; #ifdef SFXGE_HAVE_MQ struct sfxge_tx_dpl *stdp; #endif efsys_mem_t *esmp; unsigned int nmaps; int rc; txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK); txq->sc = sc; sc->txq[txq_index] = txq; esmp = &txq->mem; evq = sc->evq[evq_index]; /* Allocate and zero DMA space for the descriptor ring. */ if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(SFXGE_NDESCS), esmp)) != 0) return (rc); (void)memset(esmp->esm_base, 0, EFX_TXQ_SIZE(SFXGE_NDESCS)); /* Allocate buffer table entries. */ sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(SFXGE_NDESCS), &txq->buf_base_id); /* Create a DMA tag for packet mappings. */ if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000, MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL, NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL, &txq->packet_dma_tag) != 0) { device_printf(sc->dev, "Couldn't allocate txq DMA tag\n"); rc = ENOMEM; goto fail; } /* Allocate pending descriptor array for batching writes. */ txq->pend_desc = malloc(sizeof(efx_buffer_t) * SFXGE_NDESCS, M_SFXGE, M_ZERO | M_WAITOK); /* Allocate and initialise mbuf DMA mapping array. */ txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * SFXGE_NDESCS, M_SFXGE, M_ZERO | M_WAITOK); for (nmaps = 0; nmaps < SFXGE_NDESCS; nmaps++) { rc = bus_dmamap_create(txq->packet_dma_tag, 0, &txq->stmp[nmaps].map); if (rc != 0) goto fail2; } if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM && (rc = tso_init(txq)) != 0) goto fail3; #ifdef SFXGE_HAVE_MQ /* Initialize the deferred packet list. */ stdp = &txq->dpl; stdp->std_getp = &stdp->std_get; mtx_init(&txq->lock, "txq", NULL, MTX_DEF); #endif txq->type = type; txq->evq_index = evq_index; txq->txq_index = txq_index; txq->init_state = SFXGE_TXQ_INITIALIZED; return (0); fail3: free(txq->pend_desc, M_SFXGE); fail2: while (nmaps--) bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map); free(txq->stmp, M_SFXGE); bus_dma_tag_destroy(txq->packet_dma_tag); fail: sfxge_dma_free(esmp); return (rc); } static const struct { const char *name; size_t offset; } sfxge_tx_stats[] = { #define SFXGE_TX_STAT(name, member) \ { #name, offsetof(struct sfxge_txq, member) } SFXGE_TX_STAT(tso_bursts, tso_bursts), SFXGE_TX_STAT(tso_packets, tso_packets), SFXGE_TX_STAT(tso_long_headers, tso_long_headers), SFXGE_TX_STAT(tx_collapses, collapses), SFXGE_TX_STAT(tx_drops, drops), }; static int sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS) { struct sfxge_softc *sc = arg1; unsigned int id = arg2; unsigned long sum; unsigned int index; /* Sum across all TX queues */ sum = 0; for (index = 0; index < SFXGE_TXQ_IP_TCP_UDP_CKSUM + SFXGE_TX_SCALE(sc); index++) sum += *(unsigned long *)((caddr_t)sc->txq[index] + sfxge_tx_stats[id].offset); return SYSCTL_OUT(req, &sum, sizeof(sum)); } static void sfxge_tx_stat_init(struct sfxge_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev); struct sysctl_oid_list *stat_list; unsigned int id; stat_list = SYSCTL_CHILDREN(sc->stats_node); for (id = 0; id < sizeof(sfxge_tx_stats) / sizeof(sfxge_tx_stats[0]); id++) { SYSCTL_ADD_PROC( ctx, stat_list, OID_AUTO, sfxge_tx_stats[id].name, CTLTYPE_ULONG|CTLFLAG_RD, sc, id, sfxge_tx_stat_handler, "LU", ""); } } void sfxge_tx_fini(struct sfxge_softc *sc) { int index; index = SFXGE_TX_SCALE(sc); while (--index >= 0) sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index); sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM); sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM); } int sfxge_tx_init(struct sfxge_softc *sc) { struct sfxge_intr *intr; int index; int rc; intr = &sc->intr; KASSERT(intr->state == SFXGE_INTR_INITIALIZED, ("intr->state != SFXGE_INTR_INITIALIZED")); /* Initialize the transmit queues */ if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM, SFXGE_TXQ_NON_CKSUM, 0)) != 0) goto fail; if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM, SFXGE_TXQ_IP_CKSUM, 0)) != 0) goto fail2; for (index = 0; index < SFXGE_TX_SCALE(sc); index++) { if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index, SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0) goto fail3; } sfxge_tx_stat_init(sc); return (0); fail3: sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM); while (--index >= 0) sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index); fail2: sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM); fail: return (rc); }