config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mlx/@/amd64/compile/hs32/modules/usr/src/sys/modules/dpms/@/dev/mps/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mlx/@/amd64/compile/hs32/modules/usr/src/sys/modules/dpms/@/dev/mps/mps_sas.c

/*-
 * Copyright (c) 2009 Yahoo! Inc.
 * Copyright (c) 2011, 2012 LSI Corp.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * LSI MPT-Fusion Host Adapter FreeBSD
 *
 * $FreeBSD: release/9.1.0/sys/dev/mps/mps_sas.c 239418 2012-08-20 12:53:29Z mav $
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/dev/mps/mps_sas.c 239418 2012-08-20 12:53:29Z mav $");

/* Communications core for LSI MPT2 */

/* TODO Move headers to mpsvar */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/selinfo.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <sys/queue.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/sbuf.h>

#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>

#include <machine/stdarg.h>

#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_xpt.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_periph.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#if __FreeBSD_version >= 900026
#include <cam/scsi/smp_all.h>
#endif

#include <dev/mps/mpi/mpi2_type.h>
#include <dev/mps/mpi/mpi2.h>
#include <dev/mps/mpi/mpi2_ioc.h>
#include <dev/mps/mpi/mpi2_sas.h>
#include <dev/mps/mpi/mpi2_cnfg.h>
#include <dev/mps/mpi/mpi2_init.h>
#include <dev/mps/mpi/mpi2_tool.h>
#include <dev/mps/mps_ioctl.h>
#include <dev/mps/mpsvar.h>
#include <dev/mps/mps_table.h>
#include <dev/mps/mps_sas.h>

#define MPSSAS_DISCOVERY_TIMEOUT	20
#define MPSSAS_MAX_DISCOVERY_TIMEOUTS	10 /* 200 seconds */

/*
 * static array to check SCSI OpCode for EEDP protection bits
 */
#define	PRO_R MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP
#define	PRO_W MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
#define	PRO_V MPI2_SCSIIO_EEDPFLAGS_INSERT_OP
static uint8_t op_code_prot[256] = {
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
	0, 0, 0, PRO_W, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, PRO_R, 0, PRO_W, 0, 0, 0, PRO_W, PRO_V,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

MALLOC_DEFINE(M_MPSSAS, "MPSSAS", "MPS SAS memory");

static void mpssas_discovery_timeout(void *data);
static void mpssas_remove_device(struct mps_softc *, struct mps_command *);
static void mpssas_remove_complete(struct mps_softc *, struct mps_command *);
static void mpssas_action(struct cam_sim *sim, union ccb *ccb);
static void mpssas_poll(struct cam_sim *sim);
static void mpssas_scsiio_timeout(void *data);
static void mpssas_abort_complete(struct mps_softc *sc, struct mps_command *cm);
static void mpssas_direct_drive_io(struct mpssas_softc *sassc,
    struct mps_command *cm, union ccb *ccb);
static void mpssas_action_scsiio(struct mpssas_softc *, union ccb *);
static void mpssas_scsiio_complete(struct mps_softc *, struct mps_command *);
static void mpssas_action_resetdev(struct mpssas_softc *, union ccb *);
#if __FreeBSD_version >= 900026
static void mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm);
static void mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb,
			       uint64_t sasaddr);
static void mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb);
#endif //FreeBSD_version >= 900026
static void mpssas_resetdev_complete(struct mps_softc *, struct mps_command *);
static int  mpssas_send_abort(struct mps_softc *sc, struct mps_command *tm, struct mps_command *cm);
static int  mpssas_send_reset(struct mps_softc *sc, struct mps_command *tm, uint8_t type);
static void mpssas_rescan(struct mpssas_softc *sassc, union ccb *ccb);
static void mpssas_rescan_done(struct cam_periph *periph, union ccb *done_ccb);
static void mpssas_scanner_thread(void *arg);
#if __FreeBSD_version >= 1000006
static void mpssas_async(void *callback_arg, uint32_t code,
			 struct cam_path *path, void *arg);
#else
static void mpssas_check_eedp(struct mpssas_softc *sassc);
static void mpssas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb);
#endif
static int mpssas_send_portenable(struct mps_softc *sc);
static void mpssas_portenable_complete(struct mps_softc *sc,
    struct mps_command *cm);

struct mpssas_target *
mpssas_find_target_by_handle(struct mpssas_softc *sassc, int start, uint16_t handle)
{
	struct mpssas_target *target;
	int i;

	for (i = start; i < sassc->sc->facts->MaxTargets; i++) {
		target = &sassc->targets[i];
		if (target->handle == handle)
			return (target);
	}

	return (NULL);
}

/* we need to freeze the simq during attach and diag reset, to avoid failing
 * commands before device handles have been found by discovery.  Since
 * discovery involves reading config pages and possibly sending commands,
 * discovery actions may continue even after we receive the end of discovery
 * event, so refcount discovery actions instead of assuming we can unfreeze
 * the simq when we get the event.
 */
void
mpssas_startup_increment(struct mpssas_softc *sassc)
{
	if ((sassc->flags & MPSSAS_IN_STARTUP) != 0) {
		if (sassc->startup_refcount++ == 0) {
			/* just starting, freeze the simq */
			mps_dprint(sassc->sc, MPS_INFO,
			    "%s freezing simq\n", __func__);
			xpt_freeze_simq(sassc->sim, 1);
		}
		mps_dprint(sassc->sc, MPS_TRACE, "%s refcount %u\n", __func__,
		    sassc->startup_refcount);
	}
}

void
mpssas_startup_decrement(struct mpssas_softc *sassc)
{
	if ((sassc->flags & MPSSAS_IN_STARTUP) != 0) {
		if (--sassc->startup_refcount == 0) {
			/* finished all discovery-related actions, release
			 * the simq and rescan for the latest topology.
			 */
			mps_dprint(sassc->sc, MPS_INFO,
			    "%s releasing simq\n", __func__);
			sassc->flags &= ~MPSSAS_IN_STARTUP;
			xpt_release_simq(sassc->sim, 1);
			mpssas_rescan_target(sassc->sc, NULL);
		}
		mps_dprint(sassc->sc, MPS_TRACE, "%s refcount %u\n", __func__,
		    sassc->startup_refcount);
	}
}

/* LSI's firmware requires us to stop sending commands when we're doing task
 * management, so refcount the TMs and keep the simq frozen when any are in
 * use.
 */
struct mps_command *
mpssas_alloc_tm(struct mps_softc *sc)
{
	struct mps_command *tm;

	tm = mps_alloc_high_priority_command(sc);
	if (tm != NULL) {
		if (sc->sassc->tm_count++ == 0) {
			mps_printf(sc, "%s freezing simq\n", __func__);
			xpt_freeze_simq(sc->sassc->sim, 1);
		}
		mps_dprint(sc, MPS_TRACE, "%s tm_count %u\n", __func__,
		    sc->sassc->tm_count);
	}
	return tm;
}

void
mpssas_free_tm(struct mps_softc *sc, struct mps_command *tm)
{
	if (tm == NULL)
		return;

	/* if there are no TMs in use, we can release the simq.  We use our
	 * own refcount so that it's easier for a diag reset to cleanup and
	 * release the simq.
	 */
	if (--sc->sassc->tm_count == 0) {
		mps_printf(sc, "%s releasing simq\n", __func__);
		xpt_release_simq(sc->sassc->sim, 1);
	}
	mps_dprint(sc, MPS_TRACE, "%s tm_count %u\n", __func__,
	    sc->sassc->tm_count);

	mps_free_high_priority_command(sc, tm);
}


void
mpssas_rescan_target(struct mps_softc *sc, struct mpssas_target *targ)
{
	struct mpssas_softc *sassc = sc->sassc;
	path_id_t pathid;
	target_id_t targetid;
	union ccb *ccb;

	pathid = cam_sim_path(sassc->sim);
	if (targ == NULL)
		targetid = CAM_TARGET_WILDCARD;
	else
		targetid = targ - sassc->targets;

	/*
	 * Allocate a CCB and schedule a rescan.
	 */
	ccb = xpt_alloc_ccb_nowait();
	if (ccb == NULL) {
		mps_dprint(sc, MPS_FAULT, "unable to alloc CCB for rescan\n");
		return;
	}

	if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, pathid,
		            targetid, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
		mps_dprint(sc, MPS_FAULT, "unable to create path for rescan\n");
		xpt_free_ccb(ccb);
		return;
	}

	if (targetid == CAM_TARGET_WILDCARD)
		ccb->ccb_h.func_code = XPT_SCAN_BUS;
	else
		ccb->ccb_h.func_code = XPT_SCAN_TGT;     

	mps_dprint(sc, MPS_TRACE, "%s targetid %u\n", __func__, targetid);
	mpssas_rescan(sassc, ccb);
}

static void
mpssas_log_command(struct mps_command *cm, const char *fmt, ...)
{
	struct sbuf sb;
	va_list ap;
	char str[192];
	char path_str[64];

	if (cm == NULL)
		return;

	sbuf_new(&sb, str, sizeof(str), 0);

	va_start(ap, fmt);

	if (cm->cm_ccb != NULL) {
		xpt_path_string(cm->cm_ccb->csio.ccb_h.path, path_str,
				sizeof(path_str));
		sbuf_cat(&sb, path_str);
		if (cm->cm_ccb->ccb_h.func_code == XPT_SCSI_IO) {
			scsi_command_string(&cm->cm_ccb->csio, &sb);
			sbuf_printf(&sb, "length %d ",
				    cm->cm_ccb->csio.dxfer_len);
		}
	}
	else {
		sbuf_printf(&sb, "(noperiph:%s%d:%u:%u:%u): ",
		    cam_sim_name(cm->cm_sc->sassc->sim),
		    cam_sim_unit(cm->cm_sc->sassc->sim),
		    cam_sim_bus(cm->cm_sc->sassc->sim),
		    cm->cm_targ ? cm->cm_targ->tid : 0xFFFFFFFF,
		    cm->cm_lun);
	}

	sbuf_printf(&sb, "SMID %u ", cm->cm_desc.Default.SMID);
	sbuf_vprintf(&sb, fmt, ap);
	sbuf_finish(&sb);
	printf("%s", sbuf_data(&sb));

	va_end(ap);
}


static void
mpssas_remove_volume(struct mps_softc *sc, struct mps_command *tm)
{
	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
	struct mpssas_target *targ;
	uint16_t handle;

	mps_dprint(sc, MPS_INFO, "%s\n", __func__);

	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
	targ = tm->cm_targ;

	if (reply == NULL) {
		/* XXX retry the remove after the diag reset completes? */
		mps_printf(sc, "%s NULL reply reseting device 0x%04x\n", 
		    __func__, handle);
		mpssas_free_tm(sc, tm);
		return;
	}

	if (reply->IOCStatus != MPI2_IOCSTATUS_SUCCESS) {
		mps_printf(sc, "IOCStatus = 0x%x while resetting device 0x%x\n",
		   reply->IOCStatus, handle);
		mpssas_free_tm(sc, tm);
		return;
	}

	mps_printf(sc, "Reset aborted %u commands\n", reply->TerminationCount);
	mps_free_reply(sc, tm->cm_reply_data);
	tm->cm_reply = NULL;	/* Ensures the the reply won't get re-freed */

	mps_printf(sc, "clearing target %u handle 0x%04x\n", targ->tid, handle);
	
	/*
	 * Don't clear target if remove fails because things will get confusing.
	 * Leave the devname and sasaddr intact so that we know to avoid reusing
	 * this target id if possible, and so we can assign the same target id
	 * to this device if it comes back in the future.
	 */
	if (reply->IOCStatus == MPI2_IOCSTATUS_SUCCESS) {
		targ = tm->cm_targ;
		targ->handle = 0x0;
		targ->encl_handle = 0x0;
		targ->encl_slot = 0x0;
		targ->exp_dev_handle = 0x0;
		targ->phy_num = 0x0;
		targ->linkrate = 0x0;
		targ->devinfo = 0x0;
		targ->flags = 0x0;
	}

	mpssas_free_tm(sc, tm);
}


/*
 * No Need to call "MPI2_SAS_OP_REMOVE_DEVICE" For Volume removal.
 * Otherwise Volume Delete is same as Bare Drive Removal.
 */
void
mpssas_prepare_volume_remove(struct mpssas_softc *sassc, uint16_t handle)
{
	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
	struct mps_softc *sc;
	struct mps_command *cm;
	struct mpssas_target *targ = NULL;

	mps_dprint(sassc->sc, MPS_INFO, "%s\n", __func__);
	sc = sassc->sc;

#ifdef WD_SUPPORT
	/*
	 * If this is a WD controller, determine if the disk should be exposed
	 * to the OS or not.  If disk should be exposed, return from this
	 * function without doing anything.
	 */
	if (sc->WD_available && (sc->WD_hide_expose ==
	    MPS_WD_EXPOSE_ALWAYS)) {
		return;
	}
#endif //WD_SUPPORT

	targ = mpssas_find_target_by_handle(sassc, 0, handle);
	if (targ == NULL) {
		/* FIXME: what is the action? */
		/* We don't know about this device? */
		printf("%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle);
		return;
	}

	targ->flags |= MPSSAS_TARGET_INREMOVAL;

	cm = mpssas_alloc_tm(sc);
	if (cm == NULL) {
		mps_printf(sc, "%s: command alloc failure\n", __func__);
		return;
	}

	mpssas_rescan_target(sc, targ);

	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
	req->DevHandle = targ->handle;
	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;

	/* SAS Hard Link Reset / SATA Link Reset */
	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;

	cm->cm_targ = targ;
	cm->cm_data = NULL;
	cm->cm_desc.HighPriority.RequestFlags =
	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
	cm->cm_complete = mpssas_remove_volume;
	cm->cm_complete_data = (void *)(uintptr_t)handle;
	mps_map_command(sc, cm);
}

/*
 * The MPT2 firmware performs debounce on the link to avoid transient link
 * errors and false removals.  When it does decide that link has been lost
 * and a device need to go away, it expects that the host will perform a
 * target reset and then an op remove.  The reset has the side-effect of
 * aborting any outstanding requests for the device, which is required for
 * the op-remove to succeed.  It's not clear if the host should check for
 * the device coming back alive after the reset.
 */
void
mpssas_prepare_remove(struct mpssas_softc *sassc, uint16_t handle)
{
	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
	struct mps_softc *sc;
	struct mps_command *cm;
	struct mpssas_target *targ = NULL;

	mps_dprint(sassc->sc, MPS_INFO, "%s\n", __func__);

	sc = sassc->sc;

	targ = mpssas_find_target_by_handle(sassc, 0, handle);
	if (targ == NULL) {
		/* FIXME: what is the action? */
		/* We don't know about this device? */
		printf("%s %d : invalid handle 0x%x \n", __func__,__LINE__, handle);
		return;
	}

	targ->flags |= MPSSAS_TARGET_INREMOVAL;

	cm = mpssas_alloc_tm(sc);
	if (cm == NULL) {
		mps_printf(sc, "%s: command alloc failure\n", __func__);
		return;
	}

	mpssas_rescan_target(sc, targ);

	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)cm->cm_req;
	memset(req, 0, sizeof(*req));
	req->DevHandle = htole16(targ->handle);
	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;

	/* SAS Hard Link Reset / SATA Link Reset */
	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;

	cm->cm_targ = targ;
	cm->cm_data = NULL;
	cm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
	cm->cm_complete = mpssas_remove_device;
	cm->cm_complete_data = (void *)(uintptr_t)handle;
	mps_map_command(sc, cm);
}

static void
mpssas_remove_device(struct mps_softc *sc, struct mps_command *tm)
{
	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
	MPI2_SAS_IOUNIT_CONTROL_REQUEST *req;
	struct mpssas_target *targ;
	struct mps_command *next_cm;
	uint16_t handle;

	mps_dprint(sc, MPS_INFO, "%s\n", __func__);

	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;
	targ = tm->cm_targ;

	/*
	 * Currently there should be no way we can hit this case.  It only
	 * happens when we have a failure to allocate chain frames, and
	 * task management commands don't have S/G lists.
	 */
	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
		mps_printf(sc, "%s: cm_flags = %#x for remove of handle %#04x! "
			   "This should not happen!\n", __func__, tm->cm_flags,
			   handle);
		mpssas_free_tm(sc, tm);
		return;
	}

	if (reply == NULL) {
		/* XXX retry the remove after the diag reset completes? */
		mps_printf(sc, "%s NULL reply reseting device 0x%04x\n", 
		    __func__, handle);
		mpssas_free_tm(sc, tm);
		return;
	}

	if (le16toh(reply->IOCStatus) != MPI2_IOCSTATUS_SUCCESS) {
		mps_printf(sc, "IOCStatus = 0x%x while resetting device 0x%x\n",
		   le16toh(reply->IOCStatus), handle);
		mpssas_free_tm(sc, tm);
		return;
	}

	mps_dprint(sc, MPS_INFO, "Reset aborted %u commands\n",
	    le32toh(reply->TerminationCount));
	mps_free_reply(sc, tm->cm_reply_data);
	tm->cm_reply = NULL;	/* Ensures the the reply won't get re-freed */

	/* Reuse the existing command */
	req = (MPI2_SAS_IOUNIT_CONTROL_REQUEST *)tm->cm_req;
	memset(req, 0, sizeof(*req));
	req->Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL;
	req->Operation = MPI2_SAS_OP_REMOVE_DEVICE;
	req->DevHandle = htole16(handle);
	tm->cm_data = NULL;
	tm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
	tm->cm_complete = mpssas_remove_complete;
	tm->cm_complete_data = (void *)(uintptr_t)handle;

	mps_map_command(sc, tm);

	mps_dprint(sc, MPS_INFO, "clearing target %u handle 0x%04x\n",
		   targ->tid, handle);
	TAILQ_FOREACH_SAFE(tm, &targ->commands, cm_link, next_cm) {
		union ccb *ccb;

		mps_dprint(sc, MPS_INFO, "Completing missed command %p\n", tm);
		ccb = tm->cm_complete_data;
		ccb->ccb_h.status = CAM_DEV_NOT_THERE;
		mpssas_scsiio_complete(sc, tm);
	}
}

static void
mpssas_remove_complete(struct mps_softc *sc, struct mps_command *tm)
{
	MPI2_SAS_IOUNIT_CONTROL_REPLY *reply;
	uint16_t handle;
	struct mpssas_target *targ;
	struct mpssas_lun *lun;

	mps_dprint(sc, MPS_INFO, "%s\n", __func__);

	reply = (MPI2_SAS_IOUNIT_CONTROL_REPLY *)tm->cm_reply;
	handle = (uint16_t)(uintptr_t)tm->cm_complete_data;

	/*
	 * Currently there should be no way we can hit this case.  It only
	 * happens when we have a failure to allocate chain frames, and
	 * task management commands don't have S/G lists.
	 */
	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
		mps_printf(sc, "%s: cm_flags = %#x for remove of handle %#04x! "
			   "This should not happen!\n", __func__, tm->cm_flags,
			   handle);
		mpssas_free_tm(sc, tm);
		return;
	}

	if (reply == NULL) {
		/* most likely a chip reset */
		mps_printf(sc, "%s NULL reply removing device 0x%04x\n",
		    __func__, handle);
		mpssas_free_tm(sc, tm);
		return;
	}

	mps_printf(sc, "%s on handle 0x%04x, IOCStatus= 0x%x\n", __func__, 
	    handle, le16toh(reply->IOCStatus));

	/*
	 * Don't clear target if remove fails because things will get confusing.
	 * Leave the devname and sasaddr intact so that we know to avoid reusing
	 * this target id if possible, and so we can assign the same target id
	 * to this device if it comes back in the future.
	 */
	if (le16toh(reply->IOCStatus) == MPI2_IOCSTATUS_SUCCESS) {
		targ = tm->cm_targ;
		targ->handle = 0x0;
		targ->encl_handle = 0x0;
		targ->encl_slot = 0x0;
		targ->exp_dev_handle = 0x0;
		targ->phy_num = 0x0;
		targ->linkrate = 0x0;
		targ->devinfo = 0x0;
		targ->flags = 0x0;
		
		while(!SLIST_EMPTY(&targ->luns)) {
			lun = SLIST_FIRST(&targ->luns);
			SLIST_REMOVE_HEAD(&targ->luns, lun_link);
			free(lun, M_MPT2);
		}
	}
	

	mpssas_free_tm(sc, tm);
}

static int
mpssas_register_events(struct mps_softc *sc)
{
	u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];

	bzero(events, 16);
	setbit(events, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
	setbit(events, MPI2_EVENT_SAS_DISCOVERY);
	setbit(events, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
	setbit(events, MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE);
	setbit(events, MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW);
	setbit(events, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
	setbit(events, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
	setbit(events, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
	setbit(events, MPI2_EVENT_IR_VOLUME);
	setbit(events, MPI2_EVENT_IR_PHYSICAL_DISK);
	setbit(events, MPI2_EVENT_IR_OPERATION_STATUS);
	setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);

	mps_register_events(sc, events, mpssas_evt_handler, NULL,
	    &sc->sassc->mpssas_eh);

	return (0);
}

int
mps_attach_sas(struct mps_softc *sc)
{
	struct mpssas_softc *sassc;
#if __FreeBSD_version >= 1000006
	cam_status status;
#endif
	int unit, error = 0;

	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);

	sassc = malloc(sizeof(struct mpssas_softc), M_MPT2, M_WAITOK|M_ZERO);
	if(!sassc) {
		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
		__func__, __LINE__);
		return (ENOMEM);
	}
	sassc->targets = malloc(sizeof(struct mpssas_target) *
	    sc->facts->MaxTargets, M_MPT2, M_WAITOK|M_ZERO);
	if(!sassc->targets) {
		device_printf(sc->mps_dev, "Cannot allocate memory %s %d\n",
		__func__, __LINE__);
		free(sassc, M_MPT2);
		return (ENOMEM);
	}
	sc->sassc = sassc;
	sassc->sc = sc;

	if ((sassc->devq = cam_simq_alloc(sc->num_reqs)) == NULL) {
		mps_dprint(sc, MPS_FAULT, "Cannot allocate SIMQ\n");
		error = ENOMEM;
		goto out;
	}

	unit = device_get_unit(sc->mps_dev);
	sassc->sim = cam_sim_alloc(mpssas_action, mpssas_poll, "mps", sassc,
	    unit, &sc->mps_mtx, sc->num_reqs, sc->num_reqs, sassc->devq);
	if (sassc->sim == NULL) {
		mps_dprint(sc, MPS_FAULT, "Cannot allocate SIM\n");
		error = EINVAL;
		goto out;
	}

	TAILQ_INIT(&sassc->ev_queue);

	/* Initialize taskqueue for Event Handling */
	TASK_INIT(&sassc->ev_task, 0, mpssas_firmware_event_work, sc);
	sassc->ev_tq = taskqueue_create("mps_taskq", M_NOWAIT | M_ZERO,
	    taskqueue_thread_enqueue, &sassc->ev_tq);

	/* Run the task queue with lowest priority */
	taskqueue_start_threads(&sassc->ev_tq, 1, 255, "%s taskq", 
	    device_get_nameunit(sc->mps_dev));

	TAILQ_INIT(&sassc->ccb_scanq);
	error = mps_kproc_create(mpssas_scanner_thread, sassc,
	    &sassc->rescan_thread, 0, 0, "mps_scan%d", unit);
	if (error) {
		mps_printf(sc, "Error %d starting rescan thread\n", error);
		goto out;
	}

	mps_lock(sc);
	sassc->flags |= MPSSAS_SCANTHREAD;

	/*
	 * XXX There should be a bus for every port on the adapter, but since
	 * we're just going to fake the topology for now, we'll pretend that
	 * everything is just a target on a single bus.
	 */
	if ((error = xpt_bus_register(sassc->sim, sc->mps_dev, 0)) != 0) {
		mps_dprint(sc, MPS_FAULT, "Error %d registering SCSI bus\n",
		    error);
		mps_unlock(sc);
		goto out;
	}

	/*
	 * Assume that discovery events will start right away.  Freezing
	 * the simq will prevent the CAM boottime scanner from running
	 * before discovery is complete.
	 */
	sassc->flags |= MPSSAS_IN_STARTUP | MPSSAS_IN_DISCOVERY;
	xpt_freeze_simq(sassc->sim, 1);
	sc->sassc->startup_refcount = 0;

	callout_init(&sassc->discovery_callout, 1 /*mpsafe*/);
	sassc->discovery_timeouts = 0;

	sassc->tm_count = 0;

#if __FreeBSD_version >= 1000006
	status = xpt_register_async(AC_ADVINFO_CHANGED, mpssas_async, sc, NULL);
	if (status != CAM_REQ_CMP) {
		mps_printf(sc, "Error %#x registering async handler for "
			   "AC_ADVINFO_CHANGED events\n", status);
	}
#endif

	mps_unlock(sc);

	mpssas_register_events(sc);
out:
	if (error)
		mps_detach_sas(sc);
	return (error);
}

int
mps_detach_sas(struct mps_softc *sc)
{
	struct mpssas_softc *sassc;
	struct mpssas_lun *lun, *lun_tmp;
	struct mpssas_target *targ;
	int i;

	mps_dprint(sc, MPS_INFO, "%s\n", __func__);

	if (sc->sassc == NULL)
		return (0);

	sassc = sc->sassc;
	mps_deregister_events(sc, sassc->mpssas_eh);

	/*
	 * Drain and free the event handling taskqueue with the lock
	 * unheld so that any parallel processing tasks drain properly
	 * without deadlocking.
	 */
	if (sassc->ev_tq != NULL)
		taskqueue_free(sassc->ev_tq);

	/* Make sure CAM doesn't wedge if we had to bail out early. */
	mps_lock(sc);

	/* Deregister our async handler */
#if __FreeBSD_version >= 1000006
	xpt_register_async(0, mpssas_async, sc, NULL);
#endif

	if (sassc->flags & MPSSAS_IN_STARTUP)
		xpt_release_simq(sassc->sim, 1);

	if (sassc->sim != NULL) {
		xpt_bus_deregister(cam_sim_path(sassc->sim));
		cam_sim_free(sassc->sim, FALSE);
	}

	if (sassc->flags & MPSSAS_SCANTHREAD) {
		sassc->flags |= MPSSAS_SHUTDOWN;
		wakeup(&sassc->ccb_scanq);
		
		if (sassc->flags & MPSSAS_SCANTHREAD) {
			msleep(&sassc->flags, &sc->mps_mtx, PRIBIO,
			       "mps_shutdown", 30 * hz);
		}
	}
	mps_unlock(sc);

	mps_dprint(sc, MPS_INFO, "%s:%d\n", __func__,__LINE__);
	if (sassc->devq != NULL)
		cam_simq_free(sassc->devq);

	for(i=0; i< sc->facts->MaxTargets ;i++) {
		targ = &sassc->targets[i];
		SLIST_FOREACH_SAFE(lun, &targ->luns, lun_link, lun_tmp) {
			free(lun, M_MPT2);
		}
	}
	free(sassc->targets, M_MPT2);
	free(sassc, M_MPT2);
	sc->sassc = NULL;

	return (0);
}

void
mpssas_discovery_end(struct mpssas_softc *sassc)
{
	struct mps_softc *sc = sassc->sc;

	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);

	if (sassc->flags & MPSSAS_DISCOVERY_TIMEOUT_PENDING)
		callout_stop(&sassc->discovery_callout);

}

static void
mpssas_discovery_timeout(void *data)
{
	struct mpssas_softc *sassc = data;
	struct mps_softc *sc;

	sc = sassc->sc;
	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);

	mps_lock(sc);
	mps_printf(sc,
	    "Timeout waiting for discovery, interrupts may not be working!\n");
	sassc->flags &= ~MPSSAS_DISCOVERY_TIMEOUT_PENDING;

	/* Poll the hardware for events in case interrupts aren't working */
	mps_intr_locked(sc);

	mps_printf(sassc->sc,
	    "Finished polling after discovery timeout at %d\n", ticks);

	if ((sassc->flags & MPSSAS_IN_DISCOVERY) == 0) {
		mpssas_discovery_end(sassc);
	} else {
		if (sassc->discovery_timeouts < MPSSAS_MAX_DISCOVERY_TIMEOUTS) {
			sassc->flags |= MPSSAS_DISCOVERY_TIMEOUT_PENDING;
			callout_reset(&sassc->discovery_callout,
			    MPSSAS_DISCOVERY_TIMEOUT * hz,
			    mpssas_discovery_timeout, sassc);
			sassc->discovery_timeouts++;
		} else {
			mps_dprint(sassc->sc, MPS_FAULT,
			    "Discovery timed out, continuing.\n");
			sassc->flags &= ~MPSSAS_IN_DISCOVERY;
			mpssas_discovery_end(sassc);
		}
	}

	mps_unlock(sc);
}

static void
mpssas_action(struct cam_sim *sim, union ccb *ccb)
{
	struct mpssas_softc *sassc;

	sassc = cam_sim_softc(sim);

	mps_dprint(sassc->sc, MPS_TRACE, "%s func 0x%x\n", __func__, 
	    ccb->ccb_h.func_code);
	mtx_assert(&sassc->sc->mps_mtx, MA_OWNED);

	switch (ccb->ccb_h.func_code) {
	case XPT_PATH_INQ:
	{
		struct ccb_pathinq *cpi = &ccb->cpi;

		cpi->version_num = 1;
		cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
		cpi->target_sprt = 0;
		cpi->hba_misc = PIM_NOBUSRESET;
		cpi->hba_eng_cnt = 0;
		cpi->max_target = sassc->sc->facts->MaxTargets - 1;
		cpi->max_lun = 255;
		cpi->initiator_id = 255;
		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
		strncpy(cpi->hba_vid, "LSILogic", HBA_IDLEN);
		strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
		cpi->unit_number = cam_sim_unit(sim);
		cpi->bus_id = cam_sim_bus(sim);
		cpi->base_transfer_speed = 150000;
		cpi->transport = XPORT_SAS;
		cpi->transport_version = 0;
		cpi->protocol = PROTO_SCSI;
		cpi->protocol_version = SCSI_REV_SPC;
#if __FreeBSD_version >= 800001
		/*
		 * XXX KDM where does this number come from?
		 */
		cpi->maxio = 256 * 1024;
#endif
		cpi->ccb_h.status = CAM_REQ_CMP;
		break;
	}
	case XPT_GET_TRAN_SETTINGS:
	{
		struct ccb_trans_settings	*cts;
		struct ccb_trans_settings_sas	*sas;
		struct ccb_trans_settings_scsi	*scsi;
		struct mpssas_target *targ;

		cts = &ccb->cts;
		sas = &cts->xport_specific.sas;
		scsi = &cts->proto_specific.scsi;

		targ = &sassc->targets[cts->ccb_h.target_id];
		if (targ->handle == 0x0) {
			cts->ccb_h.status = CAM_SEL_TIMEOUT;
			break;
		}

		cts->protocol_version = SCSI_REV_SPC2;
		cts->transport = XPORT_SAS;
		cts->transport_version = 0;

		sas->valid = CTS_SAS_VALID_SPEED;
		switch (targ->linkrate) {
		case 0x08:
			sas->bitrate = 150000;
			break;
		case 0x09:
			sas->bitrate = 300000;
			break;
		case 0x0a:
			sas->bitrate = 600000;
			break;
		default:
			sas->valid = 0;
		}

		cts->protocol = PROTO_SCSI;
		scsi->valid = CTS_SCSI_VALID_TQ;
		scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;

		cts->ccb_h.status = CAM_REQ_CMP;
		break;
	}
	case XPT_CALC_GEOMETRY:
		cam_calc_geometry(&ccb->ccg, /*extended*/1);
		ccb->ccb_h.status = CAM_REQ_CMP;
		break;
	case XPT_RESET_DEV:
		mps_printf(sassc->sc, "mpssas_action XPT_RESET_DEV\n");
		mpssas_action_resetdev(sassc, ccb);
		return;
	case XPT_RESET_BUS:
	case XPT_ABORT:
	case XPT_TERM_IO:
		mps_printf(sassc->sc, "mpssas_action faking success for "
			   "abort or reset\n");
		ccb->ccb_h.status = CAM_REQ_CMP;
		break;
	case XPT_SCSI_IO:
		mpssas_action_scsiio(sassc, ccb);
		return;
#if __FreeBSD_version >= 900026
	case XPT_SMP_IO:
		mpssas_action_smpio(sassc, ccb);
		return;
#endif
	default:
		ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
		break;
	}
	xpt_done(ccb);

}

static void
mpssas_announce_reset(struct mps_softc *sc, uint32_t ac_code,
    target_id_t target_id, lun_id_t lun_id)
{
	path_id_t path_id = cam_sim_path(sc->sassc->sim);
	struct cam_path *path;

	mps_printf(sc, "%s code %x target %d lun %d\n", __func__,
	    ac_code, target_id, lun_id);

	if (xpt_create_path(&path, NULL, 
		path_id, target_id, lun_id) != CAM_REQ_CMP) {
		mps_printf(sc, "unable to create path for reset "
			   "notification\n");
		return;
	}

	xpt_async(ac_code, path, NULL);
	xpt_free_path(path);
}

static void 
mpssas_complete_all_commands(struct mps_softc *sc)
{
	struct mps_command *cm;
	int i;
	int completed;

	mps_printf(sc, "%s\n", __func__);
	mtx_assert(&sc->mps_mtx, MA_OWNED);

	/* complete all commands with a NULL reply */
	for (i = 1; i < sc->num_reqs; i++) {
		cm = &sc->commands[i];
		cm->cm_reply = NULL;
		completed = 0;

		if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
			cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;

		if (cm->cm_complete != NULL) {
			mpssas_log_command(cm, 
			    "completing cm %p state %x ccb %p for diag reset\n", 
			    cm, cm->cm_state, cm->cm_ccb);

			cm->cm_complete(sc, cm);
			completed = 1;
		}

		if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
			mpssas_log_command(cm, 
			    "waking up cm %p state %x ccb %p for diag reset\n", 
			    cm, cm->cm_state, cm->cm_ccb);
			wakeup(cm);
			completed = 1;
		}
		
		if ((completed == 0) && (cm->cm_state != MPS_CM_STATE_FREE)) {
			/* this should never happen, but if it does, log */
			mpssas_log_command(cm, 
			    "cm %p state %x flags 0x%x ccb %p during diag "
			    "reset\n", cm, cm->cm_state, cm->cm_flags,
			    cm->cm_ccb);
		}
	}
}

void
mpssas_handle_reinit(struct mps_softc *sc)
{
	int i;

	/* Go back into startup mode and freeze the simq, so that CAM
	 * doesn't send any commands until after we've rediscovered all
	 * targets and found the proper device handles for them.
	 *
	 * After the reset, portenable will trigger discovery, and after all
	 * discovery-related activities have finished, the simq will be
	 * released.
	 */
	mps_printf(sc, "%s startup\n", __func__);
	sc->sassc->flags |= MPSSAS_IN_STARTUP;
	sc->sassc->flags |= MPSSAS_IN_DISCOVERY;
	xpt_freeze_simq(sc->sassc->sim, 1);

	/* notify CAM of a bus reset */
	mpssas_announce_reset(sc, AC_BUS_RESET, CAM_TARGET_WILDCARD, 
	    CAM_LUN_WILDCARD);

	/* complete and cleanup after all outstanding commands */
	mpssas_complete_all_commands(sc);

	mps_printf(sc, "%s startup %u tm %u after command completion\n",
	    __func__, sc->sassc->startup_refcount, sc->sassc->tm_count);

	/*
	 * The simq was explicitly frozen above, so set the refcount to 0.
	 * The simq will be explicitly released after port enable completes.
	 */
	sc->sassc->startup_refcount = 0;

	/* zero all the target handles, since they may change after the
	 * reset, and we have to rediscover all the targets and use the new
	 * handles.  
	 */
	for (i = 0; i < sc->facts->MaxTargets; i++) {
		if (sc->sassc->targets[i].outstanding != 0)
			mps_printf(sc, "target %u outstanding %u\n", 
			    i, sc->sassc->targets[i].outstanding);
		sc->sassc->targets[i].handle = 0x0;
		sc->sassc->targets[i].exp_dev_handle = 0x0;
		sc->sassc->targets[i].outstanding = 0;
		sc->sassc->targets[i].flags = MPSSAS_TARGET_INDIAGRESET;
	}
}
static void
mpssas_tm_timeout(void *data)
{
	struct mps_command *tm = data;
	struct mps_softc *sc = tm->cm_sc;

	mtx_assert(&sc->mps_mtx, MA_OWNED);

	mpssas_log_command(tm, "task mgmt %p timed out\n", tm);
	mps_reinit(sc);
}

static void
mpssas_logical_unit_reset_complete(struct mps_softc *sc, struct mps_command *tm)
{
	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
	unsigned int cm_count = 0;
	struct mps_command *cm;
	struct mpssas_target *targ;

	callout_stop(&tm->cm_callout);

	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
	targ = tm->cm_targ;

	/*
	 * Currently there should be no way we can hit this case.  It only
	 * happens when we have a failure to allocate chain frames, and
	 * task management commands don't have S/G lists.
	 */
	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
		mps_printf(sc, "%s: cm_flags = %#x for LUN reset! "
			   "This should not happen!\n", __func__, tm->cm_flags);
		mpssas_free_tm(sc, tm);
		return;
	}

	if (reply == NULL) {
		mpssas_log_command(tm, "NULL reset reply for tm %p\n", tm);
		if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
			/* this completion was due to a reset, just cleanup */
			targ->flags &= ~MPSSAS_TARGET_INRESET;
			targ->tm = NULL;
			mpssas_free_tm(sc, tm);
		}
		else {
			/* we should have gotten a reply. */
			mps_reinit(sc);
		}
		return;
	}

	mpssas_log_command(tm, 
	    "logical unit reset status 0x%x code 0x%x count %u\n",
	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
	    le32toh(reply->TerminationCount));
		
	/* See if there are any outstanding commands for this LUN.
	 * This could be made more efficient by using a per-LU data
	 * structure of some sort.
	 */
	TAILQ_FOREACH(cm, &targ->commands, cm_link) {
		if (cm->cm_lun == tm->cm_lun)
			cm_count++;
	}

	if (cm_count == 0) {
		mpssas_log_command(tm, 
		    "logical unit %u finished recovery after reset\n",
		    tm->cm_lun, tm);

		mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid, 
		    tm->cm_lun);

		/* we've finished recovery for this logical unit.  check and
		 * see if some other logical unit has a timedout command
		 * that needs to be processed.
		 */
		cm = TAILQ_FIRST(&targ->timedout_commands);
		if (cm) {
			mpssas_send_abort(sc, tm, cm);
		}
		else {
			targ->tm = NULL;
			mpssas_free_tm(sc, tm);
		}
	}
	else {
		/* if we still have commands for this LUN, the reset
		 * effectively failed, regardless of the status reported.
		 * Escalate to a target reset.
		 */
		mpssas_log_command(tm, 
		    "logical unit reset complete for tm %p, but still have %u command(s)\n",
		    tm, cm_count);
		mpssas_send_reset(sc, tm,
		    MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET);
	}
}

static void
mpssas_target_reset_complete(struct mps_softc *sc, struct mps_command *tm)
{
	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
	struct mpssas_target *targ;

	callout_stop(&tm->cm_callout);

	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
	targ = tm->cm_targ;

	/*
	 * Currently there should be no way we can hit this case.  It only
	 * happens when we have a failure to allocate chain frames, and
	 * task management commands don't have S/G lists.
	 */
	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
		mps_printf(sc, "%s: cm_flags = %#x for target reset! "
			   "This should not happen!\n", __func__, tm->cm_flags);
		mpssas_free_tm(sc, tm);
		return;
	}

	if (reply == NULL) {
		mpssas_log_command(tm, "NULL reset reply for tm %p\n", tm);
		if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
			/* this completion was due to a reset, just cleanup */
			targ->flags &= ~MPSSAS_TARGET_INRESET;
			targ->tm = NULL;
			mpssas_free_tm(sc, tm);
		}
		else {
			/* we should have gotten a reply. */
			mps_reinit(sc);
		}
		return;
	}

	mpssas_log_command(tm, 
	    "target reset status 0x%x code 0x%x count %u\n",
	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
	    le32toh(reply->TerminationCount));

	targ->flags &= ~MPSSAS_TARGET_INRESET;

	if (targ->outstanding == 0) {
		/* we've finished recovery for this target and all
		 * of its logical units.
		 */
		mpssas_log_command(tm, 
		    "recovery finished after target reset\n");

		mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
		    CAM_LUN_WILDCARD);

		targ->tm = NULL;
		mpssas_free_tm(sc, tm);
	}
	else {
		/* after a target reset, if this target still has
		 * outstanding commands, the reset effectively failed,
		 * regardless of the status reported.  escalate.
		 */
		mpssas_log_command(tm, 
		    "target reset complete for tm %p, but still have %u command(s)\n", 
		    tm, targ->outstanding);
		mps_reinit(sc);
	}
}

#define MPS_RESET_TIMEOUT 30

static int
mpssas_send_reset(struct mps_softc *sc, struct mps_command *tm, uint8_t type)
{
	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
	struct mpssas_target *target;
	int err;

	target = tm->cm_targ;
	if (target->handle == 0) {
		mps_printf(sc, "%s null devhandle for target_id %d\n",
		    __func__, target->tid);
		return -1;
	}

	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
	req->DevHandle = htole16(target->handle);
	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
	req->TaskType = type;

	if (type == MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET) {
		/* XXX Need to handle invalid LUNs */
		MPS_SET_LUN(req->LUN, tm->cm_lun);
		tm->cm_targ->logical_unit_resets++;
		mpssas_log_command(tm, "sending logical unit reset\n");
		tm->cm_complete = mpssas_logical_unit_reset_complete;
	}
	else if (type == MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET) {
		/* Target reset method =  SAS Hard Link Reset / SATA Link Reset */
		req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;
		tm->cm_targ->target_resets++;
		tm->cm_targ->flags |= MPSSAS_TARGET_INRESET;
		mpssas_log_command(tm, "sending target reset\n");
		tm->cm_complete = mpssas_target_reset_complete;
	}
	else {
		mps_printf(sc, "unexpected reset type 0x%x\n", type);
		return -1;
	}

	tm->cm_data = NULL;
	tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
	tm->cm_complete_data = (void *)tm;

	callout_reset(&tm->cm_callout, MPS_RESET_TIMEOUT * hz,
	    mpssas_tm_timeout, tm);

	err = mps_map_command(sc, tm);
	if (err)
		mpssas_log_command(tm,
		    "error %d sending reset type %u\n",
		    err, type);

	return err;
}


static void
mpssas_abort_complete(struct mps_softc *sc, struct mps_command *tm)
{
	struct mps_command *cm;
	MPI2_SCSI_TASK_MANAGE_REPLY *reply;
	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
	struct mpssas_target *targ;

	callout_stop(&tm->cm_callout);

	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
	reply = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
	targ = tm->cm_targ;

	/*
	 * Currently there should be no way we can hit this case.  It only
	 * happens when we have a failure to allocate chain frames, and
	 * task management commands don't have S/G lists.
	 */
	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
		mpssas_log_command(tm,
		    "cm_flags = %#x for abort %p TaskMID %u!\n", 
		    tm->cm_flags, tm, le16toh(req->TaskMID));
		mpssas_free_tm(sc, tm);
		return;
	}

	if (reply == NULL) {
		mpssas_log_command(tm,
		    "NULL abort reply for tm %p TaskMID %u\n", 
		    tm, le16toh(req->TaskMID));
		if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
			/* this completion was due to a reset, just cleanup */
			targ->tm = NULL;
			mpssas_free_tm(sc, tm);
		}
		else {
			/* we should have gotten a reply. */
			mps_reinit(sc);
		}
		return;
	}

	mpssas_log_command(tm,
	    "abort TaskMID %u status 0x%x code 0x%x count %u\n",
	    le16toh(req->TaskMID),
	    le16toh(reply->IOCStatus), le32toh(reply->ResponseCode),
	    le32toh(reply->TerminationCount));

	cm = TAILQ_FIRST(&tm->cm_targ->timedout_commands);
	if (cm == NULL) {
		/* if there are no more timedout commands, we're done with
		 * error recovery for this target.
		 */
		mpssas_log_command(tm, 
		    "finished recovery after aborting TaskMID %u\n",
		    le16toh(req->TaskMID));

		targ->tm = NULL;
		mpssas_free_tm(sc, tm);
	}
	else if (le16toh(req->TaskMID) != cm->cm_desc.Default.SMID) {
		/* abort success, but we have more timedout commands to abort */
		mpssas_log_command(tm, 
		    "continuing recovery after aborting TaskMID %u\n",
		    le16toh(req->TaskMID));
		
		mpssas_send_abort(sc, tm, cm);
	}
	else {
		/* we didn't get a command completion, so the abort
		 * failed as far as we're concerned.  escalate.
		 */
		mpssas_log_command(tm, 
		    "abort failed for TaskMID %u tm %p\n",
		    le16toh(req->TaskMID), tm);

		mpssas_send_reset(sc, tm, 
		    MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET);
	}
}

#define MPS_ABORT_TIMEOUT 5

static int
mpssas_send_abort(struct mps_softc *sc, struct mps_command *tm, struct mps_command *cm)
{
	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
	struct mpssas_target *targ;
	int err;

	targ = cm->cm_targ;
	if (targ->handle == 0) {
		mps_printf(sc, "%s null devhandle for target_id %d\n",
		    __func__, cm->cm_ccb->ccb_h.target_id);
		return -1;
	}

	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
	req->DevHandle = htole16(targ->handle);
	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK;

	/* XXX Need to handle invalid LUNs */
	MPS_SET_LUN(req->LUN, cm->cm_ccb->ccb_h.target_lun);

	req->TaskMID = htole16(cm->cm_desc.Default.SMID);

	tm->cm_data = NULL;
	tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
	tm->cm_complete = mpssas_abort_complete;
	tm->cm_complete_data = (void *)tm;
	tm->cm_targ = cm->cm_targ;
	tm->cm_lun = cm->cm_lun;

	callout_reset(&tm->cm_callout, MPS_ABORT_TIMEOUT * hz,
	    mpssas_tm_timeout, tm);

	targ->aborts++;

	err = mps_map_command(sc, tm);
	if (err)
		mpssas_log_command(tm,
		    "error %d sending abort for cm %p SMID %u\n",
		    err, cm, req->TaskMID);
	return err;
}


static void
mpssas_scsiio_timeout(void *data)
{
	struct mps_softc *sc;
	struct mps_command *cm;
	struct mpssas_target *targ;

	cm = (struct mps_command *)data;
	sc = cm->cm_sc;

	mtx_assert(&sc->mps_mtx, MA_OWNED);

	mps_printf(sc, "%s checking sc %p cm %p\n", __func__, sc, cm);

	/*
	 * Run the interrupt handler to make sure it's not pending.  This
	 * isn't perfect because the command could have already completed
	 * and been re-used, though this is unlikely.
	 */
	mps_intr_locked(sc);
	if (cm->cm_state == MPS_CM_STATE_FREE) {
		mps_printf(sc, "SCSI command %p sc %p almost timed out\n", cm, sc);
		return;
	}

	if (cm->cm_ccb == NULL) {
		mps_printf(sc, "command timeout with NULL ccb\n");
		return;
	}

	mpssas_log_command(cm, "command timeout cm %p ccb %p\n", 
	    cm, cm->cm_ccb);

	targ = cm->cm_targ;
	targ->timeouts++;

	/* XXX first, check the firmware state, to see if it's still
	 * operational.  if not, do a diag reset.
	 */

	cm->cm_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
	cm->cm_state = MPS_CM_STATE_TIMEDOUT;
	TAILQ_INSERT_TAIL(&targ->timedout_commands, cm, cm_recovery);

	if (targ->tm != NULL) {
		/* target already in recovery, just queue up another
		 * timedout command to be processed later.
		 */
		mps_printf(sc, "queued timedout cm %p for processing by tm %p\n",
		    cm, targ->tm);
	}
	else if ((targ->tm = mpssas_alloc_tm(sc)) != NULL) {
		mps_printf(sc, "timedout cm %p allocated tm %p\n",
		    cm, targ->tm);

		/* start recovery by aborting the first timedout command */
		mpssas_send_abort(sc, targ->tm, cm);
	}
	else {
		/* XXX queue this target up for recovery once a TM becomes
		 * available.  The firmware only has a limited number of
		 * HighPriority credits for the high priority requests used
		 * for task management, and we ran out.
		 * 
		 * Isilon: don't worry about this for now, since we have
		 * more credits than disks in an enclosure, and limit
		 * ourselves to one TM per target for recovery.
		 */
		mps_printf(sc, "timedout cm %p failed to allocate a tm\n",
		    cm);
	}

}

static void
mpssas_action_scsiio(struct mpssas_softc *sassc, union ccb *ccb)
{
	MPI2_SCSI_IO_REQUEST *req;
	struct ccb_scsiio *csio;
	struct mps_softc *sc;
	struct mpssas_target *targ;
	struct mpssas_lun *lun;
	struct mps_command *cm;
	uint8_t i, lba_byte, *ref_tag_addr;
	uint16_t eedp_flags;
	uint32_t mpi_control;

	sc = sassc->sc;
	mtx_assert(&sc->mps_mtx, MA_OWNED);

	csio = &ccb->csio;
	targ = &sassc->targets[csio->ccb_h.target_id];
	mps_dprint(sc, MPS_TRACE, "%s ccb %p target flag %x\n", __func__, ccb, targ->flags);
	if (targ->handle == 0x0) {
		mps_dprint(sc, MPS_TRACE, "%s NULL handle for target %u\n", 
		    __func__, csio->ccb_h.target_id);
		csio->ccb_h.status = CAM_SEL_TIMEOUT;
		xpt_done(ccb);
		return;
	}
	if (targ->flags & MPS_TARGET_FLAGS_RAID_COMPONENT) {
		mps_dprint(sc, MPS_TRACE, "%s Raid component no SCSI IO supported %u\n", 
		    __func__, csio->ccb_h.target_id);
		csio->ccb_h.status = CAM_TID_INVALID;
		xpt_done(ccb);
		return;
	}
	/*
	 * If devinfo is 0 this will be a volume.  In that case don't tell CAM
	 * that the volume has timed out.  We want volumes to be enumerated
	 * until they are deleted/removed, not just failed.
	 */
	if (targ->flags & MPSSAS_TARGET_INREMOVAL) {
		if (targ->devinfo == 0)
			csio->ccb_h.status = CAM_REQ_CMP;
		else
			csio->ccb_h.status = CAM_SEL_TIMEOUT;
		xpt_done(ccb);
		return;
	}

	if ((sc->mps_flags & MPS_FLAGS_SHUTDOWN) != 0) {
		mps_dprint(sc, MPS_TRACE, "%s shutting down\n", __func__);
		csio->ccb_h.status = CAM_TID_INVALID;
		xpt_done(ccb);
		return;
	}

	cm = mps_alloc_command(sc);
	if (cm == NULL) {
		if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) {
			xpt_freeze_simq(sassc->sim, 1);
			sassc->flags |= MPSSAS_QUEUE_FROZEN;
		}
		ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
		ccb->ccb_h.status |= CAM_REQUEUE_REQ;
		xpt_done(ccb);
		return;
	}

	req = (MPI2_SCSI_IO_REQUEST *)cm->cm_req;
	bzero(req, sizeof(*req));
	req->DevHandle = htole16(targ->handle);
	req->Function = MPI2_FUNCTION_SCSI_IO_REQUEST;
	req->MsgFlags = 0;
	req->SenseBufferLowAddress = htole32(cm->cm_sense_busaddr);
	req->SenseBufferLength = MPS_SENSE_LEN;
	req->SGLFlags = 0;
	req->ChainOffset = 0;
	req->SGLOffset0 = 24;	/* 32bit word offset to the SGL */
	req->SGLOffset1= 0;
	req->SGLOffset2= 0;
	req->SGLOffset3= 0;
	req->SkipCount = 0;
	req->DataLength = htole32(csio->dxfer_len);
	req->BidirectionalDataLength = 0;
	req->IoFlags = htole16(csio->cdb_len);
	req->EEDPFlags = 0;

	/* Note: BiDirectional transfers are not supported */
	switch (csio->ccb_h.flags & CAM_DIR_MASK) {
	case CAM_DIR_IN:
		mpi_control = MPI2_SCSIIO_CONTROL_READ;
		cm->cm_flags |= MPS_CM_FLAGS_DATAIN;
		break;
	case CAM_DIR_OUT:
		mpi_control = MPI2_SCSIIO_CONTROL_WRITE;
		cm->cm_flags |= MPS_CM_FLAGS_DATAOUT;
		break;
	case CAM_DIR_NONE:
	default:
		mpi_control = MPI2_SCSIIO_CONTROL_NODATATRANSFER;
		break;
	}
 
  if (csio->cdb_len == 32)
                mpi_control |= 4 << MPI2_SCSIIO_CONTROL_ADDCDBLEN_SHIFT;
	/*
	 * It looks like the hardware doesn't require an explicit tag
	 * number for each transaction.  SAM Task Management not supported
	 * at the moment.
	 */
	switch (csio->tag_action) {
	case MSG_HEAD_OF_Q_TAG:
		mpi_control |= MPI2_SCSIIO_CONTROL_HEADOFQ;
		break;
	case MSG_ORDERED_Q_TAG:
		mpi_control |= MPI2_SCSIIO_CONTROL_ORDEREDQ;
		break;
	case MSG_ACA_TASK:
		mpi_control |= MPI2_SCSIIO_CONTROL_ACAQ;
		break;
	case CAM_TAG_ACTION_NONE:
	case MSG_SIMPLE_Q_TAG:
	default:
		mpi_control |= MPI2_SCSIIO_CONTROL_SIMPLEQ;
		break;
	}
	mpi_control |= sc->mapping_table[csio->ccb_h.target_id].TLR_bits;
	req->Control = htole32(mpi_control);
	if (MPS_SET_LUN(req->LUN, csio->ccb_h.target_lun) != 0) {
		mps_free_command(sc, cm);
		ccb->ccb_h.status = CAM_LUN_INVALID;
		xpt_done(ccb);
		return;
	}

	if (csio->ccb_h.flags & CAM_CDB_POINTER)
		bcopy(csio->cdb_io.cdb_ptr, &req->CDB.CDB32[0], csio->cdb_len);
	else
		bcopy(csio->cdb_io.cdb_bytes, &req->CDB.CDB32[0],csio->cdb_len);
	req->IoFlags = htole16(csio->cdb_len);

	/*
	 * Check if EEDP is supported and enabled.  If it is then check if the
	 * SCSI opcode could be using EEDP.  If so, make sure the LUN exists and
	 * is formatted for EEDP support.  If all of this is true, set CDB up
	 * for EEDP transfer.
	 */
	eedp_flags = op_code_prot[req->CDB.CDB32[0]];
	if (sc->eedp_enabled && eedp_flags) {
		SLIST_FOREACH(lun, &targ->luns, lun_link) {
			if (lun->lun_id == csio->ccb_h.target_lun) {
				break;
			}
		}

		if ((lun != NULL) && (lun->eedp_formatted)) {
			req->EEDPBlockSize = htole16(lun->eedp_block_size);
			eedp_flags |= (MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
			    MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
			    MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD);
			req->EEDPFlags = htole16(eedp_flags);

			/*
			 * If CDB less than 32, fill in Primary Ref Tag with
			 * low 4 bytes of LBA.  If CDB is 32, tag stuff is
			 * already there.  Also, set protection bit.  FreeBSD
			 * currently does not support CDBs bigger than 16, but
			 * the code doesn't hurt, and will be here for the
			 * future.
			 */
			if (csio->cdb_len != 32) {
				lba_byte = (csio->cdb_len == 16) ? 6 : 2;
				ref_tag_addr = (uint8_t *)&req->CDB.EEDP32.
				    PrimaryReferenceTag;
				for (i = 0; i < 4; i++) {
					*ref_tag_addr =
					    req->CDB.CDB32[lba_byte + i];
					ref_tag_addr++;
				}
				req->CDB.EEDP32.PrimaryReferenceTag = 
					htole32(req->CDB.EEDP32.PrimaryReferenceTag);
				req->CDB.EEDP32.PrimaryApplicationTagMask =
				    0xFFFF;
				req->CDB.CDB32[1] = (req->CDB.CDB32[1] & 0x1F) |
				    0x20;
			} else {
				eedp_flags |=
				    MPI2_SCSIIO_EEDPFLAGS_INC_PRI_APPTAG;
				req->EEDPFlags = htole16(eedp_flags);
				req->CDB.CDB32[10] = (req->CDB.CDB32[10] &
				    0x1F) | 0x20;
			}
		}
	}

	cm->cm_data = csio->data_ptr;
	cm->cm_length = csio->dxfer_len;
	cm->cm_sge = &req->SGL;
	cm->cm_sglsize = (32 - 24) * 4;
	cm->cm_desc.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
	cm->cm_desc.SCSIIO.DevHandle = htole16(targ->handle);
	cm->cm_complete = mpssas_scsiio_complete;
	cm->cm_complete_data = ccb;
	cm->cm_targ = targ;
	cm->cm_lun = csio->ccb_h.target_lun;
	cm->cm_ccb = ccb;

	/*
	 * If HBA is a WD and the command is not for a retry, try to build a
	 * direct I/O message. If failed, or the command is for a retry, send
	 * the I/O to the IR volume itself.
	 */
	if (sc->WD_valid_config) {
		if (ccb->ccb_h.status != MPS_WD_RETRY) {
			mpssas_direct_drive_io(sassc, cm, ccb);
		} else {
			ccb->ccb_h.status = CAM_REQ_INPROG;
		}
	}

	callout_reset(&cm->cm_callout, (ccb->ccb_h.timeout * hz) / 1000,
	   mpssas_scsiio_timeout, cm);

	targ->issued++;
	targ->outstanding++;
	TAILQ_INSERT_TAIL(&targ->commands, cm, cm_link);

	if ((sc->mps_debug & MPS_TRACE) != 0)
		mpssas_log_command(cm, "%s cm %p ccb %p outstanding %u\n",
		    __func__, cm, ccb, targ->outstanding);

	mps_map_command(sc, cm);
	return;
}

static void
mps_response_code(struct mps_softc *sc, u8 response_code)
{
        char *desc;
 
        switch (response_code) {
        case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE:
                desc = "task management request completed";
                break;
        case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME:
                desc = "invalid frame";
                break;
        case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED:
                desc = "task management request not supported";
                break;
        case MPI2_SCSITASKMGMT_RSP_TM_FAILED:
                desc = "task management request failed";
                break;
        case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED:
                desc = "task management request succeeded";
                break;
        case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN:
                desc = "invalid lun";
                break;
        case 0xA:
                desc = "overlapped tag attempted";
                break;
        case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC:
                desc = "task queued, however not sent to target";
                break;
        default:
                desc = "unknown";
                break;
        }
		mps_dprint(sc, MPS_INFO, "response_code(0x%01x): %s\n",
                response_code, desc);
}
/**
 * mps_sc_failed_io_info - translated non-succesfull SCSI_IO request
 */
static void
mps_sc_failed_io_info(struct mps_softc *sc, struct ccb_scsiio *csio,
    Mpi2SCSIIOReply_t *mpi_reply)
{
	u32 response_info;
	u8 *response_bytes;
	u16 ioc_status = le16toh(mpi_reply->IOCStatus) &
	    MPI2_IOCSTATUS_MASK;
	u8 scsi_state = mpi_reply->SCSIState;
	u8 scsi_status = mpi_reply->SCSIStatus;
	char *desc_ioc_state = NULL;
	char *desc_scsi_status = NULL;
	char *desc_scsi_state = sc->tmp_string;
	u32 log_info = le32toh(mpi_reply->IOCLogInfo);
	
	if (log_info == 0x31170000)
		return;

	switch (ioc_status) {
	case MPI2_IOCSTATUS_SUCCESS:
		desc_ioc_state = "success";
		break;
	case MPI2_IOCSTATUS_INVALID_FUNCTION:
		desc_ioc_state = "invalid function";
		break;
	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
		desc_ioc_state = "scsi recovered error";
		break;
	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
		desc_ioc_state = "scsi invalid dev handle";
		break;
	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
		desc_ioc_state = "scsi device not there";
		break;
	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
		desc_ioc_state = "scsi data overrun";
		break;
	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
		desc_ioc_state = "scsi data underrun";
		break;
	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
		desc_ioc_state = "scsi io data error";
		break;
	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
		desc_ioc_state = "scsi protocol error";
		break;
	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
		desc_ioc_state = "scsi task terminated";
		break;
	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
		desc_ioc_state = "scsi residual mismatch";
		break;
	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
		desc_ioc_state = "scsi task mgmt failed";
		break;
	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
		desc_ioc_state = "scsi ioc terminated";
		break;
	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
		desc_ioc_state = "scsi ext terminated";
		break;
	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
		desc_ioc_state = "eedp guard error";
		break;
	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
		desc_ioc_state = "eedp ref tag error";
		break;
	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
		desc_ioc_state = "eedp app tag error";
		break;
	default:
		desc_ioc_state = "unknown";
		break;
	}

	switch (scsi_status) {
	case MPI2_SCSI_STATUS_GOOD:
		desc_scsi_status = "good";
		break;
	case MPI2_SCSI_STATUS_CHECK_CONDITION:
		desc_scsi_status = "check condition";
		break;
	case MPI2_SCSI_STATUS_CONDITION_MET:
		desc_scsi_status = "condition met";
		break;
	case MPI2_SCSI_STATUS_BUSY:
		desc_scsi_status = "busy";
		break;
	case MPI2_SCSI_STATUS_INTERMEDIATE:
		desc_scsi_status = "intermediate";
		break;
	case MPI2_SCSI_STATUS_INTERMEDIATE_CONDMET:
		desc_scsi_status = "intermediate condmet";
		break;
	case MPI2_SCSI_STATUS_RESERVATION_CONFLICT:
		desc_scsi_status = "reservation conflict";
		break;
	case MPI2_SCSI_STATUS_COMMAND_TERMINATED:
		desc_scsi_status = "command terminated";
		break;
	case MPI2_SCSI_STATUS_TASK_SET_FULL:
		desc_scsi_status = "task set full";
		break;
	case MPI2_SCSI_STATUS_ACA_ACTIVE:
		desc_scsi_status = "aca active";
		break;
	case MPI2_SCSI_STATUS_TASK_ABORTED:
		desc_scsi_status = "task aborted";
		break;
	default:
		desc_scsi_status = "unknown";
		break;
	}

	desc_scsi_state[0] = '\0';
	if (!scsi_state)
		desc_scsi_state = " ";
	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID)
		strcat(desc_scsi_state, "response info ");
	if (scsi_state & MPI2_SCSI_STATE_TERMINATED)
		strcat(desc_scsi_state, "state terminated ");
	if (scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS)
		strcat(desc_scsi_state, "no status ");
	if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_FAILED)
		strcat(desc_scsi_state, "autosense failed ");
	if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID)
		strcat(desc_scsi_state, "autosense valid ");

	mps_dprint(sc, MPS_INFO, "\thandle(0x%04x), ioc_status(%s)(0x%04x), \n",
		le16toh(mpi_reply->DevHandle),
	    desc_ioc_state, ioc_status);
	/* We can add more detail about underflow data here
	 * TO-DO
	 * */
	mps_dprint(sc, MPS_INFO, "\tscsi_status(%s)(0x%02x), "
	    "scsi_state(%s)(0x%02x)\n", desc_scsi_status,
	    scsi_status, desc_scsi_state, scsi_state);

	if (sc->mps_debug & MPS_INFO &&
		scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
		mps_dprint(sc, MPS_INFO, "-> Sense Buffer Data : Start :\n");
		scsi_sense_print(csio);
		mps_dprint(sc, MPS_INFO, "-> Sense Buffer Data : End :\n");
	}

	if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) {
		response_info = le32toh(mpi_reply->ResponseInfo);
		response_bytes = (u8 *)&response_info;
		mps_response_code(sc,response_bytes[0]);
	}
}

static void
mpssas_scsiio_complete(struct mps_softc *sc, struct mps_command *cm)
{
	MPI2_SCSI_IO_REPLY *rep;
	union ccb *ccb;
	struct ccb_scsiio *csio;
	struct mpssas_softc *sassc;
	struct scsi_vpd_supported_page_list *vpd_list = NULL;
	u8 *TLR_bits, TLR_on;
	int dir = 0, i;
	u16 alloc_len;

	mps_dprint(sc, MPS_TRACE,
	    "%s cm %p SMID %u ccb %p reply %p outstanding %u\n",
	    __func__, cm, cm->cm_desc.Default.SMID, cm->cm_ccb, cm->cm_reply,
	    cm->cm_targ->outstanding);

	callout_stop(&cm->cm_callout);
	mtx_assert(&sc->mps_mtx, MA_OWNED);

	sassc = sc->sassc;
	ccb = cm->cm_complete_data;
	csio = &ccb->csio;
	rep = (MPI2_SCSI_IO_REPLY *)cm->cm_reply;
	/*
	 * XXX KDM if the chain allocation fails, does it matter if we do
	 * the sync and unload here?  It is simpler to do it in every case,
	 * assuming it doesn't cause problems.
	 */
	if (cm->cm_data != NULL) {
		if (cm->cm_flags & MPS_CM_FLAGS_DATAIN)
			dir = BUS_DMASYNC_POSTREAD;
		else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT)
			dir = BUS_DMASYNC_POSTWRITE;;
		bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
		bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
	}

	cm->cm_targ->completed++;
	cm->cm_targ->outstanding--;
	TAILQ_REMOVE(&cm->cm_targ->commands, cm, cm_link);

	if (cm->cm_state == MPS_CM_STATE_TIMEDOUT) {
		TAILQ_REMOVE(&cm->cm_targ->timedout_commands, cm, cm_recovery);
		if (cm->cm_reply != NULL)
			mpssas_log_command(cm, 
			    "completed timedout cm %p ccb %p during recovery "
			    "ioc %x scsi %x state %x xfer %u\n",
			    cm, cm->cm_ccb,
			    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
			    le32toh(rep->TransferCount));
		else
			mpssas_log_command(cm, 
			    "completed timedout cm %p ccb %p during recovery\n",
			    cm, cm->cm_ccb);
	} else if (cm->cm_targ->tm != NULL) {
		if (cm->cm_reply != NULL)
			mpssas_log_command(cm, 
			    "completed cm %p ccb %p during recovery "
			    "ioc %x scsi %x state %x xfer %u\n",
			    cm, cm->cm_ccb,
			    le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
			    le32toh(rep->TransferCount));
		else
			mpssas_log_command(cm, 
			    "completed cm %p ccb %p during recovery\n",
			    cm, cm->cm_ccb);
	} else if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0) {
		mpssas_log_command(cm, 
		    "reset completed cm %p ccb %p\n",
		    cm, cm->cm_ccb);
	}

	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
		/*
		 * We ran into an error after we tried to map the command,
		 * so we're getting a callback without queueing the command
		 * to the hardware.  So we set the status here, and it will
		 * be retained below.  We'll go through the "fast path",
		 * because there can be no reply when we haven't actually
		 * gone out to the hardware.
		 */
		ccb->ccb_h.status |= CAM_REQUEUE_REQ;

		/*
		 * Currently the only error included in the mask is
		 * MPS_CM_FLAGS_CHAIN_FAILED, which means we're out of
		 * chain frames.  We need to freeze the queue until we get
		 * a command that completed without this error, which will
		 * hopefully have some chain frames attached that we can
		 * use.  If we wanted to get smarter about it, we would
		 * only unfreeze the queue in this condition when we're
		 * sure that we're getting some chain frames back.  That's
		 * probably unnecessary.
		 */
		if ((sassc->flags & MPSSAS_QUEUE_FROZEN) == 0) {
			xpt_freeze_simq(sassc->sim, 1);
			sassc->flags |= MPSSAS_QUEUE_FROZEN;
			mps_dprint(sc, MPS_INFO, "Error sending command, "
				   "freezing SIM queue\n");
		}
	}

	/* Take the fast path to completion */
	if (cm->cm_reply == NULL) {
		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG) {
			if ((sc->mps_flags & MPS_FLAGS_DIAGRESET) != 0)
				ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
			else {
				ccb->ccb_h.status = CAM_REQ_CMP;
				ccb->csio.scsi_status = SCSI_STATUS_OK;
			}
			if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
				ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
				sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
				mps_dprint(sc, MPS_INFO,
					   "Unfreezing SIM queue\n");
			}
		} 

		/*
		 * There are two scenarios where the status won't be
		 * CAM_REQ_CMP.  The first is if MPS_CM_FLAGS_ERROR_MASK is
		 * set, the second is in the MPS_FLAGS_DIAGRESET above.
		 */
		if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
			/*
			 * Freeze the dev queue so that commands are
			 * executed in the correct order with after error
			 * recovery.
			 */
			ccb->ccb_h.status |= CAM_DEV_QFRZN;
			xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
		}
		mps_free_command(sc, cm);
		xpt_done(ccb);
		return;
	}

	if (sc->mps_debug & MPS_TRACE)
		mpssas_log_command(cm, 
		    "ioc %x scsi %x state %x xfer %u\n",
			le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
			le32toh(rep->TransferCount));

	/*
	 * If this is a Direct Drive I/O, reissue the I/O to the original IR
	 * Volume if an error occurred (normal I/O retry).  Use the original
	 * CCB, but set a flag that this will be a retry so that it's sent to
	 * the original volume.  Free the command but reuse the CCB.
	 */
	if (cm->cm_flags & MPS_CM_FLAGS_DD_IO) {
		mps_free_command(sc, cm);
		ccb->ccb_h.status = MPS_WD_RETRY;
		mpssas_action_scsiio(sassc, ccb);
		return;
	}

	switch (le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) {
	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
		csio->resid = cm->cm_length - le32toh(rep->TransferCount);
		/* FALLTHROUGH */
	case MPI2_IOCSTATUS_SUCCESS:
	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:

		if ((le16toh(rep->IOCStatus) & MPI2_IOCSTATUS_MASK) ==
		    MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR)
			mpssas_log_command(cm, "recovered error\n");

		/* Completion failed at the transport level. */
		if (rep->SCSIState & (MPI2_SCSI_STATE_NO_SCSI_STATUS |
		    MPI2_SCSI_STATE_TERMINATED)) {
			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
			break;
		}

		/* In a modern packetized environment, an autosense failure
		 * implies that there's not much else that can be done to
		 * recover the command.
		 */
		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_FAILED) {
			ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
			break;
		}

		/*
		 * CAM doesn't care about SAS Response Info data, but if this is
		 * the state check if TLR should be done.  If not, clear the
		 * TLR_bits for the target.
		 */
		if ((rep->SCSIState & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) &&
		    ((le32toh(rep->ResponseInfo) & MPI2_SCSI_RI_MASK_REASONCODE) ==
		    MPS_SCSI_RI_INVALID_FRAME)) {
			sc->mapping_table[csio->ccb_h.target_id].TLR_bits =
			    (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
		}

		/*
		 * Intentionally override the normal SCSI status reporting
		 * for these two cases.  These are likely to happen in a
		 * multi-initiator environment, and we want to make sure that
		 * CAM retries these commands rather than fail them.
		 */
		if ((rep->SCSIStatus == MPI2_SCSI_STATUS_COMMAND_TERMINATED) ||
		    (rep->SCSIStatus == MPI2_SCSI_STATUS_TASK_ABORTED)) {
			ccb->ccb_h.status = CAM_REQ_ABORTED;
			break;
		}

		/* Handle normal status and sense */
		csio->scsi_status = rep->SCSIStatus;
		if (rep->SCSIStatus == MPI2_SCSI_STATUS_GOOD)
			ccb->ccb_h.status = CAM_REQ_CMP;
		else
			ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;

		if (rep->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) {
			int sense_len, returned_sense_len;

			returned_sense_len = min(le32toh(rep->SenseCount),
			    sizeof(struct scsi_sense_data));
			if (returned_sense_len < ccb->csio.sense_len)
				ccb->csio.sense_resid = ccb->csio.sense_len -
					returned_sense_len;
			else
				ccb->csio.sense_resid = 0;

			sense_len = min(returned_sense_len,
			    ccb->csio.sense_len - ccb->csio.sense_resid);
			bzero(&ccb->csio.sense_data,
			      sizeof(ccb->csio.sense_data));
			bcopy(cm->cm_sense, &ccb->csio.sense_data, sense_len);
			ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
		}

		/*
		 * Check if this is an INQUIRY command.  If it's a VPD inquiry,
		 * and it's page code 0 (Supported Page List), and there is
		 * inquiry data, and this is for a sequential access device, and
		 * the device is an SSP target, and TLR is supported by the
		 * controller, turn the TLR_bits value ON if page 0x90 is
		 * supported.
		 */
		if ((csio->cdb_io.cdb_bytes[0] == INQUIRY) &&
		    (csio->cdb_io.cdb_bytes[1] & SI_EVPD) &&
		    (csio->cdb_io.cdb_bytes[2] == SVPD_SUPPORTED_PAGE_LIST) &&
		    (csio->data_ptr != NULL) && (((uint8_t *)cm->cm_data)[0] ==
		    T_SEQUENTIAL) && (sc->control_TLR) &&
		    (sc->mapping_table[csio->ccb_h.target_id].device_info &
		    MPI2_SAS_DEVICE_INFO_SSP_TARGET)) {
			vpd_list = (struct scsi_vpd_supported_page_list *)
			    csio->data_ptr;
			TLR_bits = &sc->mapping_table[csio->ccb_h.target_id].
			    TLR_bits;
			*TLR_bits = (u8)MPI2_SCSIIO_CONTROL_NO_TLR;
			TLR_on = (u8)MPI2_SCSIIO_CONTROL_TLR_ON;
			alloc_len = ((u16)csio->cdb_io.cdb_bytes[3] << 8) +
			    csio->cdb_io.cdb_bytes[4];
			for (i = 0; i < MIN(vpd_list->length, alloc_len); i++) {
				if (vpd_list->list[i] == 0x90) {
					*TLR_bits = TLR_on;
					break;
				}
			}
		}
		break;
	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
		/*
		 * If devinfo is 0 this will be a volume.  In that case don't
		 * tell CAM that the volume is not there.  We want volumes to
		 * be enumerated until they are deleted/removed, not just
		 * failed.
		 */
		if (cm->cm_targ->devinfo == 0)
			ccb->ccb_h.status = CAM_REQ_CMP;
		else
			ccb->ccb_h.status = CAM_DEV_NOT_THERE;
		break;
	case MPI2_IOCSTATUS_INVALID_SGL:
		mps_print_scsiio_cmd(sc, cm);
		ccb->ccb_h.status = CAM_UNREC_HBA_ERROR;
		break;
	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
		/*
		 * This is one of the responses that comes back when an I/O
		 * has been aborted.  If it is because of a timeout that we
		 * initiated, just set the status to CAM_CMD_TIMEOUT.
		 * Otherwise set it to CAM_REQ_ABORTED.  The effect on the
		 * command is the same (it gets retried, subject to the
		 * retry counter), the only difference is what gets printed
		 * on the console.
		 */
		if (cm->cm_state == MPS_CM_STATE_TIMEDOUT)
			ccb->ccb_h.status = CAM_CMD_TIMEOUT;
		else
			ccb->ccb_h.status = CAM_REQ_ABORTED;
		break;
	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
		/* resid is ignored for this condition */
		csio->resid = 0;
		ccb->ccb_h.status = CAM_DATA_RUN_ERR;
		break;
	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
		/*
		 * Since these are generally external (i.e. hopefully
		 * transient transport-related) errors, retry these without
		 * decrementing the retry count.
		 */
		ccb->ccb_h.status = CAM_REQUEUE_REQ;
		mpssas_log_command(cm, 
		    "terminated ioc %x scsi %x state %x xfer %u\n",
			le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
			le32toh(rep->TransferCount));
		break;
	case MPI2_IOCSTATUS_INVALID_FUNCTION:
	case MPI2_IOCSTATUS_INTERNAL_ERROR:
	case MPI2_IOCSTATUS_INVALID_VPID:
	case MPI2_IOCSTATUS_INVALID_FIELD:
	case MPI2_IOCSTATUS_INVALID_STATE:
	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
	default:
		mpssas_log_command(cm, 
		    "completed ioc %x scsi %x state %x xfer %u\n",
			le16toh(rep->IOCStatus), rep->SCSIStatus, rep->SCSIState,
			le32toh(rep->TransferCount));
		csio->resid = cm->cm_length;
		ccb->ccb_h.status = CAM_REQ_CMP_ERR;
		break;
	}
	
	mps_sc_failed_io_info(sc,csio,rep);

	if (sassc->flags & MPSSAS_QUEUE_FROZEN) {
		ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
		sassc->flags &= ~MPSSAS_QUEUE_FROZEN;
		mps_dprint(sc, MPS_INFO, "Command completed, "
			   "unfreezing SIM queue\n");
	}

	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
		ccb->ccb_h.status |= CAM_DEV_QFRZN;
		xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
	}

	mps_free_command(sc, cm);
	xpt_done(ccb);
}

/* All Request reached here are Endian safe */
static void
mpssas_direct_drive_io(struct mpssas_softc *sassc, struct mps_command *cm,
    union ccb *ccb) {
	pMpi2SCSIIORequest_t	pIO_req;
	struct mps_softc	*sc = sassc->sc;
	uint64_t		virtLBA;
	uint32_t		physLBA, stripe_offset, stripe_unit;
	uint32_t		io_size, column;
	uint8_t			*ptrLBA, lba_idx, physLBA_byte, *CDB;

	/*
	 * If this is a valid SCSI command (Read6, Read10, Read16, Write6,
	 * Write10, or Write16), build a direct I/O message.  Otherwise, the I/O
	 * will be sent to the IR volume itself.  Since Read6 and Write6 are a
	 * bit different than the 10/16 CDBs, handle them separately.
	 */
	pIO_req = (pMpi2SCSIIORequest_t)cm->cm_req;
	CDB = pIO_req->CDB.CDB32;

	/*
	 * Handle 6 byte CDBs.
	 */
	if ((pIO_req->DevHandle == sc->DD_dev_handle) && ((CDB[0] == READ_6) ||
	    (CDB[0] == WRITE_6))) {
		/*
		 * Get the transfer size in blocks.
		 */
		io_size = (cm->cm_length >> sc->DD_block_exponent);

		/*
		 * Get virtual LBA given in the CDB.
		 */
		virtLBA = ((uint64_t)(CDB[1] & 0x1F) << 16) |
		    ((uint64_t)CDB[2] << 8) | (uint64_t)CDB[3];

		/*
		 * Check that LBA range for I/O does not exceed volume's
		 * MaxLBA.
		 */
		if ((virtLBA + (uint64_t)io_size - 1) <=
		    sc->DD_max_lba) {
			/*
			 * Check if the I/O crosses a stripe boundary.  If not,
			 * translate the virtual LBA to a physical LBA and set
			 * the DevHandle for the PhysDisk to be used.  If it
			 * does cross a boundry, do normal I/O.  To get the
			 * right DevHandle to use, get the map number for the
			 * column, then use that map number to look up the
			 * DevHandle of the PhysDisk.
			 */
			stripe_offset = (uint32_t)virtLBA &
			    (sc->DD_stripe_size - 1);
			if ((stripe_offset + io_size) <= sc->DD_stripe_size) {
				physLBA = (uint32_t)virtLBA >>
				    sc->DD_stripe_exponent;
				stripe_unit = physLBA / sc->DD_num_phys_disks;
				column = physLBA % sc->DD_num_phys_disks;
				pIO_req->DevHandle =
				    htole16(sc->DD_column_map[column].dev_handle);
				/* ???? Is this endian safe*/
				cm->cm_desc.SCSIIO.DevHandle =
				    pIO_req->DevHandle;

				physLBA = (stripe_unit <<
				    sc->DD_stripe_exponent) + stripe_offset;
				ptrLBA = &pIO_req->CDB.CDB32[1];
				physLBA_byte = (uint8_t)(physLBA >> 16);
				*ptrLBA = physLBA_byte;
				ptrLBA = &pIO_req->CDB.CDB32[2];
				physLBA_byte = (uint8_t)(physLBA >> 8);
				*ptrLBA = physLBA_byte;
				ptrLBA = &pIO_req->CDB.CDB32[3];
				physLBA_byte = (uint8_t)physLBA;
				*ptrLBA = physLBA_byte;

				/*
				 * Set flag that Direct Drive I/O is
				 * being done.
				 */
				cm->cm_flags |= MPS_CM_FLAGS_DD_IO;
			}
		}
		return;
	}

	/*
	 * Handle 10, 12 or 16 byte CDBs.
	 */
	if ((pIO_req->DevHandle == sc->DD_dev_handle) && ((CDB[0] == READ_10) ||
	    (CDB[0] == WRITE_10) || (CDB[0] == READ_16) ||
	    (CDB[0] == WRITE_16) || (CDB[0] == READ_12) ||
	    (CDB[0] == WRITE_12))) {
		/*
		 * For 16-byte CDB's, verify that the upper 4 bytes of the CDB
		 * are 0.  If not, this is accessing beyond 2TB so handle it in
		 * the else section.  10-byte and 12-byte CDB's are OK.
		 * FreeBSD sends very rare 12 byte READ/WRITE, but driver is 
		 * ready to accept 12byte CDB for Direct IOs.
		 */
		if ((CDB[0] == READ_10 || CDB[0] == WRITE_10) ||
		    (CDB[0] == READ_12 || CDB[0] == WRITE_12) ||
		    !(CDB[2] | CDB[3] | CDB[4] | CDB[5])) {
			/*
			 * Get the transfer size in blocks.
			 */
			io_size = (cm->cm_length >> sc->DD_block_exponent);

			/*
			 * Get virtual LBA.  Point to correct lower 4 bytes of
			 * LBA in the CDB depending on command.
			 */
			lba_idx = ((CDB[0] == READ_12) || 
				(CDB[0] == WRITE_12) ||
				(CDB[0] == READ_10) ||
				(CDB[0] == WRITE_10))? 2 : 6;
			virtLBA = ((uint64_t)CDB[lba_idx] << 24) |
			    ((uint64_t)CDB[lba_idx + 1] << 16) |
			    ((uint64_t)CDB[lba_idx + 2] << 8) |
			    (uint64_t)CDB[lba_idx + 3];

			/*
			 * Check that LBA range for I/O does not exceed volume's
			 * MaxLBA.
			 */
			if ((virtLBA + (uint64_t)io_size - 1) <=
			    sc->DD_max_lba) {
				/*
				 * Check if the I/O crosses a stripe boundary.
				 * If not, translate the virtual LBA to a
				 * physical LBA and set the DevHandle for the
				 * PhysDisk to be used.  If it does cross a
				 * boundry, do normal I/O.  To get the right
				 * DevHandle to use, get the map number for the
				 * column, then use that map number to look up
				 * the DevHandle of the PhysDisk.
				 */
				stripe_offset = (uint32_t)virtLBA &
				    (sc->DD_stripe_size - 1);
				if ((stripe_offset + io_size) <=
				    sc->DD_stripe_size) {
					physLBA = (uint32_t)virtLBA >>
					    sc->DD_stripe_exponent;
					stripe_unit = physLBA /
					    sc->DD_num_phys_disks;
					column = physLBA %
					    sc->DD_num_phys_disks;
					pIO_req->DevHandle =
					    htole16(sc->DD_column_map[column].
					    dev_handle);
					cm->cm_desc.SCSIIO.DevHandle =
					    pIO_req->DevHandle;

					physLBA = (stripe_unit <<
					    sc->DD_stripe_exponent) +
					    stripe_offset;
					ptrLBA =
					    &pIO_req->CDB.CDB32[lba_idx];
					physLBA_byte = (uint8_t)(physLBA >> 24);
					*ptrLBA = physLBA_byte;
					ptrLBA =
					    &pIO_req->CDB.CDB32[lba_idx + 1];
					physLBA_byte = (uint8_t)(physLBA >> 16);
					*ptrLBA = physLBA_byte;
					ptrLBA =
					    &pIO_req->CDB.CDB32[lba_idx + 2];
					physLBA_byte = (uint8_t)(physLBA >> 8);
					*ptrLBA = physLBA_byte;
					ptrLBA =
					    &pIO_req->CDB.CDB32[lba_idx + 3];
					physLBA_byte = (uint8_t)physLBA;
					*ptrLBA = physLBA_byte;

					/*
					 * Set flag that Direct Drive I/O is
					 * being done.
					 */
					cm->cm_flags |= MPS_CM_FLAGS_DD_IO;
				}
			}
		} else {
			/*
			 * 16-byte CDB and the upper 4 bytes of the CDB are not
			 * 0.  Get the transfer size in blocks.
			 */
			io_size = (cm->cm_length >> sc->DD_block_exponent);

			/*
			 * Get virtual LBA.
			 */
			virtLBA = ((uint64_t)CDB[2] << 54) |
			    ((uint64_t)CDB[3] << 48) |
			    ((uint64_t)CDB[4] << 40) |
			    ((uint64_t)CDB[5] << 32) |
			    ((uint64_t)CDB[6] << 24) |
			    ((uint64_t)CDB[7] << 16) |
			    ((uint64_t)CDB[8] << 8) |
			    (uint64_t)CDB[9]; 

			/*
			 * Check that LBA range for I/O does not exceed volume's
			 * MaxLBA.
			 */
			if ((virtLBA + (uint64_t)io_size - 1) <=
			    sc->DD_max_lba) {
				/*
				 * Check if the I/O crosses a stripe boundary.
				 * If not, translate the virtual LBA to a
				 * physical LBA and set the DevHandle for the
				 * PhysDisk to be used.  If it does cross a
				 * boundry, do normal I/O.  To get the right
				 * DevHandle to use, get the map number for the
				 * column, then use that map number to look up
				 * the DevHandle of the PhysDisk.
				 */
				stripe_offset = (uint32_t)virtLBA &
				    (sc->DD_stripe_size - 1);
				if ((stripe_offset + io_size) <=
				    sc->DD_stripe_size) {
					physLBA = (uint32_t)(virtLBA >>
					    sc->DD_stripe_exponent);
					stripe_unit = physLBA /
					    sc->DD_num_phys_disks;
					column = physLBA %
					    sc->DD_num_phys_disks;
					pIO_req->DevHandle =
					    htole16(sc->DD_column_map[column].
					    dev_handle);
					cm->cm_desc.SCSIIO.DevHandle =
					    pIO_req->DevHandle;

					physLBA = (stripe_unit <<
					    sc->DD_stripe_exponent) +
					    stripe_offset;

					/*
					 * Set upper 4 bytes of LBA to 0.  We
					 * assume that the phys disks are less
					 * than 2 TB's in size.  Then, set the
					 * lower 4 bytes.
					 */
					pIO_req->CDB.CDB32[2] = 0;
					pIO_req->CDB.CDB32[3] = 0;
					pIO_req->CDB.CDB32[4] = 0;
					pIO_req->CDB.CDB32[5] = 0;
					ptrLBA = &pIO_req->CDB.CDB32[6];
					physLBA_byte = (uint8_t)(physLBA >> 24);
					*ptrLBA = physLBA_byte;
					ptrLBA = &pIO_req->CDB.CDB32[7];
					physLBA_byte = (uint8_t)(physLBA >> 16);
					*ptrLBA = physLBA_byte;
					ptrLBA = &pIO_req->CDB.CDB32[8];
					physLBA_byte = (uint8_t)(physLBA >> 8);
					*ptrLBA = physLBA_byte;
					ptrLBA = &pIO_req->CDB.CDB32[9];
					physLBA_byte = (uint8_t)physLBA;
					*ptrLBA = physLBA_byte;

					/*
					 * Set flag that Direct Drive I/O is
					 * being done.
					 */
					cm->cm_flags |= MPS_CM_FLAGS_DD_IO;
				}
			}
		}
	}
}

#if __FreeBSD_version >= 900026
static void
mpssas_smpio_complete(struct mps_softc *sc, struct mps_command *cm)
{
	MPI2_SMP_PASSTHROUGH_REPLY *rpl;
	MPI2_SMP_PASSTHROUGH_REQUEST *req;
	uint64_t sasaddr;
	union ccb *ccb;

	ccb = cm->cm_complete_data;

	/*
	 * Currently there should be no way we can hit this case.  It only
	 * happens when we have a failure to allocate chain frames, and SMP
	 * commands require two S/G elements only.  That should be handled
	 * in the standard request size.
	 */
	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
		mps_printf(sc, "%s: cm_flags = %#x on SMP request!\n",
			   __func__, cm->cm_flags);
		ccb->ccb_h.status = CAM_REQ_CMP_ERR;
		goto bailout;
        }

	rpl = (MPI2_SMP_PASSTHROUGH_REPLY *)cm->cm_reply;
	if (rpl == NULL) {
		mps_dprint(sc, MPS_INFO, "%s: NULL cm_reply!\n", __func__);
		ccb->ccb_h.status = CAM_REQ_CMP_ERR;
		goto bailout;
	}

	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
	sasaddr = le32toh(req->SASAddress.Low);
	sasaddr |= ((uint64_t)(le32toh(req->SASAddress.High))) << 32;

	if ((le16toh(rpl->IOCStatus) & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS ||
	    rpl->SASStatus != MPI2_SASSTATUS_SUCCESS) {
		mps_dprint(sc, MPS_INFO, "%s: IOCStatus %04x SASStatus %02x\n",
		    __func__, le16toh(rpl->IOCStatus), rpl->SASStatus);
		ccb->ccb_h.status = CAM_REQ_CMP_ERR;
		goto bailout;
	}

	mps_dprint(sc, MPS_INFO, "%s: SMP request to SAS address "
		   "%#jx completed successfully\n", __func__,
		   (uintmax_t)sasaddr);

	if (ccb->smpio.smp_response[2] == SMP_FR_ACCEPTED)
		ccb->ccb_h.status = CAM_REQ_CMP;
	else
		ccb->ccb_h.status = CAM_SMP_STATUS_ERROR;

bailout:
	/*
	 * We sync in both directions because we had DMAs in the S/G list
	 * in both directions.
	 */
	bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
			BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
	bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
	mps_free_command(sc, cm);
	xpt_done(ccb);
}

static void
mpssas_send_smpcmd(struct mpssas_softc *sassc, union ccb *ccb, uint64_t sasaddr)
{
	struct mps_command *cm;
	uint8_t *request, *response;
	MPI2_SMP_PASSTHROUGH_REQUEST *req;
	struct mps_softc *sc;
	struct sglist *sg;
	int error;

	sc = sassc->sc;
	sg = NULL;
	error = 0;

	/*
	 * XXX We don't yet support physical addresses here.
	 */
	if (ccb->ccb_h.flags & (CAM_DATA_PHYS|CAM_SG_LIST_PHYS)) {
		mps_printf(sc, "%s: physical addresses not supported\n",
			   __func__);
		ccb->ccb_h.status = CAM_REQ_INVALID;
		xpt_done(ccb);
		return;
	}

	/*
	 * If the user wants to send an S/G list, check to make sure they
	 * have single buffers.
	 */
	if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
		/*
		 * The chip does not support more than one buffer for the
		 * request or response.
		 */
	 	if ((ccb->smpio.smp_request_sglist_cnt > 1)
		  || (ccb->smpio.smp_response_sglist_cnt > 1)) {
			mps_printf(sc, "%s: multiple request or response "
				   "buffer segments not supported for SMP\n",
				   __func__);
			ccb->ccb_h.status = CAM_REQ_INVALID;
			xpt_done(ccb);
			return;
		}

		/*
		 * The CAM_SCATTER_VALID flag was originally implemented
		 * for the XPT_SCSI_IO CCB, which only has one data pointer.
		 * We have two.  So, just take that flag to mean that we
		 * might have S/G lists, and look at the S/G segment count
		 * to figure out whether that is the case for each individual
		 * buffer.
		 */
		if (ccb->smpio.smp_request_sglist_cnt != 0) {
			bus_dma_segment_t *req_sg;

			req_sg = (bus_dma_segment_t *)ccb->smpio.smp_request;
			request = (uint8_t *)req_sg[0].ds_addr;
		} else
			request = ccb->smpio.smp_request;

		if (ccb->smpio.smp_response_sglist_cnt != 0) {
			bus_dma_segment_t *rsp_sg;

			rsp_sg = (bus_dma_segment_t *)ccb->smpio.smp_response;
			response = (uint8_t *)rsp_sg[0].ds_addr;
		} else
			response = ccb->smpio.smp_response;
	} else {
		request = ccb->smpio.smp_request;
		response = ccb->smpio.smp_response;
	}

	cm = mps_alloc_command(sc);
	if (cm == NULL) {
		mps_printf(sc, "%s: cannot allocate command\n", __func__);
		ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
		xpt_done(ccb);
		return;
	}

	req = (MPI2_SMP_PASSTHROUGH_REQUEST *)cm->cm_req;
	bzero(req, sizeof(*req));
	req->Function = MPI2_FUNCTION_SMP_PASSTHROUGH;

	/* Allow the chip to use any route to this SAS address. */
	req->PhysicalPort = 0xff;

	req->RequestDataLength = htole16(ccb->smpio.smp_request_len);
	req->SGLFlags = 
	    MPI2_SGLFLAGS_SYSTEM_ADDRESS_SPACE | MPI2_SGLFLAGS_SGL_TYPE_MPI;

	mps_dprint(sc, MPS_INFO, "%s: sending SMP request to SAS "
		   "address %#jx\n", __func__, (uintmax_t)sasaddr);

	mpi_init_sge(cm, req, &req->SGL);

	/*
	 * Set up a uio to pass into mps_map_command().  This allows us to
	 * do one map command, and one busdma call in there.
	 */
	cm->cm_uio.uio_iov = cm->cm_iovec;
	cm->cm_uio.uio_iovcnt = 2;
	cm->cm_uio.uio_segflg = UIO_SYSSPACE;

	/*
	 * The read/write flag isn't used by busdma, but set it just in
	 * case.  This isn't exactly accurate, either, since we're going in
	 * both directions.
	 */
	cm->cm_uio.uio_rw = UIO_WRITE;

	cm->cm_iovec[0].iov_base = request;
	cm->cm_iovec[0].iov_len = le16toh(req->RequestDataLength);
	cm->cm_iovec[1].iov_base = response;
	cm->cm_iovec[1].iov_len = ccb->smpio.smp_response_len;

	cm->cm_uio.uio_resid = cm->cm_iovec[0].iov_len +
			       cm->cm_iovec[1].iov_len;

	/*
	 * Trigger a warning message in mps_data_cb() for the user if we
	 * wind up exceeding two S/G segments.  The chip expects one
	 * segment for the request and another for the response.
	 */
	cm->cm_max_segs = 2;

	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
	cm->cm_complete = mpssas_smpio_complete;
	cm->cm_complete_data = ccb;

	/*
	 * Tell the mapping code that we're using a uio, and that this is
	 * an SMP passthrough request.  There is a little special-case
	 * logic there (in mps_data_cb()) to handle the bidirectional
	 * transfer.  
	 */
	cm->cm_flags |= MPS_CM_FLAGS_USE_UIO | MPS_CM_FLAGS_SMP_PASS |
			MPS_CM_FLAGS_DATAIN | MPS_CM_FLAGS_DATAOUT;

	/* The chip data format is little endian. */
	req->SASAddress.High = htole32(sasaddr >> 32);
	req->SASAddress.Low = htole32(sasaddr);

	/*
	 * XXX Note that we don't have a timeout/abort mechanism here.
	 * From the manual, it looks like task management requests only
	 * work for SCSI IO and SATA passthrough requests.  We may need to
	 * have a mechanism to retry requests in the event of a chip reset
	 * at least.  Hopefully the chip will insure that any errors short
	 * of that are relayed back to the driver.
	 */
	error = mps_map_command(sc, cm);
	if ((error != 0) && (error != EINPROGRESS)) {
		mps_printf(sc, "%s: error %d returned from mps_map_command()\n",
			   __func__, error);
		goto bailout_error;
	}

	return;

bailout_error:
	mps_free_command(sc, cm);
	ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
	xpt_done(ccb);
	return;

}

static void
mpssas_action_smpio(struct mpssas_softc *sassc, union ccb *ccb)
{
	struct mps_softc *sc;
	struct mpssas_target *targ;
	uint64_t sasaddr = 0;

	sc = sassc->sc;

	/*
	 * Make sure the target exists.
	 */
	targ = &sassc->targets[ccb->ccb_h.target_id];
	if (targ->handle == 0x0) {
		mps_printf(sc, "%s: target %d does not exist!\n", __func__,
			   ccb->ccb_h.target_id);
		ccb->ccb_h.status = CAM_SEL_TIMEOUT;
		xpt_done(ccb);
		return;
	}

	/*
	 * If this device has an embedded SMP target, we'll talk to it
	 * directly.
	 * figure out what the expander's address is.
	 */
	if ((targ->devinfo & MPI2_SAS_DEVICE_INFO_SMP_TARGET) != 0)
		sasaddr = targ->sasaddr;

	/*
	 * If we don't have a SAS address for the expander yet, try
	 * grabbing it from the page 0x83 information cached in the
	 * transport layer for this target.  LSI expanders report the
	 * expander SAS address as the port-associated SAS address in
	 * Inquiry VPD page 0x83.  Maxim expanders don't report it in page
	 * 0x83.
	 *
	 * XXX KDM disable this for now, but leave it commented out so that
	 * it is obvious that this is another possible way to get the SAS
	 * address.
	 *
	 * The parent handle method below is a little more reliable, and
	 * the other benefit is that it works for devices other than SES
	 * devices.  So you can send a SMP request to a da(4) device and it
	 * will get routed to the expander that device is attached to.
	 * (Assuming the da(4) device doesn't contain an SMP target...)
	 */
#if 0
	if (sasaddr == 0)
		sasaddr = xpt_path_sas_addr(ccb->ccb_h.path);
#endif

	/*
	 * If we still don't have a SAS address for the expander, look for
	 * the parent device of this device, which is probably the expander.
	 */
	if (sasaddr == 0) {
#ifdef OLD_MPS_PROBE
		struct mpssas_target *parent_target;
#endif

		if (targ->parent_handle == 0x0) {
			mps_printf(sc, "%s: handle %d does not have a valid "
				   "parent handle!\n", __func__, targ->handle);
			ccb->ccb_h.status = CAM_REQ_INVALID;
			goto bailout;
		}
#ifdef OLD_MPS_PROBE
		parent_target = mpssas_find_target_by_handle(sassc, 0,
			targ->parent_handle);

		if (parent_target == NULL) {
			mps_printf(sc, "%s: handle %d does not have a valid "
				   "parent target!\n", __func__, targ->handle);
			ccb->ccb_h.status = CAM_REQ_INVALID;
			goto bailout;
		}

		if ((parent_target->devinfo &
		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
			mps_printf(sc, "%s: handle %d parent %d does not "
				   "have an SMP target!\n", __func__,
				   targ->handle, parent_target->handle);
			ccb->ccb_h.status = CAM_REQ_INVALID;
			goto bailout;

		}

		sasaddr = parent_target->sasaddr;
#else /* OLD_MPS_PROBE */
		if ((targ->parent_devinfo &
		     MPI2_SAS_DEVICE_INFO_SMP_TARGET) == 0) {
			mps_printf(sc, "%s: handle %d parent %d does not "
				   "have an SMP target!\n", __func__,
				   targ->handle, targ->parent_handle);
			ccb->ccb_h.status = CAM_REQ_INVALID;
			goto bailout;

		}
		if (targ->parent_sasaddr == 0x0) {
			mps_printf(sc, "%s: handle %d parent handle %d does "
				   "not have a valid SAS address!\n",
				   __func__, targ->handle, targ->parent_handle);
			ccb->ccb_h.status = CAM_REQ_INVALID;
			goto bailout;
		}

		sasaddr = targ->parent_sasaddr;
#endif /* OLD_MPS_PROBE */

	}

	if (sasaddr == 0) {
		mps_printf(sc, "%s: unable to find SAS address for handle %d\n",
			   __func__, targ->handle);
		ccb->ccb_h.status = CAM_REQ_INVALID;
		goto bailout;
	}
	mpssas_send_smpcmd(sassc, ccb, sasaddr);

	return;

bailout:
	xpt_done(ccb);

}
#endif //__FreeBSD_version >= 900026

static void
mpssas_action_resetdev(struct mpssas_softc *sassc, union ccb *ccb)
{
	MPI2_SCSI_TASK_MANAGE_REQUEST *req;
	struct mps_softc *sc;
	struct mps_command *tm;
	struct mpssas_target *targ;

	mps_dprint(sassc->sc, MPS_TRACE, __func__);
	mtx_assert(&sassc->sc->mps_mtx, MA_OWNED);

	sc = sassc->sc;
	tm = mps_alloc_command(sc);
	if (tm == NULL) {
		mps_printf(sc, "comand alloc failure in mpssas_action_resetdev\n");
		ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
		xpt_done(ccb);
		return;
	}

	targ = &sassc->targets[ccb->ccb_h.target_id];
	req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;
	req->DevHandle = htole16(targ->handle);
	req->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
	req->TaskType = MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET;

	/* SAS Hard Link Reset / SATA Link Reset */
	req->MsgFlags = MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET;

	tm->cm_data = NULL;
	tm->cm_desc.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
	tm->cm_complete = mpssas_resetdev_complete;
	tm->cm_complete_data = ccb;
	tm->cm_targ = targ;
	mps_map_command(sc, tm);
}

static void
mpssas_resetdev_complete(struct mps_softc *sc, struct mps_command *tm)
{
	MPI2_SCSI_TASK_MANAGE_REPLY *resp;
	union ccb *ccb;

	mps_dprint(sc, MPS_TRACE, __func__);
	mtx_assert(&sc->mps_mtx, MA_OWNED);

	resp = (MPI2_SCSI_TASK_MANAGE_REPLY *)tm->cm_reply;
	ccb = tm->cm_complete_data;

	/*
	 * Currently there should be no way we can hit this case.  It only
	 * happens when we have a failure to allocate chain frames, and
	 * task management commands don't have S/G lists.
	 */
	if ((tm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
		MPI2_SCSI_TASK_MANAGE_REQUEST *req;

		req = (MPI2_SCSI_TASK_MANAGE_REQUEST *)tm->cm_req;

		mps_printf(sc, "%s: cm_flags = %#x for reset of handle %#04x! "
			   "This should not happen!\n", __func__, tm->cm_flags,
			   req->DevHandle);
		ccb->ccb_h.status = CAM_REQ_CMP_ERR;
		goto bailout;
	}

	printf("%s: IOCStatus = 0x%x ResponseCode = 0x%x\n", __func__,
	    le16toh(resp->IOCStatus), le32toh(resp->ResponseCode));

	if (le32toh(resp->ResponseCode) == MPI2_SCSITASKMGMT_RSP_TM_COMPLETE) {
		ccb->ccb_h.status = CAM_REQ_CMP;
		mpssas_announce_reset(sc, AC_SENT_BDR, tm->cm_targ->tid,
		    CAM_LUN_WILDCARD);
	}
	else
		ccb->ccb_h.status = CAM_REQ_CMP_ERR;

bailout:

	mpssas_free_tm(sc, tm);
	xpt_done(ccb);
}

static void
mpssas_poll(struct cam_sim *sim)
{
	struct mpssas_softc *sassc;

	sassc = cam_sim_softc(sim);

	if (sassc->sc->mps_debug & MPS_TRACE) {
		/* frequent debug messages during a panic just slow
		 * everything down too much.
		 */
		mps_printf(sassc->sc, "%s clearing MPS_TRACE\n", __func__);
		sassc->sc->mps_debug &= ~MPS_TRACE;
	}

	mps_intr_locked(sassc->sc);
}

static void
mpssas_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
{
	struct mpssas_softc *sassc;
	char path_str[64];

	if (done_ccb == NULL)
		return;

	sassc = (struct mpssas_softc *)done_ccb->ccb_h.ppriv_ptr1;

	mtx_assert(&sassc->sc->mps_mtx, MA_OWNED);

	xpt_path_string(done_ccb->ccb_h.path, path_str, sizeof(path_str));
	mps_dprint(sassc->sc, MPS_INFO, "Completing rescan for %s\n", path_str);

	xpt_free_path(done_ccb->ccb_h.path);
	xpt_free_ccb(done_ccb);

#if __FreeBSD_version < 1000006
	/*
	 * Before completing scan, get EEDP stuff for all of the existing
	 * targets.
	 */
	mpssas_check_eedp(sassc);
#endif

}

/* thread to handle bus rescans */
static void
mpssas_scanner_thread(void *arg)
{
	struct mpssas_softc *sassc;
	struct mps_softc *sc;
	union ccb	*ccb;

	sassc = (struct mpssas_softc *)arg;
	sc = sassc->sc;

	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);

	mps_lock(sc);
	for (;;) {
		/* Sleep for 1 second and check the queue status*/
		msleep(&sassc->ccb_scanq, &sc->mps_mtx, PRIBIO,
		       "mps_scanq", 1 * hz);
		if (sassc->flags & MPSSAS_SHUTDOWN) {
			mps_dprint(sc, MPS_TRACE, "Scanner shutting down\n");
			break;
		}
next_work:
		// Get first work.
		ccb = (union ccb *)TAILQ_FIRST(&sassc->ccb_scanq);
		if (ccb == NULL)
			continue;
		// Got first work.
		TAILQ_REMOVE(&sassc->ccb_scanq, &ccb->ccb_h, sim_links.tqe);
		xpt_action(ccb);
		if (sassc->flags & MPSSAS_SHUTDOWN) {
			mps_dprint(sc, MPS_TRACE, "Scanner shutting down\n");
			break;
		}
		goto next_work;
	}

	sassc->flags &= ~MPSSAS_SCANTHREAD;
	wakeup(&sassc->flags);
	mps_unlock(sc);
	mps_dprint(sc, MPS_TRACE, "Scanner exiting\n");
	mps_kproc_exit(0);
}

/*
 * This function will send READ_CAP_16 to find out EEDP protection mode.
 * It will check inquiry data before sending READ_CAP_16.
 * Callback for READ_CAP_16 is "mpssas_read_cap_done".
 * This is insternal scsi command and we need to take care release of devq, if
 * CAM_DEV_QFRZN is set. Driver needs to release devq if it has frozen any.
 * xpt_release_devq is called from mpssas_read_cap_done.
 *
 * All other commands will be handled by periph layer and there it will 
 * check for "CAM_DEV_QFRZN" and release of devq will be done.
 */
static void
mpssas_rescan(struct mpssas_softc *sassc, union ccb *ccb)
{
	char path_str[64];

	mps_dprint(sassc->sc, MPS_TRACE, "%s\n", __func__);

	mtx_assert(&sassc->sc->mps_mtx, MA_OWNED);

	if (ccb == NULL)
		return;

	xpt_path_string(ccb->ccb_h.path, path_str, sizeof(path_str));
	mps_dprint(sassc->sc, MPS_INFO, "Queueing rescan for %s\n", path_str);

	/* Prepare request */
	ccb->ccb_h.ppriv_ptr1 = sassc;
	ccb->ccb_h.cbfcnp = mpssas_rescan_done;
	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, MPS_PRIORITY_XPT);
	TAILQ_INSERT_TAIL(&sassc->ccb_scanq, &ccb->ccb_h, sim_links.tqe);
	wakeup(&sassc->ccb_scanq);
}

#if __FreeBSD_version >= 1000006
static void
mpssas_async(void *callback_arg, uint32_t code, struct cam_path *path,
	     void *arg)
{
	struct mps_softc *sc;

	sc = (struct mps_softc *)callback_arg;

	switch (code) {
	case AC_ADVINFO_CHANGED: {
		struct mpssas_target *target;
		struct mpssas_softc *sassc;
		struct scsi_read_capacity_data_long rcap_buf;
		struct ccb_dev_advinfo cdai;
		struct mpssas_lun *lun;
		lun_id_t lunid;
		int found_lun;
		uintptr_t buftype;

		buftype = (uintptr_t)arg;

		found_lun = 0;
		sassc = sc->sassc;

		/*
		 * We're only interested in read capacity data changes.
		 */
		if (buftype != CDAI_TYPE_RCAPLONG)
			break;

		/*
		 * We're only interested in devices that are attached to
		 * this controller.
		 */
		if (xpt_path_path_id(path) != sassc->sim->path_id)
			break;

		/*
		 * We should have a handle for this, but check to make sure.
		 */
		target = &sassc->targets[xpt_path_target_id(path)];
		if (target->handle == 0)
			break;

		lunid = xpt_path_lun_id(path);

		SLIST_FOREACH(lun, &target->luns, lun_link) {
			if (lun->lun_id == lunid) {
				found_lun = 1;
				break;
			}
		}

		if (found_lun == 0) {
			lun = malloc(sizeof(struct mpssas_lun), M_MPT2,
				     M_NOWAIT | M_ZERO);
			if (lun == NULL) {
				mps_dprint(sc, MPS_FAULT, "Unable to alloc "
					   "LUN for EEDP support.\n");
				break;
			}
			lun->lun_id = lunid;
			SLIST_INSERT_HEAD(&target->luns, lun, lun_link);
		}

		bzero(&rcap_buf, sizeof(rcap_buf));
		xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
		cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
		cdai.ccb_h.flags = CAM_DIR_IN;
		cdai.buftype = CDAI_TYPE_RCAPLONG;
		cdai.flags = 0;
		cdai.bufsiz = sizeof(rcap_buf);
		cdai.buf = (uint8_t *)&rcap_buf;
		xpt_action((union ccb *)&cdai);
		if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
			cam_release_devq(cdai.ccb_h.path,
					 0, 0, 0, FALSE);

		if (((cdai.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
		 && (rcap_buf.prot & SRC16_PROT_EN)) {
			lun->eedp_formatted = TRUE;
			lun->eedp_block_size = scsi_4btoul(rcap_buf.length);
		} else {
			lun->eedp_formatted = FALSE;
			lun->eedp_block_size = 0;
		}
		break;
	}
	default:
		break;
	}
}
#else /* __FreeBSD_version >= 1000006 */

static void
mpssas_check_eedp(struct mpssas_softc *sassc)
{
	struct mps_softc *sc = sassc->sc;
	struct ccb_scsiio *csio;
	struct scsi_read_capacity_16 *scsi_cmd;
	struct scsi_read_capacity_eedp *rcap_buf;
	union ccb *ccb;
	path_id_t pathid = cam_sim_path(sassc->sim);
	target_id_t targetid;
	lun_id_t lunid;
	struct cam_periph *found_periph;
	struct mpssas_target *target;
	struct mpssas_lun *lun;
	uint8_t	found_lun;
	struct ccb_getdev cgd;
	char path_str[64];

	/*
	 * Issue a READ CAPACITY 16 command to each LUN of each target.  This
	 * info is used to determine if the LUN is formatted for EEDP support.
	 */
	for (targetid = 0; targetid < sc->facts->MaxTargets; targetid++) {
		target = &sassc->targets[targetid];
		if (target->handle == 0x0) {
			continue;
		}

		lunid = 0;
		do {
			ccb = xpt_alloc_ccb_nowait();
			if (ccb == NULL) {
				mps_dprint(sc, MPS_FAULT, "Unable to alloc CCB "
				    "for EEDP support.\n");
				return;
			}

			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
			    pathid, targetid, lunid) != CAM_REQ_CMP) {
				mps_dprint(sc, MPS_FAULT, "Unable to create "
				    "path for EEDP support\n");
				xpt_free_ccb(ccb);
				return;
			}

			/*
			 * If a periph is returned, the LUN exists.  Create an
			 * entry in the target's LUN list.
			 */
			if ((found_periph = cam_periph_find(ccb->ccb_h.path,
			    NULL)) != NULL) {
				/*
				 * If LUN is already in list, don't create a new
				 * one.
				 */
				found_lun = FALSE;
				SLIST_FOREACH(lun, &target->luns, lun_link) {
					if (lun->lun_id == lunid) {
						found_lun = TRUE;
						break;
					}
				}
				if (!found_lun) {
					lun = malloc(sizeof(struct mpssas_lun),
					    M_MPT2, M_NOWAIT | M_ZERO);
					if (lun == NULL) {
						mps_dprint(sc, MPS_FAULT,
						    "Unable to alloc LUN for "
						    "EEDP support.\n");
						xpt_free_path(ccb->ccb_h.path);
						xpt_free_ccb(ccb);
						return;
					}
					lun->lun_id = lunid;
					SLIST_INSERT_HEAD(&target->luns, lun,
					    lun_link);
				}
				lunid++;
				/* Before Issuing READ CAPACITY 16, 
				 * check Device type. 
 				 */
				xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, 
					CAM_PRIORITY_NORMAL);
				cgd.ccb_h.func_code = XPT_GDEV_TYPE;
				xpt_action((union ccb *)&cgd);

				/*
				 * If this flag is set in the inquiry data, 
				 * the device supports protection information,
				 * and must support the 16 byte read
				 * capacity command, otherwise continue without
				 * sending read cap 16
				 */

				xpt_path_string(ccb->ccb_h.path, path_str, 
					sizeof(path_str));

				if ((cgd.inq_data.spc3_flags & 
				SPC3_SID_PROTECT) == 0) {
					xpt_free_path(ccb->ccb_h.path);
					xpt_free_ccb(ccb);
					continue;
				}
				
				mps_dprint(sc, MPS_INFO,
				"Sending read cap: path %s"
				" handle %d\n", path_str, target->handle );
			
				/*
				 * Issue a READ CAPACITY 16 command for the LUN.
				 * The mpssas_read_cap_done function will load
				 * the read cap info into the LUN struct.
				 */
				rcap_buf =
					malloc(sizeof(struct scsi_read_capacity_eedp),
					M_MPT2, M_NOWAIT| M_ZERO);
				if (rcap_buf == NULL) {
					mps_dprint(sc, MPS_FAULT, "Unable to alloc read "
						"capacity buffer for EEDP support.\n");
					xpt_free_path(ccb->ccb_h.path);
					xpt_free_ccb(ccb);
					return;
				}
				csio = &ccb->csio;
				csio->ccb_h.func_code = XPT_SCSI_IO;
				csio->ccb_h.flags = CAM_DIR_IN;
				csio->ccb_h.retry_count = 4;	
				csio->ccb_h.cbfcnp = mpssas_read_cap_done;
				csio->ccb_h.timeout = 60000;
				csio->data_ptr = (uint8_t *)rcap_buf;
				csio->dxfer_len = sizeof(struct
				    scsi_read_capacity_eedp);
				csio->sense_len = MPS_SENSE_LEN;
				csio->cdb_len = sizeof(*scsi_cmd);
				csio->tag_action = MSG_SIMPLE_Q_TAG;

				scsi_cmd = (struct scsi_read_capacity_16 *)
				    &csio->cdb_io.cdb_bytes;
				bzero(scsi_cmd, sizeof(*scsi_cmd));
				scsi_cmd->opcode = 0x9E;
				scsi_cmd->service_action = SRC16_SERVICE_ACTION;
				((uint8_t *)scsi_cmd)[13] = sizeof(struct
				    scsi_read_capacity_eedp);

				/*
				 * Set the path, target and lun IDs for the READ
				 * CAPACITY request.
				 */
				ccb->ccb_h.path_id =
				    xpt_path_path_id(ccb->ccb_h.path);
				ccb->ccb_h.target_id =
				    xpt_path_target_id(ccb->ccb_h.path);
				ccb->ccb_h.target_lun =
				    xpt_path_lun_id(ccb->ccb_h.path);

				ccb->ccb_h.ppriv_ptr1 = sassc;
				xpt_action(ccb);
			} else {
				xpt_free_path(ccb->ccb_h.path);
				xpt_free_ccb(ccb);
			}
		} while (found_periph);
	}
}


static void
mpssas_read_cap_done(struct cam_periph *periph, union ccb *done_ccb)
{
	struct mpssas_softc *sassc;
	struct mpssas_target *target;
	struct mpssas_lun *lun;
	struct scsi_read_capacity_eedp *rcap_buf;

	if (done_ccb == NULL)
		return;
	
	/* Driver need to release devq, it Scsi command is
	 * generated by driver internally.
	 * Currently there is a single place where driver
	 * calls scsi command internally. In future if driver
	 * calls more scsi command internally, it needs to release
	 * devq internally, since those command will not go back to
	 * cam_periph.
	 */
	if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) ) {
        	done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
		xpt_release_devq(done_ccb->ccb_h.path,
			       	/*count*/ 1, /*run_queue*/TRUE);
	}

	rcap_buf = (struct scsi_read_capacity_eedp *)done_ccb->csio.data_ptr;

	/*
	 * Get the LUN ID for the path and look it up in the LUN list for the
	 * target.
	 */
	sassc = (struct mpssas_softc *)done_ccb->ccb_h.ppriv_ptr1;
	target = &sassc->targets[done_ccb->ccb_h.target_id];
	SLIST_FOREACH(lun, &target->luns, lun_link) {
		if (lun->lun_id != done_ccb->ccb_h.target_lun)
			continue;

		/*
		 * Got the LUN in the target's LUN list.  Fill it in
		 * with EEDP info.  If the READ CAP 16 command had some
		 * SCSI error (common if command is not supported), mark
		 * the lun as not supporting EEDP and set the block size
		 * to 0.
		 */
		if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
		 || (done_ccb->csio.scsi_status != SCSI_STATUS_OK)) {
			lun->eedp_formatted = FALSE;
			lun->eedp_block_size = 0;
			break;
		}

		if (rcap_buf->protect & 0x01) {
			lun->eedp_formatted = TRUE;
			lun->eedp_block_size = scsi_4btoul(rcap_buf->length);
		}
		break;
	}

	// Finished with this CCB and path.
	free(rcap_buf, M_MPT2);
	xpt_free_path(done_ccb->ccb_h.path);
	xpt_free_ccb(done_ccb);
}
#endif /* __FreeBSD_version >= 1000006 */

int
mpssas_startup(struct mps_softc *sc)
{
	struct mpssas_softc *sassc;

	/*
	 * Send the port enable message and set the wait_for_port_enable flag.
	 * This flag helps to keep the simq frozen until all discovery events
	 * are processed.
	 */
	sassc = sc->sassc;
	mpssas_startup_increment(sassc);
	sc->wait_for_port_enable = 1;
	mpssas_send_portenable(sc);
	return (0);
}

static int
mpssas_send_portenable(struct mps_softc *sc)
{
	MPI2_PORT_ENABLE_REQUEST *request;
	struct mps_command *cm;

	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);

	if ((cm = mps_alloc_command(sc)) == NULL)
		return (EBUSY);
	request = (MPI2_PORT_ENABLE_REQUEST *)cm->cm_req;
	request->Function = MPI2_FUNCTION_PORT_ENABLE;
	request->MsgFlags = 0;
	request->VP_ID = 0;
	cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
	cm->cm_complete = mpssas_portenable_complete;
	cm->cm_data = NULL;
	cm->cm_sge = NULL;

	mps_map_command(sc, cm);
	mps_dprint(sc, MPS_TRACE, 
	    "mps_send_portenable finished cm %p req %p complete %p\n",
	    cm, cm->cm_req, cm->cm_complete);
	return (0);
}

static void
mpssas_portenable_complete(struct mps_softc *sc, struct mps_command *cm)
{
	MPI2_PORT_ENABLE_REPLY *reply;
	struct mpssas_softc *sassc;

	mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
	sassc = sc->sassc;

	/*
	 * Currently there should be no way we can hit this case.  It only
	 * happens when we have a failure to allocate chain frames, and
	 * port enable commands don't have S/G lists.
	 */
	if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
		mps_printf(sc, "%s: cm_flags = %#x for port enable! "
			   "This should not happen!\n", __func__, cm->cm_flags);
	}

	reply = (MPI2_PORT_ENABLE_REPLY *)cm->cm_reply;
	if (reply == NULL)
		mps_dprint(sc, MPS_FAULT, "Portenable NULL reply\n");
	else if (le16toh(reply->IOCStatus & MPI2_IOCSTATUS_MASK) !=
	    MPI2_IOCSTATUS_SUCCESS)
		mps_dprint(sc, MPS_FAULT, "Portenable failed\n");

	mps_free_command(sc, cm);
	if (sc->mps_ich.ich_arg != NULL) {
		mps_dprint(sc, MPS_INFO, "disestablish config intrhook\n");
		config_intrhook_disestablish(&sc->mps_ich);
		sc->mps_ich.ich_arg = NULL;
	}

	/*
	 * Get WarpDrive info after discovery is complete but before the scan
	 * starts.  At this point, all devices are ready to be exposed to the
	 * OS.  If devices should be hidden instead, take them out of the
	 * 'targets' array before the scan.  The devinfo for a disk will have
	 * some info and a volume's will be 0.  Use that to remove disks.
	 */
	mps_wd_config_pages(sc);

	/*
	 * Done waiting for port enable to complete.  Decrement the refcount.
	 * If refcount is 0, discovery is complete and a rescan of the bus can
	 * take place.  Since the simq was explicitly frozen before port
	 * enable, it must be explicitly released here to keep the
	 * freeze/release count in sync.
	 */
	sc->wait_for_port_enable = 0;
	sc->port_enable_complete = 1;
	wakeup(&sc->port_enable_complete);
	mpssas_startup_decrement(sassc);
	xpt_release_simq(sassc->sim, 1);
}


Man Man