Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mlx/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfscommon/@/cddl/contrib/opensolaris/uts/common/dtrace/ |
FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64 |
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mlx/@/amd64/compile/hs32/modules/usr/src/sys/modules/nfscommon/@/cddl/contrib/opensolaris/uts/common/dtrace/profile.c |
/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include <sys/errno.h> #include <sys/stat.h> #include <sys/modctl.h> #include <sys/conf.h> #include <sys/systm.h> #include <sys/ddi.h> #include <sys/sunddi.h> #include <sys/cpuvar.h> #include <sys/kmem.h> #include <sys/strsubr.h> #include <sys/dtrace.h> #include <sys/cyclic.h> #include <sys/atomic.h> static dev_info_t *profile_devi; static dtrace_provider_id_t profile_id; /* * Regardless of platform, the stack frames look like this in the case of the * profile provider: * * profile_fire * cyclic_expire * cyclic_fire * [ cbe ] * [ interrupt code ] * * On x86, there are five frames from the generic interrupt code; further, the * interrupted instruction appears as its own stack frame, giving us a total of * 10. * * On SPARC, the picture is further complicated because the compiler * optimizes away tail-calls -- so the following frames are optimized away: * * profile_fire * cyclic_expire * * This gives three frames. However, on DEBUG kernels, the cyclic_expire * frame cannot be tail-call eliminated, yielding four frames in this case. * * All of the above constraints lead to the mess below. Yes, the profile * provider should ideally figure this out on-the-fly by hitting one of its own * probes and then walking its own stack trace. This is complicated, however, * and the static definition doesn't seem to be overly brittle. Still, we * allow for a manual override in case we get it completely wrong. */ #ifdef __x86 #define PROF_ARTIFICIAL_FRAMES 10 #else #ifdef __sparc #ifdef DEBUG #define PROF_ARTIFICIAL_FRAMES 4 #else #define PROF_ARTIFICIAL_FRAMES 3 #endif #endif #endif #define PROF_NAMELEN 15 #define PROF_PROFILE 0 #define PROF_TICK 1 #define PROF_PREFIX_PROFILE "profile-" #define PROF_PREFIX_TICK "tick-" typedef struct profile_probe { char prof_name[PROF_NAMELEN]; dtrace_id_t prof_id; int prof_kind; hrtime_t prof_interval; cyclic_id_t prof_cyclic; } profile_probe_t; typedef struct profile_probe_percpu { hrtime_t profc_expected; hrtime_t profc_interval; profile_probe_t *profc_probe; } profile_probe_percpu_t; hrtime_t profile_interval_min = NANOSEC / 5000; /* 5000 hz */ int profile_aframes = 0; /* override */ static int profile_rates[] = { 97, 199, 499, 997, 1999, 4001, 4999, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static int profile_ticks[] = { 1, 10, 100, 500, 1000, 5000, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* * profile_max defines the upper bound on the number of profile probes that * can exist (this is to prevent malicious or clumsy users from exhausing * system resources by creating a slew of profile probes). At mod load time, * this gets its value from PROFILE_MAX_DEFAULT or profile-max-probes if it's * present in the profile.conf file. */ #define PROFILE_MAX_DEFAULT 1000 /* default max. number of probes */ static uint32_t profile_max; /* maximum number of profile probes */ static uint32_t profile_total; /* current number of profile probes */ static void profile_fire(void *arg) { profile_probe_percpu_t *pcpu = arg; profile_probe_t *prof = pcpu->profc_probe; hrtime_t late; late = dtrace_gethrtime() - pcpu->profc_expected; pcpu->profc_expected += pcpu->profc_interval; dtrace_probe(prof->prof_id, CPU->cpu_profile_pc, CPU->cpu_profile_upc, late, 0, 0); } static void profile_tick(void *arg) { profile_probe_t *prof = arg; dtrace_probe(prof->prof_id, CPU->cpu_profile_pc, CPU->cpu_profile_upc, 0, 0, 0); } static void profile_create(hrtime_t interval, const char *name, int kind) { profile_probe_t *prof; int nr_frames = PROF_ARTIFICIAL_FRAMES + dtrace_mach_aframes(); if (profile_aframes) nr_frames = profile_aframes; if (interval < profile_interval_min) return; if (dtrace_probe_lookup(profile_id, NULL, NULL, name) != 0) return; atomic_add_32(&profile_total, 1); if (profile_total > profile_max) { atomic_add_32(&profile_total, -1); return; } prof = kmem_zalloc(sizeof (profile_probe_t), KM_SLEEP); (void) strcpy(prof->prof_name, name); prof->prof_interval = interval; prof->prof_cyclic = CYCLIC_NONE; prof->prof_kind = kind; prof->prof_id = dtrace_probe_create(profile_id, NULL, NULL, name, nr_frames, prof); } /*ARGSUSED*/ static void profile_provide(void *arg, const dtrace_probedesc_t *desc) { int i, j, rate, kind; hrtime_t val = 0, mult = 1, len; const char *name, *suffix = NULL; const struct { char *prefix; int kind; } types[] = { { PROF_PREFIX_PROFILE, PROF_PROFILE }, { PROF_PREFIX_TICK, PROF_TICK }, { NULL, NULL } }; const struct { char *name; hrtime_t mult; } suffixes[] = { { "ns", NANOSEC / NANOSEC }, { "nsec", NANOSEC / NANOSEC }, { "us", NANOSEC / MICROSEC }, { "usec", NANOSEC / MICROSEC }, { "ms", NANOSEC / MILLISEC }, { "msec", NANOSEC / MILLISEC }, { "s", NANOSEC / SEC }, { "sec", NANOSEC / SEC }, { "m", NANOSEC * (hrtime_t)60 }, { "min", NANOSEC * (hrtime_t)60 }, { "h", NANOSEC * (hrtime_t)(60 * 60) }, { "hour", NANOSEC * (hrtime_t)(60 * 60) }, { "d", NANOSEC * (hrtime_t)(24 * 60 * 60) }, { "day", NANOSEC * (hrtime_t)(24 * 60 * 60) }, { "hz", 0 }, { NULL } }; if (desc == NULL) { char n[PROF_NAMELEN]; /* * If no description was provided, provide all of our probes. */ for (i = 0; i < sizeof (profile_rates) / sizeof (int); i++) { if ((rate = profile_rates[i]) == 0) continue; (void) snprintf(n, PROF_NAMELEN, "%s%d", PROF_PREFIX_PROFILE, rate); profile_create(NANOSEC / rate, n, PROF_PROFILE); } for (i = 0; i < sizeof (profile_ticks) / sizeof (int); i++) { if ((rate = profile_ticks[i]) == 0) continue; (void) snprintf(n, PROF_NAMELEN, "%s%d", PROF_PREFIX_TICK, rate); profile_create(NANOSEC / rate, n, PROF_TICK); } return; } name = desc->dtpd_name; for (i = 0; types[i].prefix != NULL; i++) { len = strlen(types[i].prefix); if (strncmp(name, types[i].prefix, len) != 0) continue; break; } if (types[i].prefix == NULL) return; kind = types[i].kind; j = strlen(name) - len; /* * We need to start before any time suffix. */ for (j = strlen(name); j >= len; j--) { if (name[j] >= '0' && name[j] <= '9') break; suffix = &name[j]; } ASSERT(suffix != NULL); /* * Now determine the numerical value present in the probe name. */ for (; j >= len; j--) { if (name[j] < '0' || name[j] > '9') return; val += (name[j] - '0') * mult; mult *= (hrtime_t)10; } if (val == 0) return; /* * Look-up the suffix to determine the multiplier. */ for (i = 0, mult = 0; suffixes[i].name != NULL; i++) { if (strcasecmp(suffixes[i].name, suffix) == 0) { mult = suffixes[i].mult; break; } } if (suffixes[i].name == NULL && *suffix != '\0') return; if (mult == 0) { /* * The default is frequency-per-second. */ val = NANOSEC / val; } else { val *= mult; } profile_create(val, name, kind); } /*ARGSUSED*/ static void profile_destroy(void *arg, dtrace_id_t id, void *parg) { profile_probe_t *prof = parg; ASSERT(prof->prof_cyclic == CYCLIC_NONE); kmem_free(prof, sizeof (profile_probe_t)); ASSERT(profile_total >= 1); atomic_add_32(&profile_total, -1); } /*ARGSUSED*/ static void profile_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) { profile_probe_t *prof = arg; profile_probe_percpu_t *pcpu; pcpu = kmem_zalloc(sizeof (profile_probe_percpu_t), KM_SLEEP); pcpu->profc_probe = prof; hdlr->cyh_func = profile_fire; hdlr->cyh_arg = pcpu; hdlr->cyh_level = CY_HIGH_LEVEL; when->cyt_interval = prof->prof_interval; when->cyt_when = dtrace_gethrtime() + when->cyt_interval; pcpu->profc_expected = when->cyt_when; pcpu->profc_interval = when->cyt_interval; } /*ARGSUSED*/ static void profile_offline(void *arg, cpu_t *cpu, void *oarg) { profile_probe_percpu_t *pcpu = oarg; ASSERT(pcpu->profc_probe == arg); kmem_free(pcpu, sizeof (profile_probe_percpu_t)); } /*ARGSUSED*/ static void profile_enable(void *arg, dtrace_id_t id, void *parg) { profile_probe_t *prof = parg; cyc_omni_handler_t omni; cyc_handler_t hdlr; cyc_time_t when; ASSERT(prof->prof_interval != 0); ASSERT(MUTEX_HELD(&cpu_lock)); if (prof->prof_kind == PROF_TICK) { hdlr.cyh_func = profile_tick; hdlr.cyh_arg = prof; hdlr.cyh_level = CY_HIGH_LEVEL; when.cyt_interval = prof->prof_interval; when.cyt_when = dtrace_gethrtime() + when.cyt_interval; } else { ASSERT(prof->prof_kind == PROF_PROFILE); omni.cyo_online = profile_online; omni.cyo_offline = profile_offline; omni.cyo_arg = prof; } if (prof->prof_kind == PROF_TICK) { prof->prof_cyclic = cyclic_add(&hdlr, &when); } else { prof->prof_cyclic = cyclic_add_omni(&omni); } } /*ARGSUSED*/ static void profile_disable(void *arg, dtrace_id_t id, void *parg) { profile_probe_t *prof = parg; ASSERT(prof->prof_cyclic != CYCLIC_NONE); ASSERT(MUTEX_HELD(&cpu_lock)); cyclic_remove(prof->prof_cyclic); prof->prof_cyclic = CYCLIC_NONE; } /*ARGSUSED*/ static int profile_usermode(void *arg, dtrace_id_t id, void *parg) { return (CPU->cpu_profile_pc == 0); } static dtrace_pattr_t profile_attr = { { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_UNSTABLE, DTRACE_STABILITY_UNSTABLE, DTRACE_CLASS_UNKNOWN }, { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON }, }; static dtrace_pops_t profile_pops = { profile_provide, NULL, profile_enable, profile_disable, NULL, NULL, NULL, NULL, profile_usermode, profile_destroy }; static int profile_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) { switch (cmd) { case DDI_ATTACH: break; case DDI_RESUME: return (DDI_SUCCESS); default: return (DDI_FAILURE); } if (ddi_create_minor_node(devi, "profile", S_IFCHR, 0, DDI_PSEUDO, NULL) == DDI_FAILURE || dtrace_register("profile", &profile_attr, DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER, NULL, &profile_pops, NULL, &profile_id) != 0) { ddi_remove_minor_node(devi, NULL); return (DDI_FAILURE); } profile_max = ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, "profile-max-probes", PROFILE_MAX_DEFAULT); ddi_report_dev(devi); profile_devi = devi; return (DDI_SUCCESS); } static int profile_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) { switch (cmd) { case DDI_DETACH: break; case DDI_SUSPEND: return (DDI_SUCCESS); default: return (DDI_FAILURE); } if (dtrace_unregister(profile_id) != 0) return (DDI_FAILURE); ddi_remove_minor_node(devi, NULL); return (DDI_SUCCESS); } /*ARGSUSED*/ static int profile_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { int error; switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = (void *)profile_devi; error = DDI_SUCCESS; break; case DDI_INFO_DEVT2INSTANCE: *result = (void *)0; error = DDI_SUCCESS; break; default: error = DDI_FAILURE; } return (error); } /*ARGSUSED*/ static int profile_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) { return (0); } static struct cb_ops profile_cb_ops = { profile_open, /* open */ nodev, /* close */ nulldev, /* strategy */ nulldev, /* print */ nodev, /* dump */ nodev, /* read */ nodev, /* write */ nodev, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* cb_prop_op */ 0, /* streamtab */ D_NEW | D_MP /* Driver compatibility flag */ }; static struct dev_ops profile_ops = { DEVO_REV, /* devo_rev, */ 0, /* refcnt */ profile_info, /* get_dev_info */ nulldev, /* identify */ nulldev, /* probe */ profile_attach, /* attach */ profile_detach, /* detach */ nodev, /* reset */ &profile_cb_ops, /* driver operations */ NULL, /* bus operations */ nodev /* dev power */ }; /* * Module linkage information for the kernel. */ static struct modldrv modldrv = { &mod_driverops, /* module type (this is a pseudo driver) */ "Profile Interrupt Tracing", /* name of module */ &profile_ops, /* driver ops */ }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modldrv, NULL }; int _init(void) { return (mod_install(&modlinkage)); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } int _fini(void) { return (mod_remove(&modlinkage)); }