config root man

Current Path : /sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/aout/@/dev/re/

FreeBSD hs32.drive.ne.jp 9.1-RELEASE FreeBSD 9.1-RELEASE #1: Wed Jan 14 12:18:08 JST 2015 root@hs32.drive.ne.jp:/sys/amd64/compile/hs32 amd64
Upload File :
Current File : //sys/amd64/compile/hs32/modules/usr/src/sys/modules/mvs/@/amd64/compile/hs32/modules/usr/src/sys/modules/aout/@/dev/re/if_re.c

/*-
 * Copyright (c) 1997, 1998-2003
 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Bill Paul.
 * 4. Neither the name of the author nor the names of any co-contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: release/9.1.0/sys/dev/re/if_re.c 238017 2012-07-02 19:56:31Z marius $");

/*
 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
 *
 * Written by Bill Paul <wpaul@windriver.com>
 * Senior Networking Software Engineer
 * Wind River Systems
 */

/*
 * This driver is designed to support RealTek's next generation of
 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
 *
 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
 * with the older 8139 family, however it also supports a special
 * C+ mode of operation that provides several new performance enhancing
 * features. These include:
 *
 *	o Descriptor based DMA mechanism. Each descriptor represents
 *	  a single packet fragment. Data buffers may be aligned on
 *	  any byte boundary.
 *
 *	o 64-bit DMA
 *
 *	o TCP/IP checksum offload for both RX and TX
 *
 *	o High and normal priority transmit DMA rings
 *
 *	o VLAN tag insertion and extraction
 *
 *	o TCP large send (segmentation offload)
 *
 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
 * programming API is fairly straightforward. The RX filtering, EEPROM
 * access and PHY access is the same as it is on the older 8139 series
 * chips.
 *
 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
 * same programming API and feature set as the 8139C+ with the following
 * differences and additions:
 *
 *	o 1000Mbps mode
 *
 *	o Jumbo frames
 *
 *	o GMII and TBI ports/registers for interfacing with copper
 *	  or fiber PHYs
 *
 *	o RX and TX DMA rings can have up to 1024 descriptors
 *	  (the 8139C+ allows a maximum of 64)
 *
 *	o Slight differences in register layout from the 8139C+
 *
 * The TX start and timer interrupt registers are at different locations
 * on the 8169 than they are on the 8139C+. Also, the status word in the
 * RX descriptor has a slightly different bit layout. The 8169 does not
 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
 * copper gigE PHY.
 *
 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
 * (the 'S' stands for 'single-chip'). These devices have the same
 * programming API as the older 8169, but also have some vendor-specific
 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
 *
 * This driver takes advantage of the RX and TX checksum offload and
 * VLAN tag insertion/extraction features. It also implements TX
 * interrupt moderation using the timer interrupt registers, which
 * significantly reduces TX interrupt load. There is also support
 * for jumbo frames, however the 8169/8169S/8110S can not transmit
 * jumbo frames larger than 7440, so the max MTU possible with this
 * driver is 7422 bytes.
 */

#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif

#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>

#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>

#include <net/bpf.h>

#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

#include <pci/if_rlreg.h>

MODULE_DEPEND(re, pci, 1, 1, 1);
MODULE_DEPEND(re, ether, 1, 1, 1);
MODULE_DEPEND(re, miibus, 1, 1, 1);

/* "device miibus" required.  See GENERIC if you get errors here. */
#include "miibus_if.h"

/* Tunables. */
static int intr_filter = 0;
TUNABLE_INT("hw.re.intr_filter", &intr_filter);
static int msi_disable = 0;
TUNABLE_INT("hw.re.msi_disable", &msi_disable);
static int msix_disable = 0;
TUNABLE_INT("hw.re.msix_disable", &msix_disable);
static int prefer_iomap = 0;
TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);

#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)

/*
 * Various supported device vendors/types and their names.
 */
static const struct rl_type const re_devs[] = {
	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
	{ DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
	    "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
	{ RT_VENDORID, RT_DEVICEID_8139, 0,
	    "RealTek 8139C+ 10/100BaseTX" },
	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
	    "RealTek 810xE PCIe 10/100baseTX" },
	{ RT_VENDORID, RT_DEVICEID_8168, 0,
	    "RealTek 8168/8111 B/C/CP/D/DP/E/F PCIe Gigabit Ethernet" },
	{ RT_VENDORID, RT_DEVICEID_8169, 0,
	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
	{ USR_VENDORID, USR_DEVICEID_997902, 0,
	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
};

static const struct rl_hwrev const re_hwrevs[] = {
	{ RL_HWREV_8139, RL_8139, "", RL_MTU },
	{ RL_HWREV_8139A, RL_8139, "A", RL_MTU },
	{ RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
	{ RL_HWREV_8139B, RL_8139, "B", RL_MTU },
	{ RL_HWREV_8130, RL_8139, "8130", RL_MTU },
	{ RL_HWREV_8139C, RL_8139, "C", RL_MTU },
	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
	{ RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
	{ RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
	{ RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
	{ RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
	{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
	{ RL_HWREV_8100, RL_8139, "8100", RL_MTU },
	{ RL_HWREV_8101, RL_8139, "8101", RL_MTU },
	{ RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
	{ RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
	{ RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
	{ RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
	{ RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
	{ RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
	{ RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
	{ RL_HWREV_8402, RL_8169, "8402", RL_MTU },
	{ RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
	{ RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
	{ RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
	{ RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
	{ RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
	{ RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
	{ RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
	{ RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
	{ RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
	{ RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
	{ RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
	{ 0, 0, NULL, 0 }
};

static int re_probe		(device_t);
static int re_attach		(device_t);
static int re_detach		(device_t);

static int re_encap		(struct rl_softc *, struct mbuf **);

static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
static int re_allocmem		(device_t, struct rl_softc *);
static __inline void re_discard_rxbuf
				(struct rl_softc *, int);
static int re_newbuf		(struct rl_softc *, int);
static int re_jumbo_newbuf	(struct rl_softc *, int);
static int re_rx_list_init	(struct rl_softc *);
static int re_jrx_list_init	(struct rl_softc *);
static int re_tx_list_init	(struct rl_softc *);
#ifdef RE_FIXUP_RX
static __inline void re_fixup_rx
				(struct mbuf *);
#endif
static int re_rxeof		(struct rl_softc *, int *);
static void re_txeof		(struct rl_softc *);
#ifdef DEVICE_POLLING
static int re_poll		(struct ifnet *, enum poll_cmd, int);
static int re_poll_locked	(struct ifnet *, enum poll_cmd, int);
#endif
static int re_intr		(void *);
static void re_intr_msi		(void *);
static void re_tick		(void *);
static void re_int_task		(void *, int);
static void re_start		(struct ifnet *);
static void re_start_locked	(struct ifnet *);
static int re_ioctl		(struct ifnet *, u_long, caddr_t);
static void re_init		(void *);
static void re_init_locked	(struct rl_softc *);
static void re_stop		(struct rl_softc *);
static void re_watchdog		(struct rl_softc *);
static int re_suspend		(device_t);
static int re_resume		(device_t);
static int re_shutdown		(device_t);
static int re_ifmedia_upd	(struct ifnet *);
static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);

static void re_eeprom_putbyte	(struct rl_softc *, int);
static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
static int re_gmii_readreg	(device_t, int, int);
static int re_gmii_writereg	(device_t, int, int, int);

static int re_miibus_readreg	(device_t, int, int);
static int re_miibus_writereg	(device_t, int, int, int);
static void re_miibus_statchg	(device_t);

static void re_set_jumbo	(struct rl_softc *, int);
static void re_set_rxmode		(struct rl_softc *);
static void re_reset		(struct rl_softc *);
static void re_setwol		(struct rl_softc *);
static void re_clrwol		(struct rl_softc *);
static void re_set_linkspeed	(struct rl_softc *);

#ifdef DEV_NETMAP	/* see ixgbe.c for details */
#include <dev/netmap/if_re_netmap.h>
#endif /* !DEV_NETMAP */

#ifdef RE_DIAG
static int re_diag		(struct rl_softc *);
#endif

static void re_add_sysctls	(struct rl_softc *);
static int re_sysctl_stats	(SYSCTL_HANDLER_ARGS);
static int sysctl_int_range	(SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_re_int_mod	(SYSCTL_HANDLER_ARGS);

static device_method_t re_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		re_probe),
	DEVMETHOD(device_attach,	re_attach),
	DEVMETHOD(device_detach,	re_detach),
	DEVMETHOD(device_suspend,	re_suspend),
	DEVMETHOD(device_resume,	re_resume),
	DEVMETHOD(device_shutdown,	re_shutdown),

	/* MII interface */
	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
	DEVMETHOD(miibus_statchg,	re_miibus_statchg),

	DEVMETHOD_END
};

static driver_t re_driver = {
	"re",
	re_methods,
	sizeof(struct rl_softc)
};

static devclass_t re_devclass;

DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);

#define EE_SET(x)					\
	CSR_WRITE_1(sc, RL_EECMD,			\
		CSR_READ_1(sc, RL_EECMD) | x)

#define EE_CLR(x)					\
	CSR_WRITE_1(sc, RL_EECMD,			\
		CSR_READ_1(sc, RL_EECMD) & ~x)

/*
 * Send a read command and address to the EEPROM, check for ACK.
 */
static void
re_eeprom_putbyte(struct rl_softc *sc, int addr)
{
	int			d, i;

	d = addr | (RL_9346_READ << sc->rl_eewidth);

	/*
	 * Feed in each bit and strobe the clock.
	 */

	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
		if (d & i) {
			EE_SET(RL_EE_DATAIN);
		} else {
			EE_CLR(RL_EE_DATAIN);
		}
		DELAY(100);
		EE_SET(RL_EE_CLK);
		DELAY(150);
		EE_CLR(RL_EE_CLK);
		DELAY(100);
	}
}

/*
 * Read a word of data stored in the EEPROM at address 'addr.'
 */
static void
re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
{
	int			i;
	u_int16_t		word = 0;

	/*
	 * Send address of word we want to read.
	 */
	re_eeprom_putbyte(sc, addr);

	/*
	 * Start reading bits from EEPROM.
	 */
	for (i = 0x8000; i; i >>= 1) {
		EE_SET(RL_EE_CLK);
		DELAY(100);
		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
			word |= i;
		EE_CLR(RL_EE_CLK);
		DELAY(100);
	}

	*dest = word;
}

/*
 * Read a sequence of words from the EEPROM.
 */
static void
re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
{
	int			i;
	u_int16_t		word = 0, *ptr;

	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);

        DELAY(100);

	for (i = 0; i < cnt; i++) {
		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
		re_eeprom_getword(sc, off + i, &word);
		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
		ptr = (u_int16_t *)(dest + (i * 2));
                *ptr = word;
	}

	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
}

static int
re_gmii_readreg(device_t dev, int phy, int reg)
{
	struct rl_softc		*sc;
	u_int32_t		rval;
	int			i;

	sc = device_get_softc(dev);

	/* Let the rgephy driver read the GMEDIASTAT register */

	if (reg == RL_GMEDIASTAT) {
		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
		return (rval);
	}

	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);

	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
		rval = CSR_READ_4(sc, RL_PHYAR);
		if (rval & RL_PHYAR_BUSY)
			break;
		DELAY(25);
	}

	if (i == RL_PHY_TIMEOUT) {
		device_printf(sc->rl_dev, "PHY read failed\n");
		return (0);
	}

	/*
	 * Controller requires a 20us delay to process next MDIO request.
	 */
	DELAY(20);

	return (rval & RL_PHYAR_PHYDATA);
}

static int
re_gmii_writereg(device_t dev, int phy, int reg, int data)
{
	struct rl_softc		*sc;
	u_int32_t		rval;
	int			i;

	sc = device_get_softc(dev);

	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);

	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
		rval = CSR_READ_4(sc, RL_PHYAR);
		if (!(rval & RL_PHYAR_BUSY))
			break;
		DELAY(25);
	}

	if (i == RL_PHY_TIMEOUT) {
		device_printf(sc->rl_dev, "PHY write failed\n");
		return (0);
	}

	/*
	 * Controller requires a 20us delay to process next MDIO request.
	 */
	DELAY(20);

	return (0);
}

static int
re_miibus_readreg(device_t dev, int phy, int reg)
{
	struct rl_softc		*sc;
	u_int16_t		rval = 0;
	u_int16_t		re8139_reg = 0;

	sc = device_get_softc(dev);

	if (sc->rl_type == RL_8169) {
		rval = re_gmii_readreg(dev, phy, reg);
		return (rval);
	}

	switch (reg) {
	case MII_BMCR:
		re8139_reg = RL_BMCR;
		break;
	case MII_BMSR:
		re8139_reg = RL_BMSR;
		break;
	case MII_ANAR:
		re8139_reg = RL_ANAR;
		break;
	case MII_ANER:
		re8139_reg = RL_ANER;
		break;
	case MII_ANLPAR:
		re8139_reg = RL_LPAR;
		break;
	case MII_PHYIDR1:
	case MII_PHYIDR2:
		return (0);
	/*
	 * Allow the rlphy driver to read the media status
	 * register. If we have a link partner which does not
	 * support NWAY, this is the register which will tell
	 * us the results of parallel detection.
	 */
	case RL_MEDIASTAT:
		rval = CSR_READ_1(sc, RL_MEDIASTAT);
		return (rval);
	default:
		device_printf(sc->rl_dev, "bad phy register\n");
		return (0);
	}
	rval = CSR_READ_2(sc, re8139_reg);
	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
		/* 8139C+ has different bit layout. */
		rval &= ~(BMCR_LOOP | BMCR_ISO);
	}
	return (rval);
}

static int
re_miibus_writereg(device_t dev, int phy, int reg, int data)
{
	struct rl_softc		*sc;
	u_int16_t		re8139_reg = 0;
	int			rval = 0;

	sc = device_get_softc(dev);

	if (sc->rl_type == RL_8169) {
		rval = re_gmii_writereg(dev, phy, reg, data);
		return (rval);
	}

	switch (reg) {
	case MII_BMCR:
		re8139_reg = RL_BMCR;
		if (sc->rl_type == RL_8139CPLUS) {
			/* 8139C+ has different bit layout. */
			data &= ~(BMCR_LOOP | BMCR_ISO);
		}
		break;
	case MII_BMSR:
		re8139_reg = RL_BMSR;
		break;
	case MII_ANAR:
		re8139_reg = RL_ANAR;
		break;
	case MII_ANER:
		re8139_reg = RL_ANER;
		break;
	case MII_ANLPAR:
		re8139_reg = RL_LPAR;
		break;
	case MII_PHYIDR1:
	case MII_PHYIDR2:
		return (0);
		break;
	default:
		device_printf(sc->rl_dev, "bad phy register\n");
		return (0);
	}
	CSR_WRITE_2(sc, re8139_reg, data);
	return (0);
}

static void
re_miibus_statchg(device_t dev)
{
	struct rl_softc		*sc;
	struct ifnet		*ifp;
	struct mii_data		*mii;

	sc = device_get_softc(dev);
	mii = device_get_softc(sc->rl_miibus);
	ifp = sc->rl_ifp;
	if (mii == NULL || ifp == NULL ||
	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
		return;

	sc->rl_flags &= ~RL_FLAG_LINK;
	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
	    (IFM_ACTIVE | IFM_AVALID)) {
		switch (IFM_SUBTYPE(mii->mii_media_active)) {
		case IFM_10_T:
		case IFM_100_TX:
			sc->rl_flags |= RL_FLAG_LINK;
			break;
		case IFM_1000_T:
			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
				break;
			sc->rl_flags |= RL_FLAG_LINK;
			break;
		default:
			break;
		}
	}
	/*
	 * RealTek controllers does not provide any interface to
	 * Tx/Rx MACs for resolved speed, duplex and flow-control
	 * parameters.
	 */
}

/*
 * Set the RX configuration and 64-bit multicast hash filter.
 */
static void
re_set_rxmode(struct rl_softc *sc)
{
	struct ifnet		*ifp;
	struct ifmultiaddr	*ifma;
	uint32_t		hashes[2] = { 0, 0 };
	uint32_t		h, rxfilt;

	RL_LOCK_ASSERT(sc);

	ifp = sc->rl_ifp;

	rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;

	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
		if (ifp->if_flags & IFF_PROMISC)
			rxfilt |= RL_RXCFG_RX_ALLPHYS;
		/*
		 * Unlike other hardwares, we have to explicitly set
		 * RL_RXCFG_RX_MULTI to receive multicast frames in
		 * promiscuous mode.
		 */
		rxfilt |= RL_RXCFG_RX_MULTI;
		hashes[0] = hashes[1] = 0xffffffff;
		goto done;
	}

	if_maddr_rlock(ifp);
	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
		if (ifma->ifma_addr->sa_family != AF_LINK)
			continue;
		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
		if (h < 32)
			hashes[0] |= (1 << h);
		else
			hashes[1] |= (1 << (h - 32));
	}
	if_maddr_runlock(ifp);

	if (hashes[0] != 0 || hashes[1] != 0) {
		/*
		 * For some unfathomable reason, RealTek decided to
		 * reverse the order of the multicast hash registers
		 * in the PCI Express parts.  This means we have to
		 * write the hash pattern in reverse order for those
		 * devices.
		 */
		if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
			h = bswap32(hashes[0]);
			hashes[0] = bswap32(hashes[1]);
			hashes[1] = h;
		}
		rxfilt |= RL_RXCFG_RX_MULTI;
	}

done:
	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
}

static void
re_reset(struct rl_softc *sc)
{
	int			i;

	RL_LOCK_ASSERT(sc);

	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);

	for (i = 0; i < RL_TIMEOUT; i++) {
		DELAY(10);
		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
			break;
	}
	if (i == RL_TIMEOUT)
		device_printf(sc->rl_dev, "reset never completed!\n");

	if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
		CSR_WRITE_1(sc, 0x82, 1);
	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
		re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
}

#ifdef RE_DIAG

/*
 * The following routine is designed to test for a defect on some
 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
 * lines connected to the bus, however for a 32-bit only card, they
 * should be pulled high. The result of this defect is that the
 * NIC will not work right if you plug it into a 64-bit slot: DMA
 * operations will be done with 64-bit transfers, which will fail
 * because the 64-bit data lines aren't connected.
 *
 * There's no way to work around this (short of talking a soldering
 * iron to the board), however we can detect it. The method we use
 * here is to put the NIC into digital loopback mode, set the receiver
 * to promiscuous mode, and then try to send a frame. We then compare
 * the frame data we sent to what was received. If the data matches,
 * then the NIC is working correctly, otherwise we know the user has
 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
 * slot. In the latter case, there's no way the NIC can work correctly,
 * so we print out a message on the console and abort the device attach.
 */

static int
re_diag(struct rl_softc *sc)
{
	struct ifnet		*ifp = sc->rl_ifp;
	struct mbuf		*m0;
	struct ether_header	*eh;
	struct rl_desc		*cur_rx;
	u_int16_t		status;
	u_int32_t		rxstat;
	int			total_len, i, error = 0, phyaddr;
	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };

	/* Allocate a single mbuf */
	MGETHDR(m0, M_DONTWAIT, MT_DATA);
	if (m0 == NULL)
		return (ENOBUFS);

	RL_LOCK(sc);

	/*
	 * Initialize the NIC in test mode. This sets the chip up
	 * so that it can send and receive frames, but performs the
	 * following special functions:
	 * - Puts receiver in promiscuous mode
	 * - Enables digital loopback mode
	 * - Leaves interrupts turned off
	 */

	ifp->if_flags |= IFF_PROMISC;
	sc->rl_testmode = 1;
	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
	re_init_locked(sc);
	sc->rl_flags |= RL_FLAG_LINK;
	if (sc->rl_type == RL_8169)
		phyaddr = 1;
	else
		phyaddr = 0;

	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
	for (i = 0; i < RL_TIMEOUT; i++) {
		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
		if (!(status & BMCR_RESET))
			break;
	}

	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);

	DELAY(100000);

	/* Put some data in the mbuf */

	eh = mtod(m0, struct ether_header *);
	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
	eh->ether_type = htons(ETHERTYPE_IP);
	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;

	/*
	 * Queue the packet, start transmission.
	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
	 */

	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
	RL_UNLOCK(sc);
	/* XXX: re_diag must not be called when in ALTQ mode */
	IF_HANDOFF(&ifp->if_snd, m0, ifp);
	RL_LOCK(sc);
	m0 = NULL;

	/* Wait for it to propagate through the chip */

	DELAY(100000);
	for (i = 0; i < RL_TIMEOUT; i++) {
		status = CSR_READ_2(sc, RL_ISR);
		CSR_WRITE_2(sc, RL_ISR, status);
		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
			break;
		DELAY(10);
	}

	if (i == RL_TIMEOUT) {
		device_printf(sc->rl_dev,
		    "diagnostic failed, failed to receive packet in"
		    " loopback mode\n");
		error = EIO;
		goto done;
	}

	/*
	 * The packet should have been dumped into the first
	 * entry in the RX DMA ring. Grab it from there.
	 */

	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
	    sc->rl_ldata.rl_rx_list_map,
	    BUS_DMASYNC_POSTREAD);
	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
	    BUS_DMASYNC_POSTREAD);
	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);

	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
	eh = mtod(m0, struct ether_header *);

	cur_rx = &sc->rl_ldata.rl_rx_list[0];
	total_len = RL_RXBYTES(cur_rx);
	rxstat = le32toh(cur_rx->rl_cmdstat);

	if (total_len != ETHER_MIN_LEN) {
		device_printf(sc->rl_dev,
		    "diagnostic failed, received short packet\n");
		error = EIO;
		goto done;
	}

	/* Test that the received packet data matches what we sent. */

	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
		    dst, ":", src, ":", ETHERTYPE_IP);
		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
		    eh->ether_dhost, ":", eh->ether_shost, ":",
		    ntohs(eh->ether_type));
		device_printf(sc->rl_dev, "You may have a defective 32-bit "
		    "NIC plugged into a 64-bit PCI slot.\n");
		device_printf(sc->rl_dev, "Please re-install the NIC in a "
		    "32-bit slot for proper operation.\n");
		device_printf(sc->rl_dev, "Read the re(4) man page for more "
		    "details.\n");
		error = EIO;
	}

done:
	/* Turn interface off, release resources */

	sc->rl_testmode = 0;
	sc->rl_flags &= ~RL_FLAG_LINK;
	ifp->if_flags &= ~IFF_PROMISC;
	re_stop(sc);
	if (m0 != NULL)
		m_freem(m0);

	RL_UNLOCK(sc);

	return (error);
}

#endif

/*
 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
 * IDs against our list and return a device name if we find a match.
 */
static int
re_probe(device_t dev)
{
	const struct rl_type	*t;
	uint16_t		devid, vendor;
	uint16_t		revid, sdevid;
	int			i;

	vendor = pci_get_vendor(dev);
	devid = pci_get_device(dev);
	revid = pci_get_revid(dev);
	sdevid = pci_get_subdevice(dev);

	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
			/*
			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
			 * Rev. 2 is supported by sk(4).
			 */
			return (ENXIO);
		}
	}

	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
		if (revid != 0x20) {
			/* 8139, let rl(4) take care of this device. */
			return (ENXIO);
		}
	}

	t = re_devs;
	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
		if (vendor == t->rl_vid && devid == t->rl_did) {
			device_set_desc(dev, t->rl_name);
			return (BUS_PROBE_DEFAULT);
		}
	}

	return (ENXIO);
}

/*
 * Map a single buffer address.
 */

static void
re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
	bus_addr_t		*addr;

	if (error)
		return;

	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
	addr = arg;
	*addr = segs->ds_addr;
}

static int
re_allocmem(device_t dev, struct rl_softc *sc)
{
	bus_addr_t		lowaddr;
	bus_size_t		rx_list_size, tx_list_size;
	int			error;
	int			i;

	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);

	/*
	 * Allocate the parent bus DMA tag appropriate for PCI.
	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
	 * register should be set. However some RealTek chips are known
	 * to be buggy on DAC handling, therefore disable DAC by limiting
	 * DMA address space to 32bit. PCIe variants of RealTek chips
	 * may not have the limitation.
	 */
	lowaddr = BUS_SPACE_MAXADDR;
	if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
		lowaddr = BUS_SPACE_MAXADDR_32BIT;
	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
	    lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
	    NULL, NULL, &sc->rl_parent_tag);
	if (error) {
		device_printf(dev, "could not allocate parent DMA tag\n");
		return (error);
	}

	/*
	 * Allocate map for TX mbufs.
	 */
	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
	if (error) {
		device_printf(dev, "could not allocate TX DMA tag\n");
		return (error);
	}

	/*
	 * Allocate map for RX mbufs.
	 */

	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
		error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
		    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
		    MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
		    &sc->rl_ldata.rl_jrx_mtag);
		if (error) {
			device_printf(dev,
			    "could not allocate jumbo RX DMA tag\n");
			return (error);
		}
	}
	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
	if (error) {
		device_printf(dev, "could not allocate RX DMA tag\n");
		return (error);
	}

	/*
	 * Allocate map for TX descriptor list.
	 */
	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
	    NULL, tx_list_size, 1, tx_list_size, 0,
	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
	if (error) {
		device_printf(dev, "could not allocate TX DMA ring tag\n");
		return (error);
	}

	/* Allocate DMA'able memory for the TX ring */

	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
	    (void **)&sc->rl_ldata.rl_tx_list,
	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
	    &sc->rl_ldata.rl_tx_list_map);
	if (error) {
		device_printf(dev, "could not allocate TX DMA ring\n");
		return (error);
	}

	/* Load the map for the TX ring. */

	sc->rl_ldata.rl_tx_list_addr = 0;
	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
	     tx_list_size, re_dma_map_addr,
	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
		device_printf(dev, "could not load TX DMA ring\n");
		return (ENOMEM);
	}

	/* Create DMA maps for TX buffers */

	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
		if (error) {
			device_printf(dev, "could not create DMA map for TX\n");
			return (error);
		}
	}

	/*
	 * Allocate map for RX descriptor list.
	 */
	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
	    NULL, rx_list_size, 1, rx_list_size, 0,
	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
	if (error) {
		device_printf(dev, "could not create RX DMA ring tag\n");
		return (error);
	}

	/* Allocate DMA'able memory for the RX ring */

	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
	    (void **)&sc->rl_ldata.rl_rx_list,
	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
	    &sc->rl_ldata.rl_rx_list_map);
	if (error) {
		device_printf(dev, "could not allocate RX DMA ring\n");
		return (error);
	}

	/* Load the map for the RX ring. */

	sc->rl_ldata.rl_rx_list_addr = 0;
	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
	     rx_list_size, re_dma_map_addr,
	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
		device_printf(dev, "could not load RX DMA ring\n");
		return (ENOMEM);
	}

	/* Create DMA maps for RX buffers */

	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
		error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
		    &sc->rl_ldata.rl_jrx_sparemap);
		if (error) {
			device_printf(dev,
			    "could not create spare DMA map for jumbo RX\n");
			return (error);
		}
		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
			error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
			    &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
			if (error) {
				device_printf(dev,
				    "could not create DMA map for jumbo RX\n");
				return (error);
			}
		}
	}
	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
	    &sc->rl_ldata.rl_rx_sparemap);
	if (error) {
		device_printf(dev, "could not create spare DMA map for RX\n");
		return (error);
	}
	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
		if (error) {
			device_printf(dev, "could not create DMA map for RX\n");
			return (error);
		}
	}

	/* Create DMA map for statistics. */
	error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
	    sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
	    &sc->rl_ldata.rl_stag);
	if (error) {
		device_printf(dev, "could not create statistics DMA tag\n");
		return (error);
	}
	/* Allocate DMA'able memory for statistics. */
	error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
	    (void **)&sc->rl_ldata.rl_stats,
	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
	    &sc->rl_ldata.rl_smap);
	if (error) {
		device_printf(dev,
		    "could not allocate statistics DMA memory\n");
		return (error);
	}
	/* Load the map for statistics. */
	sc->rl_ldata.rl_stats_addr = 0;
	error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
	    sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
	     &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
	if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
		device_printf(dev, "could not load statistics DMA memory\n");
		return (ENOMEM);
	}

	return (0);
}

/*
 * Attach the interface. Allocate softc structures, do ifmedia
 * setup and ethernet/BPF attach.
 */
static int
re_attach(device_t dev)
{
	u_char			eaddr[ETHER_ADDR_LEN];
	u_int16_t		as[ETHER_ADDR_LEN / 2];
	struct rl_softc		*sc;
	struct ifnet		*ifp;
	const struct rl_hwrev	*hw_rev;
	u_int32_t		cap, ctl;
	int			hwrev;
	u_int16_t		devid, re_did = 0;
	int			error = 0, i, phy, rid;
	int			msic, msixc, reg;
	uint8_t			cfg;

	sc = device_get_softc(dev);
	sc->rl_dev = dev;

	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
	    MTX_DEF);
	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);

	/*
	 * Map control/status registers.
	 */
	pci_enable_busmaster(dev);

	devid = pci_get_device(dev);
	/*
	 * Prefer memory space register mapping over IO space.
	 * Because RTL8169SC does not seem to work when memory mapping
	 * is used always activate io mapping.
	 */
	if (devid == RT_DEVICEID_8169SC)
		prefer_iomap = 1;
	if (prefer_iomap == 0) {
		sc->rl_res_id = PCIR_BAR(1);
		sc->rl_res_type = SYS_RES_MEMORY;
		/* RTL8168/8101E seems to use different BARs. */
		if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
			sc->rl_res_id = PCIR_BAR(2);
	} else {
		sc->rl_res_id = PCIR_BAR(0);
		sc->rl_res_type = SYS_RES_IOPORT;
	}
	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
	    &sc->rl_res_id, RF_ACTIVE);
	if (sc->rl_res == NULL && prefer_iomap == 0) {
		sc->rl_res_id = PCIR_BAR(0);
		sc->rl_res_type = SYS_RES_IOPORT;
		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
		    &sc->rl_res_id, RF_ACTIVE);
	}
	if (sc->rl_res == NULL) {
		device_printf(dev, "couldn't map ports/memory\n");
		error = ENXIO;
		goto fail;
	}

	sc->rl_btag = rman_get_bustag(sc->rl_res);
	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);

	msic = pci_msi_count(dev);
	msixc = pci_msix_count(dev);
	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
		sc->rl_flags |= RL_FLAG_PCIE;
		sc->rl_expcap = reg;
	}
	if (bootverbose) {
		device_printf(dev, "MSI count : %d\n", msic);
		device_printf(dev, "MSI-X count : %d\n", msixc);
	}
	if (msix_disable > 0)
		msixc = 0;
	if (msi_disable > 0)
		msic = 0;
	/* Prefer MSI-X to MSI. */
	if (msixc > 0) {
		msixc = 1;
		rid = PCIR_BAR(4);
		sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
		    &rid, RF_ACTIVE);
		if (sc->rl_res_pba == NULL) {
			device_printf(sc->rl_dev,
			    "could not allocate MSI-X PBA resource\n");
		}
		if (sc->rl_res_pba != NULL &&
		    pci_alloc_msix(dev, &msixc) == 0) {
			if (msixc == 1) {
				device_printf(dev, "Using %d MSI-X message\n",
				    msixc);
				sc->rl_flags |= RL_FLAG_MSIX;
			} else
				pci_release_msi(dev);
		}
		if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
			if (sc->rl_res_pba != NULL)
				bus_release_resource(dev, SYS_RES_MEMORY, rid,
				    sc->rl_res_pba);
			sc->rl_res_pba = NULL;
			msixc = 0;
		}
	}
	/* Prefer MSI to INTx. */
	if (msixc == 0 && msic > 0) {
		msic = 1;
		if (pci_alloc_msi(dev, &msic) == 0) {
			if (msic == RL_MSI_MESSAGES) {
				device_printf(dev, "Using %d MSI message\n",
				    msic);
				sc->rl_flags |= RL_FLAG_MSI;
				/* Explicitly set MSI enable bit. */
				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
				cfg = CSR_READ_1(sc, RL_CFG2);
				cfg |= RL_CFG2_MSI;
				CSR_WRITE_1(sc, RL_CFG2, cfg);
				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
			} else
				pci_release_msi(dev);
		}
		if ((sc->rl_flags & RL_FLAG_MSI) == 0)
			msic = 0;
	}

	/* Allocate interrupt */
	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
		rid = 0;
		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
		    RF_SHAREABLE | RF_ACTIVE);
		if (sc->rl_irq[0] == NULL) {
			device_printf(dev, "couldn't allocate IRQ resources\n");
			error = ENXIO;
			goto fail;
		}
	} else {
		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
			sc->rl_irq[i] = bus_alloc_resource_any(dev,
			    SYS_RES_IRQ, &rid, RF_ACTIVE);
			if (sc->rl_irq[i] == NULL) {
				device_printf(dev,
				    "couldn't llocate IRQ resources for "
				    "message %d\n", rid);
				error = ENXIO;
				goto fail;
			}
		}
	}

	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
		cfg = CSR_READ_1(sc, RL_CFG2);
		if ((cfg & RL_CFG2_MSI) != 0) {
			device_printf(dev, "turning off MSI enable bit.\n");
			cfg &= ~RL_CFG2_MSI;
			CSR_WRITE_1(sc, RL_CFG2, cfg);
		}
		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
	}

	/* Disable ASPM L0S/L1. */
	if (sc->rl_expcap != 0) {
		cap = pci_read_config(dev, sc->rl_expcap +
		    PCIR_EXPRESS_LINK_CAP, 2);
		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
			ctl = pci_read_config(dev, sc->rl_expcap +
			    PCIR_EXPRESS_LINK_CTL, 2);
			if ((ctl & 0x0003) != 0) {
				ctl &= ~0x0003;
				pci_write_config(dev, sc->rl_expcap +
				    PCIR_EXPRESS_LINK_CTL, ctl, 2);
				device_printf(dev, "ASPM disabled\n");
			}
		} else
			device_printf(dev, "no ASPM capability\n");
	}

	hw_rev = re_hwrevs;
	hwrev = CSR_READ_4(sc, RL_TXCFG);
	switch (hwrev & 0x70000000) {
	case 0x00000000:
	case 0x10000000:
		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
		hwrev &= (RL_TXCFG_HWREV | 0x80000000);
		break;
	default:
		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
		hwrev &= RL_TXCFG_HWREV;
		break;
	}
	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
	while (hw_rev->rl_desc != NULL) {
		if (hw_rev->rl_rev == hwrev) {
			sc->rl_type = hw_rev->rl_type;
			sc->rl_hwrev = hw_rev;
			break;
		}
		hw_rev++;
	}
	if (hw_rev->rl_desc == NULL) {
		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
		error = ENXIO;
		goto fail;
	}

	switch (hw_rev->rl_rev) {
	case RL_HWREV_8139CPLUS:
		sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
		break;
	case RL_HWREV_8100E:
	case RL_HWREV_8101E:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
		break;
	case RL_HWREV_8102E:
	case RL_HWREV_8102EL:
	case RL_HWREV_8102EL_SPIN1:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
		    RL_FLAG_AUTOPAD;
		break;
	case RL_HWREV_8103E:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
		    RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
		break;
	case RL_HWREV_8401E:
	case RL_HWREV_8105E:
	case RL_HWREV_8105E_SPIN1:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
		break;
	case RL_HWREV_8402:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
		    RL_FLAG_CMDSTOP_WAIT_TXQ;
		break;
	case RL_HWREV_8168B_SPIN1:
	case RL_HWREV_8168B_SPIN2:
		sc->rl_flags |= RL_FLAG_WOLRXENB;
		/* FALLTHROUGH */
	case RL_HWREV_8168B_SPIN3:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
		break;
	case RL_HWREV_8168C_SPIN2:
		sc->rl_flags |= RL_FLAG_MACSLEEP;
		/* FALLTHROUGH */
	case RL_HWREV_8168C:
		if ((hwrev & 0x00700000) == 0x00200000)
			sc->rl_flags |= RL_FLAG_MACSLEEP;
		/* FALLTHROUGH */
	case RL_HWREV_8168CP:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
		break;
	case RL_HWREV_8168D:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
		    RL_FLAG_WOL_MANLINK;
		break;
	case RL_HWREV_8168DP:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
		    RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
		break;
	case RL_HWREV_8168E:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
		    RL_FLAG_WOL_MANLINK;
		break;
	case RL_HWREV_8168E_VL:
	case RL_HWREV_8168F:
	case RL_HWREV_8411:
		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
		    RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
		break;
	case RL_HWREV_8169_8110SB:
	case RL_HWREV_8169_8110SBL:
	case RL_HWREV_8169_8110SC:
	case RL_HWREV_8169_8110SCE:
		sc->rl_flags |= RL_FLAG_PHYWAKE;
		/* FALLTHROUGH */
	case RL_HWREV_8169:
	case RL_HWREV_8169S:
	case RL_HWREV_8110S:
		sc->rl_flags |= RL_FLAG_MACRESET;
		break;
	default:
		break;
	}

	if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) {
		sc->rl_cfg0 = RL_8139_CFG0;
		sc->rl_cfg1 = RL_8139_CFG1;
		sc->rl_cfg2 = 0;
		sc->rl_cfg3 = RL_8139_CFG3;
		sc->rl_cfg4 = RL_8139_CFG4;
		sc->rl_cfg5 = RL_8139_CFG5;
	} else {
		sc->rl_cfg0 = RL_CFG0;
		sc->rl_cfg1 = RL_CFG1;
		sc->rl_cfg2 = RL_CFG2;
		sc->rl_cfg3 = RL_CFG3;
		sc->rl_cfg4 = RL_CFG4;
		sc->rl_cfg5 = RL_CFG5;
	}

	/* Reset the adapter. */
	RL_LOCK(sc);
	re_reset(sc);
	RL_UNLOCK(sc);

	/* Enable PME. */
	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
	cfg = CSR_READ_1(sc, sc->rl_cfg1);
	cfg |= RL_CFG1_PME;
	CSR_WRITE_1(sc, sc->rl_cfg1, cfg);
	cfg = CSR_READ_1(sc, sc->rl_cfg5);
	cfg &= RL_CFG5_PME_STS;
	CSR_WRITE_1(sc, sc->rl_cfg5, cfg);
	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);

	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
		/*
		 * XXX Should have a better way to extract station
		 * address from EEPROM.
		 */
		for (i = 0; i < ETHER_ADDR_LEN; i++)
			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
	} else {
		sc->rl_eewidth = RL_9356_ADDR_LEN;
		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
		if (re_did != 0x8129)
			sc->rl_eewidth = RL_9346_ADDR_LEN;

		/*
		 * Get station address from the EEPROM.
		 */
		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
			as[i] = le16toh(as[i]);
		bcopy(as, eaddr, ETHER_ADDR_LEN);
	}

	if (sc->rl_type == RL_8169) {
		/* Set RX length mask and number of descriptors. */
		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
		sc->rl_txstart = RL_GTXSTART;
		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
	} else {
		/* Set RX length mask and number of descriptors. */
		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
		sc->rl_txstart = RL_TXSTART;
		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
	}

	error = re_allocmem(dev, sc);
	if (error)
		goto fail;
	re_add_sysctls(sc);

	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
	if (ifp == NULL) {
		device_printf(dev, "can not if_alloc()\n");
		error = ENOSPC;
		goto fail;
	}

	/* Take controller out of deep sleep mode. */
	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
			CSR_WRITE_1(sc, RL_GPIO,
			    CSR_READ_1(sc, RL_GPIO) | 0x01);
		else
			CSR_WRITE_1(sc, RL_GPIO,
			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
	}

	/* Take PHY out of power down mode. */
	if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
		if (hw_rev->rl_rev == RL_HWREV_8401E)
			CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
	}
	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
		re_gmii_writereg(dev, 1, 0x1f, 0);
		re_gmii_writereg(dev, 1, 0x0e, 0);
	}

	ifp->if_softc = sc;
	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl = re_ioctl;
	ifp->if_start = re_start;
	/*
	 * RTL8168/8111C generates wrong IP checksummed frame if the
	 * packet has IP options so disable TX IP checksum offloading.
	 */
	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
	    sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2)
		ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
	else
		ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
	ifp->if_hwassist |= CSUM_TSO;
	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
	ifp->if_capenable = ifp->if_capabilities;
	ifp->if_init = re_init;
	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
	IFQ_SET_READY(&ifp->if_snd);

	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);

#define	RE_PHYAD_INTERNAL	 0

	/* Do MII setup. */
	phy = RE_PHYAD_INTERNAL;
	if (sc->rl_type == RL_8169)
		phy = 1;
	error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
	    re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
	if (error != 0) {
		device_printf(dev, "attaching PHYs failed\n");
		goto fail;
	}

	/*
	 * Call MI attach routine.
	 */
	ether_ifattach(ifp, eaddr);

	/* VLAN capability setup */
	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
	if (ifp->if_capabilities & IFCAP_HWCSUM)
		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
	/* Enable WOL if PM is supported. */
	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
		ifp->if_capabilities |= IFCAP_WOL;
	ifp->if_capenable = ifp->if_capabilities;
	ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
	/*
	 * Don't enable TSO by default.  It is known to generate
	 * corrupted TCP segments(bad TCP options) under certain
	 * circumtances.
	 */
	ifp->if_hwassist &= ~CSUM_TSO;
	ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
#ifdef DEVICE_POLLING
	ifp->if_capabilities |= IFCAP_POLLING;
#endif
	/*
	 * Tell the upper layer(s) we support long frames.
	 * Must appear after the call to ether_ifattach() because
	 * ether_ifattach() sets ifi_hdrlen to the default value.
	 */
	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);

#ifdef DEV_NETMAP
	re_netmap_attach(sc);
#endif /* DEV_NETMAP */
#ifdef RE_DIAG
	/*
	 * Perform hardware diagnostic on the original RTL8169.
	 * Some 32-bit cards were incorrectly wired and would
	 * malfunction if plugged into a 64-bit slot.
	 */

	if (hwrev == RL_HWREV_8169) {
		error = re_diag(sc);
		if (error) {
			device_printf(dev,
		    	"attach aborted due to hardware diag failure\n");
			ether_ifdetach(ifp);
			goto fail;
		}
	}
#endif

#ifdef RE_TX_MODERATION
	intr_filter = 1;
#endif
	/* Hook interrupt last to avoid having to lock softc */
	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
	    intr_filter == 0) {
		error = bus_setup_intr(dev, sc->rl_irq[0],
		    INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
		    &sc->rl_intrhand[0]);
	} else {
		error = bus_setup_intr(dev, sc->rl_irq[0],
		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
		    &sc->rl_intrhand[0]);
	}
	if (error) {
		device_printf(dev, "couldn't set up irq\n");
		ether_ifdetach(ifp);
	}

fail:

	if (error)
		re_detach(dev);

	return (error);
}

/*
 * Shutdown hardware and free up resources. This can be called any
 * time after the mutex has been initialized. It is called in both
 * the error case in attach and the normal detach case so it needs
 * to be careful about only freeing resources that have actually been
 * allocated.
 */
static int
re_detach(device_t dev)
{
	struct rl_softc		*sc;
	struct ifnet		*ifp;
	int			i, rid;

	sc = device_get_softc(dev);
	ifp = sc->rl_ifp;
	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));

	/* These should only be active if attach succeeded */
	if (device_is_attached(dev)) {
#ifdef DEVICE_POLLING
		if (ifp->if_capenable & IFCAP_POLLING)
			ether_poll_deregister(ifp);
#endif
		RL_LOCK(sc);
#if 0
		sc->suspended = 1;
#endif
		re_stop(sc);
		RL_UNLOCK(sc);
		callout_drain(&sc->rl_stat_callout);
		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
		/*
		 * Force off the IFF_UP flag here, in case someone
		 * still had a BPF descriptor attached to this
		 * interface. If they do, ether_ifdetach() will cause
		 * the BPF code to try and clear the promisc mode
		 * flag, which will bubble down to re_ioctl(),
		 * which will try to call re_init() again. This will
		 * turn the NIC back on and restart the MII ticker,
		 * which will panic the system when the kernel tries
		 * to invoke the re_tick() function that isn't there
		 * anymore.
		 */
		ifp->if_flags &= ~IFF_UP;
		ether_ifdetach(ifp);
	}
	if (sc->rl_miibus)
		device_delete_child(dev, sc->rl_miibus);
	bus_generic_detach(dev);

	/*
	 * The rest is resource deallocation, so we should already be
	 * stopped here.
	 */

	if (sc->rl_intrhand[0] != NULL) {
		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
		sc->rl_intrhand[0] = NULL;
	}
	if (ifp != NULL)
		if_free(ifp);
	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
		rid = 0;
	else
		rid = 1;
	if (sc->rl_irq[0] != NULL) {
		bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
		sc->rl_irq[0] = NULL;
	}
	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
		pci_release_msi(dev);
	if (sc->rl_res_pba) {
		rid = PCIR_BAR(4);
		bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
	}
	if (sc->rl_res)
		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
		    sc->rl_res);

	/* Unload and free the RX DMA ring memory and map */

	if (sc->rl_ldata.rl_rx_list_tag) {
		if (sc->rl_ldata.rl_rx_list_map)
			bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
			    sc->rl_ldata.rl_rx_list_map);
		if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
			bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
			    sc->rl_ldata.rl_rx_list,
			    sc->rl_ldata.rl_rx_list_map);
		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
	}

	/* Unload and free the TX DMA ring memory and map */

	if (sc->rl_ldata.rl_tx_list_tag) {
		if (sc->rl_ldata.rl_tx_list_map)
			bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
			    sc->rl_ldata.rl_tx_list_map);
		if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
			bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
			    sc->rl_ldata.rl_tx_list,
			    sc->rl_ldata.rl_tx_list_map);
		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
	}

	/* Destroy all the RX and TX buffer maps */

	if (sc->rl_ldata.rl_tx_mtag) {
		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
			if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
				bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
				    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
		}
		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
	}
	if (sc->rl_ldata.rl_rx_mtag) {
		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
			if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
				bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
				    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
		}
		if (sc->rl_ldata.rl_rx_sparemap)
			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
			    sc->rl_ldata.rl_rx_sparemap);
		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
	}
	if (sc->rl_ldata.rl_jrx_mtag) {
		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
			if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
				bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
				    sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
		}
		if (sc->rl_ldata.rl_jrx_sparemap)
			bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
			    sc->rl_ldata.rl_jrx_sparemap);
		bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
	}
	/* Unload and free the stats buffer and map */

	if (sc->rl_ldata.rl_stag) {
		if (sc->rl_ldata.rl_smap)
			bus_dmamap_unload(sc->rl_ldata.rl_stag,
			    sc->rl_ldata.rl_smap);
		if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
			bus_dmamem_free(sc->rl_ldata.rl_stag,
			    sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
	}

#ifdef DEV_NETMAP
	netmap_detach(ifp);
#endif /* DEV_NETMAP */
	if (sc->rl_parent_tag)
		bus_dma_tag_destroy(sc->rl_parent_tag);

	mtx_destroy(&sc->rl_mtx);

	return (0);
}

static __inline void
re_discard_rxbuf(struct rl_softc *sc, int idx)
{
	struct rl_desc		*desc;
	struct rl_rxdesc	*rxd;
	uint32_t		cmdstat;

	if (sc->rl_ifp->if_mtu > RL_MTU &&
	    (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
		rxd = &sc->rl_ldata.rl_jrx_desc[idx];
	else
		rxd = &sc->rl_ldata.rl_rx_desc[idx];
	desc = &sc->rl_ldata.rl_rx_list[idx];
	desc->rl_vlanctl = 0;
	cmdstat = rxd->rx_size;
	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
		cmdstat |= RL_RDESC_CMD_EOR;
	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
}

static int
re_newbuf(struct rl_softc *sc, int idx)
{
	struct mbuf		*m;
	struct rl_rxdesc	*rxd;
	bus_dma_segment_t	segs[1];
	bus_dmamap_t		map;
	struct rl_desc		*desc;
	uint32_t		cmdstat;
	int			error, nsegs;

	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
	if (m == NULL)
		return (ENOBUFS);

	m->m_len = m->m_pkthdr.len = MCLBYTES;
#ifdef RE_FIXUP_RX
	/*
	 * This is part of an evil trick to deal with non-x86 platforms.
	 * The RealTek chip requires RX buffers to be aligned on 64-bit
	 * boundaries, but that will hose non-x86 machines. To get around
	 * this, we leave some empty space at the start of each buffer
	 * and for non-x86 hosts, we copy the buffer back six bytes
	 * to achieve word alignment. This is slightly more efficient
	 * than allocating a new buffer, copying the contents, and
	 * discarding the old buffer.
	 */
	m_adj(m, RE_ETHER_ALIGN);
#endif
	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
	if (error != 0) {
		m_freem(m);
		return (ENOBUFS);
	}
	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));

	rxd = &sc->rl_ldata.rl_rx_desc[idx];
	if (rxd->rx_m != NULL) {
		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
		    BUS_DMASYNC_POSTREAD);
		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
	}

	rxd->rx_m = m;
	map = rxd->rx_dmamap;
	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
	rxd->rx_size = segs[0].ds_len;
	sc->rl_ldata.rl_rx_sparemap = map;
	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
	    BUS_DMASYNC_PREREAD);

	desc = &sc->rl_ldata.rl_rx_list[idx];
	desc->rl_vlanctl = 0;
	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
	cmdstat = segs[0].ds_len;
	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
		cmdstat |= RL_RDESC_CMD_EOR;
	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);

	return (0);
}

static int
re_jumbo_newbuf(struct rl_softc *sc, int idx)
{
	struct mbuf		*m;
	struct rl_rxdesc	*rxd;
	bus_dma_segment_t	segs[1];
	bus_dmamap_t		map;
	struct rl_desc		*desc;
	uint32_t		cmdstat;
	int			error, nsegs;

	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
	if (m == NULL)
		return (ENOBUFS);
	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
#ifdef RE_FIXUP_RX
	m_adj(m, RE_ETHER_ALIGN);
#endif
	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
	    sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
	if (error != 0) {
		m_freem(m);
		return (ENOBUFS);
	}
	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));

	rxd = &sc->rl_ldata.rl_jrx_desc[idx];
	if (rxd->rx_m != NULL) {
		bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
		    BUS_DMASYNC_POSTREAD);
		bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
	}

	rxd->rx_m = m;
	map = rxd->rx_dmamap;
	rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
	rxd->rx_size = segs[0].ds_len;
	sc->rl_ldata.rl_jrx_sparemap = map;
	bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
	    BUS_DMASYNC_PREREAD);

	desc = &sc->rl_ldata.rl_rx_list[idx];
	desc->rl_vlanctl = 0;
	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
	cmdstat = segs[0].ds_len;
	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
		cmdstat |= RL_RDESC_CMD_EOR;
	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);

	return (0);
}

#ifdef RE_FIXUP_RX
static __inline void
re_fixup_rx(struct mbuf *m)
{
	int                     i;
	uint16_t                *src, *dst;

	src = mtod(m, uint16_t *);
	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;

	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
		*dst++ = *src++;

	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
}
#endif

static int
re_tx_list_init(struct rl_softc *sc)
{
	struct rl_desc		*desc;
	int			i;

	RL_LOCK_ASSERT(sc);

	bzero(sc->rl_ldata.rl_tx_list,
	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
#ifdef DEV_NETMAP
	re_netmap_tx_init(sc);
#endif /* DEV_NETMAP */
	/* Set EOR. */
	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);

	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
	    sc->rl_ldata.rl_tx_list_map,
	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

	sc->rl_ldata.rl_tx_prodidx = 0;
	sc->rl_ldata.rl_tx_considx = 0;
	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;

	return (0);
}

static int
re_rx_list_init(struct rl_softc *sc)
{
	int			error, i;

	bzero(sc->rl_ldata.rl_rx_list,
	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
		if ((error = re_newbuf(sc, i)) != 0)
			return (error);
	}
#ifdef DEV_NETMAP
	re_netmap_rx_init(sc);
#endif /* DEV_NETMAP */

	/* Flush the RX descriptors */

	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
	    sc->rl_ldata.rl_rx_list_map,
	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);

	sc->rl_ldata.rl_rx_prodidx = 0;
	sc->rl_head = sc->rl_tail = NULL;
	sc->rl_int_rx_act = 0;

	return (0);
}

static int
re_jrx_list_init(struct rl_softc *sc)
{
	int			error, i;

	bzero(sc->rl_ldata.rl_rx_list,
	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
		sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
		if ((error = re_jumbo_newbuf(sc, i)) != 0)
			return (error);
	}

	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
	    sc->rl_ldata.rl_rx_list_map,
	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

	sc->rl_ldata.rl_rx_prodidx = 0;
	sc->rl_head = sc->rl_tail = NULL;
	sc->rl_int_rx_act = 0;

	return (0);
}

/*
 * RX handler for C+ and 8169. For the gigE chips, we support
 * the reception of jumbo frames that have been fragmented
 * across multiple 2K mbuf cluster buffers.
 */
static int
re_rxeof(struct rl_softc *sc, int *rx_npktsp)
{
	struct mbuf		*m;
	struct ifnet		*ifp;
	int			i, rxerr, total_len;
	struct rl_desc		*cur_rx;
	u_int32_t		rxstat, rxvlan;
	int			jumbo, maxpkt = 16, rx_npkts = 0;

	RL_LOCK_ASSERT(sc);

	ifp = sc->rl_ifp;
#ifdef DEV_NETMAP
	if (ifp->if_capenable & IFCAP_NETMAP) {
		NA(ifp)->rx_rings->nr_kflags |= NKR_PENDINTR;
		selwakeuppri(&NA(ifp)->rx_rings->si, PI_NET);
		return 0;
	}
#endif /* DEV_NETMAP */
	if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
		jumbo = 1;
	else
		jumbo = 0;

	/* Invalidate the descriptor memory */

	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
	    sc->rl_ldata.rl_rx_list_map,
	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
	    i = RL_RX_DESC_NXT(sc, i)) {
		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
			break;
		cur_rx = &sc->rl_ldata.rl_rx_list[i];
		rxstat = le32toh(cur_rx->rl_cmdstat);
		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
			break;
		total_len = rxstat & sc->rl_rxlenmask;
		rxvlan = le32toh(cur_rx->rl_vlanctl);
		if (jumbo != 0)
			m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
		else
			m = sc->rl_ldata.rl_rx_desc[i].rx_m;

		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
		    (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
		    (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
			/*
			 * RTL8168C or later controllers do not
			 * support multi-fragment packet.
			 */
			re_discard_rxbuf(sc, i);
			continue;
		} else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
			if (re_newbuf(sc, i) != 0) {
				/*
				 * If this is part of a multi-fragment packet,
				 * discard all the pieces.
				 */
				if (sc->rl_head != NULL) {
					m_freem(sc->rl_head);
					sc->rl_head = sc->rl_tail = NULL;
				}
				re_discard_rxbuf(sc, i);
				continue;
			}
			m->m_len = RE_RX_DESC_BUFLEN;
			if (sc->rl_head == NULL)
				sc->rl_head = sc->rl_tail = m;
			else {
				m->m_flags &= ~M_PKTHDR;
				sc->rl_tail->m_next = m;
				sc->rl_tail = m;
			}
			continue;
		}

		/*
		 * NOTE: for the 8139C+, the frame length field
		 * is always 12 bits in size, but for the gigE chips,
		 * it is 13 bits (since the max RX frame length is 16K).
		 * Unfortunately, all 32 bits in the status word
		 * were already used, so to make room for the extra
		 * length bit, RealTek took out the 'frame alignment
		 * error' bit and shifted the other status bits
		 * over one slot. The OWN, EOR, FS and LS bits are
		 * still in the same places. We have already extracted
		 * the frame length and checked the OWN bit, so rather
		 * than using an alternate bit mapping, we shift the
		 * status bits one space to the right so we can evaluate
		 * them using the 8169 status as though it was in the
		 * same format as that of the 8139C+.
		 */
		if (sc->rl_type == RL_8169)
			rxstat >>= 1;

		/*
		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
		 * set, but if CRC is clear, it will still be a valid frame.
		 */
		if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
			rxerr = 1;
			if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
			    total_len > 8191 &&
			    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
				rxerr = 0;
			if (rxerr != 0) {
				ifp->if_ierrors++;
				/*
				 * If this is part of a multi-fragment packet,
				 * discard all the pieces.
				 */
				if (sc->rl_head != NULL) {
					m_freem(sc->rl_head);
					sc->rl_head = sc->rl_tail = NULL;
				}
				re_discard_rxbuf(sc, i);
				continue;
			}
		}

		/*
		 * If allocating a replacement mbuf fails,
		 * reload the current one.
		 */
		if (jumbo != 0)
			rxerr = re_jumbo_newbuf(sc, i);
		else
			rxerr = re_newbuf(sc, i);
		if (rxerr != 0) {
			ifp->if_iqdrops++;
			if (sc->rl_head != NULL) {
				m_freem(sc->rl_head);
				sc->rl_head = sc->rl_tail = NULL;
			}
			re_discard_rxbuf(sc, i);
			continue;
		}

		if (sc->rl_head != NULL) {
			if (jumbo != 0)
				m->m_len = total_len;
			else {
				m->m_len = total_len % RE_RX_DESC_BUFLEN;
				if (m->m_len == 0)
					m->m_len = RE_RX_DESC_BUFLEN;
			}
			/*
			 * Special case: if there's 4 bytes or less
			 * in this buffer, the mbuf can be discarded:
			 * the last 4 bytes is the CRC, which we don't
			 * care about anyway.
			 */
			if (m->m_len <= ETHER_CRC_LEN) {
				sc->rl_tail->m_len -=
				    (ETHER_CRC_LEN - m->m_len);
				m_freem(m);
			} else {
				m->m_len -= ETHER_CRC_LEN;
				m->m_flags &= ~M_PKTHDR;
				sc->rl_tail->m_next = m;
			}
			m = sc->rl_head;
			sc->rl_head = sc->rl_tail = NULL;
			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
		} else
			m->m_pkthdr.len = m->m_len =
			    (total_len - ETHER_CRC_LEN);

#ifdef RE_FIXUP_RX
		re_fixup_rx(m);
#endif
		ifp->if_ipackets++;
		m->m_pkthdr.rcvif = ifp;

		/* Do RX checksumming if enabled */

		if (ifp->if_capenable & IFCAP_RXCSUM) {
			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
				/* Check IP header checksum */
				if (rxstat & RL_RDESC_STAT_PROTOID)
					m->m_pkthdr.csum_flags |=
					    CSUM_IP_CHECKED;
				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
					m->m_pkthdr.csum_flags |=
					    CSUM_IP_VALID;

				/* Check TCP/UDP checksum */
				if ((RL_TCPPKT(rxstat) &&
				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
				    (RL_UDPPKT(rxstat) &&
				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
					m->m_pkthdr.csum_flags |=
						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
					m->m_pkthdr.csum_data = 0xffff;
				}
			} else {
				/*
				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
				 */
				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
				    (rxvlan & RL_RDESC_IPV4))
					m->m_pkthdr.csum_flags |=
					    CSUM_IP_CHECKED;
				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
				    (rxvlan & RL_RDESC_IPV4))
					m->m_pkthdr.csum_flags |=
					    CSUM_IP_VALID;
				if (((rxstat & RL_RDESC_STAT_TCP) &&
				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
				    ((rxstat & RL_RDESC_STAT_UDP) &&
				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
					m->m_pkthdr.csum_flags |=
						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
					m->m_pkthdr.csum_data = 0xffff;
				}
			}
		}
		maxpkt--;
		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
			m->m_pkthdr.ether_vtag =
			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
			m->m_flags |= M_VLANTAG;
		}
		RL_UNLOCK(sc);
		(*ifp->if_input)(ifp, m);
		RL_LOCK(sc);
		rx_npkts++;
	}

	/* Flush the RX DMA ring */

	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
	    sc->rl_ldata.rl_rx_list_map,
	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);

	sc->rl_ldata.rl_rx_prodidx = i;

	if (rx_npktsp != NULL)
		*rx_npktsp = rx_npkts;
	if (maxpkt)
		return (EAGAIN);

	return (0);
}

static void
re_txeof(struct rl_softc *sc)
{
	struct ifnet		*ifp;
	struct rl_txdesc	*txd;
	u_int32_t		txstat;
	int			cons;

	cons = sc->rl_ldata.rl_tx_considx;
	if (cons == sc->rl_ldata.rl_tx_prodidx)
		return;

	ifp = sc->rl_ifp;
#ifdef DEV_NETMAP
	if (ifp->if_capenable & IFCAP_NETMAP) {
		selwakeuppri(&NA(ifp)->tx_rings[0].si, PI_NET);
		return;
	}
#endif /* DEV_NETMAP */
	/* Invalidate the TX descriptor list */
	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
	    sc->rl_ldata.rl_tx_list_map,
	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

	for (; cons != sc->rl_ldata.rl_tx_prodidx;
	    cons = RL_TX_DESC_NXT(sc, cons)) {
		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
		if (txstat & RL_TDESC_STAT_OWN)
			break;
		/*
		 * We only stash mbufs in the last descriptor
		 * in a fragment chain, which also happens to
		 * be the only place where the TX status bits
		 * are valid.
		 */
		if (txstat & RL_TDESC_CMD_EOF) {
			txd = &sc->rl_ldata.rl_tx_desc[cons];
			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
			    txd->tx_dmamap);
			KASSERT(txd->tx_m != NULL,
			    ("%s: freeing NULL mbufs!", __func__));
			m_freem(txd->tx_m);
			txd->tx_m = NULL;
			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
			    RL_TDESC_STAT_COLCNT))
				ifp->if_collisions++;
			if (txstat & RL_TDESC_STAT_TXERRSUM)
				ifp->if_oerrors++;
			else
				ifp->if_opackets++;
		}
		sc->rl_ldata.rl_tx_free++;
		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
	}
	sc->rl_ldata.rl_tx_considx = cons;

	/* No changes made to the TX ring, so no flush needed */

	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
#ifdef RE_TX_MODERATION
		/*
		 * If not all descriptors have been reaped yet, reload
		 * the timer so that we will eventually get another
		 * interrupt that will cause us to re-enter this routine.
		 * This is done in case the transmitter has gone idle.
		 */
		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
#endif
	} else
		sc->rl_watchdog_timer = 0;
}

static void
re_tick(void *xsc)
{
	struct rl_softc		*sc;
	struct mii_data		*mii;

	sc = xsc;

	RL_LOCK_ASSERT(sc);

	mii = device_get_softc(sc->rl_miibus);
	mii_tick(mii);
	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
		re_miibus_statchg(sc->rl_dev);
	/*
	 * Reclaim transmitted frames here. Technically it is not
	 * necessary to do here but it ensures periodic reclamation
	 * regardless of Tx completion interrupt which seems to be
	 * lost on PCIe based controllers under certain situations.
	 */
	re_txeof(sc);
	re_watchdog(sc);
	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
}

#ifdef DEVICE_POLLING
static int
re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
	struct rl_softc *sc = ifp->if_softc;
	int rx_npkts = 0;

	RL_LOCK(sc);
	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
		rx_npkts = re_poll_locked(ifp, cmd, count);
	RL_UNLOCK(sc);
	return (rx_npkts);
}

static int
re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
	struct rl_softc *sc = ifp->if_softc;
	int rx_npkts;

	RL_LOCK_ASSERT(sc);

	sc->rxcycles = count;
	re_rxeof(sc, &rx_npkts);
	re_txeof(sc);

	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
		re_start_locked(ifp);

	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
		u_int16_t       status;

		status = CSR_READ_2(sc, RL_ISR);
		if (status == 0xffff)
			return (rx_npkts);
		if (status)
			CSR_WRITE_2(sc, RL_ISR, status);
		if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
		    (sc->rl_flags & RL_FLAG_PCIE))
			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);

		/*
		 * XXX check behaviour on receiver stalls.
		 */

		if (status & RL_ISR_SYSTEM_ERR) {
			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
			re_init_locked(sc);
		}
	}
	return (rx_npkts);
}
#endif /* DEVICE_POLLING */

static int
re_intr(void *arg)
{
	struct rl_softc		*sc;
	uint16_t		status;

	sc = arg;

	status = CSR_READ_2(sc, RL_ISR);
	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
                return (FILTER_STRAY);
	CSR_WRITE_2(sc, RL_IMR, 0);

	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);

	return (FILTER_HANDLED);
}

static void
re_int_task(void *arg, int npending)
{
	struct rl_softc		*sc;
	struct ifnet		*ifp;
	u_int16_t		status;
	int			rval = 0;

	sc = arg;
	ifp = sc->rl_ifp;

	RL_LOCK(sc);

	status = CSR_READ_2(sc, RL_ISR);
        CSR_WRITE_2(sc, RL_ISR, status);

	if (sc->suspended ||
	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
		RL_UNLOCK(sc);
		return;
	}

#ifdef DEVICE_POLLING
	if  (ifp->if_capenable & IFCAP_POLLING) {
		RL_UNLOCK(sc);
		return;
	}
#endif

	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
		rval = re_rxeof(sc, NULL);

	/*
	 * Some chips will ignore a second TX request issued
	 * while an existing transmission is in progress. If
	 * the transmitter goes idle but there are still
	 * packets waiting to be sent, we need to restart the
	 * channel here to flush them out. This only seems to
	 * be required with the PCIe devices.
	 */
	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
	    (sc->rl_flags & RL_FLAG_PCIE))
		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
	if (status & (
#ifdef RE_TX_MODERATION
	    RL_ISR_TIMEOUT_EXPIRED|
#else
	    RL_ISR_TX_OK|
#endif
	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
		re_txeof(sc);

	if (status & RL_ISR_SYSTEM_ERR) {
		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
		re_init_locked(sc);
	}

	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
		re_start_locked(ifp);

	RL_UNLOCK(sc);

        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
		return;
	}

	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
}

static void
re_intr_msi(void *xsc)
{
	struct rl_softc		*sc;
	struct ifnet		*ifp;
	uint16_t		intrs, status;

	sc = xsc;
	RL_LOCK(sc);

	ifp = sc->rl_ifp;
#ifdef DEVICE_POLLING
	if (ifp->if_capenable & IFCAP_POLLING) {
		RL_UNLOCK(sc);
		return;
	}
#endif
	/* Disable interrupts. */
	CSR_WRITE_2(sc, RL_IMR, 0);
	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
		RL_UNLOCK(sc);
		return;
	}

	intrs = RL_INTRS_CPLUS;
	status = CSR_READ_2(sc, RL_ISR);
        CSR_WRITE_2(sc, RL_ISR, status);
	if (sc->rl_int_rx_act > 0) {
		intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
		    RL_ISR_RX_OVERRUN);
		status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
		    RL_ISR_RX_OVERRUN);
	}

	if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
	    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
		re_rxeof(sc, NULL);
		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
			if (sc->rl_int_rx_mod != 0 &&
			    (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
			    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
				/* Rearm one-shot timer. */
				CSR_WRITE_4(sc, RL_TIMERCNT, 1);
				intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
				sc->rl_int_rx_act = 1;
			} else {
				intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
				sc->rl_int_rx_act = 0;
			}
		}
	}

	/*
	 * Some chips will ignore a second TX request issued
	 * while an existing transmission is in progress. If
	 * the transmitter goes idle but there are still
	 * packets waiting to be sent, we need to restart the
	 * channel here to flush them out. This only seems to
	 * be required with the PCIe devices.
	 */
	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
	    (sc->rl_flags & RL_FLAG_PCIE))
		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
	if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
		re_txeof(sc);

	if (status & RL_ISR_SYSTEM_ERR) {
		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
		re_init_locked(sc);
	}

	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
			re_start_locked(ifp);
		CSR_WRITE_2(sc, RL_IMR, intrs);
	}
	RL_UNLOCK(sc);
}

static int
re_encap(struct rl_softc *sc, struct mbuf **m_head)
{
	struct rl_txdesc	*txd, *txd_last;
	bus_dma_segment_t	segs[RL_NTXSEGS];
	bus_dmamap_t		map;
	struct mbuf		*m_new;
	struct rl_desc		*desc;
	int			nsegs, prod;
	int			i, error, ei, si;
	int			padlen;
	uint32_t		cmdstat, csum_flags, vlanctl;

	RL_LOCK_ASSERT(sc);
	M_ASSERTPKTHDR((*m_head));

	/*
	 * With some of the RealTek chips, using the checksum offload
	 * support in conjunction with the autopadding feature results
	 * in the transmission of corrupt frames. For example, if we
	 * need to send a really small IP fragment that's less than 60
	 * bytes in size, and IP header checksumming is enabled, the
	 * resulting ethernet frame that appears on the wire will
	 * have garbled payload. To work around this, if TX IP checksum
	 * offload is enabled, we always manually pad short frames out
	 * to the minimum ethernet frame size.
	 */
	if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
		if (M_WRITABLE(*m_head) == 0) {
			/* Get a writable copy. */
			m_new = m_dup(*m_head, M_DONTWAIT);
			m_freem(*m_head);
			if (m_new == NULL) {
				*m_head = NULL;
				return (ENOBUFS);
			}
			*m_head = m_new;
		}
		if ((*m_head)->m_next != NULL ||
		    M_TRAILINGSPACE(*m_head) < padlen) {
			m_new = m_defrag(*m_head, M_DONTWAIT);
			if (m_new == NULL) {
				m_freem(*m_head);
				*m_head = NULL;
				return (ENOBUFS);
			}
		} else
			m_new = *m_head;

		/*
		 * Manually pad short frames, and zero the pad space
		 * to avoid leaking data.
		 */
		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
		m_new->m_pkthdr.len += padlen;
		m_new->m_len = m_new->m_pkthdr.len;
		*m_head = m_new;
	}

	prod = sc->rl_ldata.rl_tx_prodidx;
	txd = &sc->rl_ldata.rl_tx_desc[prod];
	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
	if (error == EFBIG) {
		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
		if (m_new == NULL) {
			m_freem(*m_head);
			*m_head = NULL;
			return (ENOBUFS);
		}
		*m_head = m_new;
		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
		if (error != 0) {
			m_freem(*m_head);
			*m_head = NULL;
			return (error);
		}
	} else if (error != 0)
		return (error);
	if (nsegs == 0) {
		m_freem(*m_head);
		*m_head = NULL;
		return (EIO);
	}

	/* Check for number of available descriptors. */
	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
		return (ENOBUFS);
	}

	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
	    BUS_DMASYNC_PREWRITE);

	/*
	 * Set up checksum offload. Note: checksum offload bits must
	 * appear in all descriptors of a multi-descriptor transmit
	 * attempt. This is according to testing done with an 8169
	 * chip. This is a requirement.
	 */
	vlanctl = 0;
	csum_flags = 0;
	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
		if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
			csum_flags |= RL_TDESC_CMD_LGSEND;
			vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
			    RL_TDESC_CMD_MSSVALV2_SHIFT);
		} else {
			csum_flags |= RL_TDESC_CMD_LGSEND |
			    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
			    RL_TDESC_CMD_MSSVAL_SHIFT);
		}
	} else {
		/*
		 * Unconditionally enable IP checksum if TCP or UDP
		 * checksum is required. Otherwise, TCP/UDP checksum
		 * does't make effects.
		 */
		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
				csum_flags |= RL_TDESC_CMD_IPCSUM;
				if (((*m_head)->m_pkthdr.csum_flags &
				    CSUM_TCP) != 0)
					csum_flags |= RL_TDESC_CMD_TCPCSUM;
				if (((*m_head)->m_pkthdr.csum_flags &
				    CSUM_UDP) != 0)
					csum_flags |= RL_TDESC_CMD_UDPCSUM;
			} else {
				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
				if (((*m_head)->m_pkthdr.csum_flags &
				    CSUM_TCP) != 0)
					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
				if (((*m_head)->m_pkthdr.csum_flags &
				    CSUM_UDP) != 0)
					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
			}
		}
	}

	/*
	 * Set up hardware VLAN tagging. Note: vlan tag info must
	 * appear in all descriptors of a multi-descriptor
	 * transmission attempt.
	 */
	if ((*m_head)->m_flags & M_VLANTAG)
		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
		    RL_TDESC_VLANCTL_TAG;

	si = prod;
	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
		desc = &sc->rl_ldata.rl_tx_list[prod];
		desc->rl_vlanctl = htole32(vlanctl);
		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
		cmdstat = segs[i].ds_len;
		if (i != 0)
			cmdstat |= RL_TDESC_CMD_OWN;
		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
			cmdstat |= RL_TDESC_CMD_EOR;
		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
		sc->rl_ldata.rl_tx_free--;
	}
	/* Update producer index. */
	sc->rl_ldata.rl_tx_prodidx = prod;

	/* Set EOF on the last descriptor. */
	ei = RL_TX_DESC_PRV(sc, prod);
	desc = &sc->rl_ldata.rl_tx_list[ei];
	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);

	desc = &sc->rl_ldata.rl_tx_list[si];
	/* Set SOF and transfer ownership of packet to the chip. */
	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);

	/*
	 * Insure that the map for this transmission
	 * is placed at the array index of the last descriptor
	 * in this chain.  (Swap last and first dmamaps.)
	 */
	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
	map = txd->tx_dmamap;
	txd->tx_dmamap = txd_last->tx_dmamap;
	txd_last->tx_dmamap = map;
	txd_last->tx_m = *m_head;

	return (0);
}

static void
re_start(struct ifnet *ifp)
{
	struct rl_softc		*sc;

	sc = ifp->if_softc;
	RL_LOCK(sc);
	re_start_locked(ifp);
	RL_UNLOCK(sc);
}

/*
 * Main transmit routine for C+ and gigE NICs.
 */
static void
re_start_locked(struct ifnet *ifp)
{
	struct rl_softc		*sc;
	struct mbuf		*m_head;
	int			queued;

	sc = ifp->if_softc;

#ifdef DEV_NETMAP
	/* XXX is this necessary ? */
	if (ifp->if_capenable & IFCAP_NETMAP) {
		struct netmap_kring *kring = &NA(ifp)->tx_rings[0];
		if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) {
			/* kick the tx unit */
			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
#ifdef RE_TX_MODERATION
			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
#endif
			sc->rl_watchdog_timer = 5;
		}
		return;
	}
#endif /* DEV_NETMAP */
	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
		return;

	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
	    sc->rl_ldata.rl_tx_free > 1;) {
		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
		if (m_head == NULL)
			break;

		if (re_encap(sc, &m_head) != 0) {
			if (m_head == NULL)
				break;
			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
			break;
		}

		/*
		 * If there's a BPF listener, bounce a copy of this frame
		 * to him.
		 */
		ETHER_BPF_MTAP(ifp, m_head);

		queued++;
	}

	if (queued == 0) {
#ifdef RE_TX_MODERATION
		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
#endif
		return;
	}

	/* Flush the TX descriptors */

	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
	    sc->rl_ldata.rl_tx_list_map,
	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);

	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);

#ifdef RE_TX_MODERATION
	/*
	 * Use the countdown timer for interrupt moderation.
	 * 'TX done' interrupts are disabled. Instead, we reset the
	 * countdown timer, which will begin counting until it hits
	 * the value in the TIMERINT register, and then trigger an
	 * interrupt. Each time we write to the TIMERCNT register,
	 * the timer count is reset to 0.
	 */
	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
#endif

	/*
	 * Set a timeout in case the chip goes out to lunch.
	 */
	sc->rl_watchdog_timer = 5;
}

static void
re_set_jumbo(struct rl_softc *sc, int jumbo)
{

	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
		pci_set_max_read_req(sc->rl_dev, 4096);
		return;
	}

	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
	if (jumbo != 0) {
		CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) |
		    RL_CFG3_JUMBO_EN0);
		switch (sc->rl_hwrev->rl_rev) {
		case RL_HWREV_8168DP:
			break;
		case RL_HWREV_8168E:
			CSR_WRITE_1(sc, sc->rl_cfg4,
			    CSR_READ_1(sc, sc->rl_cfg4) | 0x01);
			break;
		default:
			CSR_WRITE_1(sc, sc->rl_cfg4,
			    CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1);
		}
	} else {
		CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) &
		    ~RL_CFG3_JUMBO_EN0);
		switch (sc->rl_hwrev->rl_rev) {
		case RL_HWREV_8168DP:
			break;
		case RL_HWREV_8168E:
			CSR_WRITE_1(sc, sc->rl_cfg4,
			    CSR_READ_1(sc, sc->rl_cfg4) & ~0x01);
			break;
		default:
			CSR_WRITE_1(sc, sc->rl_cfg4,
			    CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1);
		}
	}
	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);

	switch (sc->rl_hwrev->rl_rev) {
	case RL_HWREV_8168DP:
		pci_set_max_read_req(sc->rl_dev, 4096);
		break;
	default:
		if (jumbo != 0)
			pci_set_max_read_req(sc->rl_dev, 512);
		else
			pci_set_max_read_req(sc->rl_dev, 4096);
	}
}

static void
re_init(void *xsc)
{
	struct rl_softc		*sc = xsc;

	RL_LOCK(sc);
	re_init_locked(sc);
	RL_UNLOCK(sc);
}

static void
re_init_locked(struct rl_softc *sc)
{
	struct ifnet		*ifp = sc->rl_ifp;
	struct mii_data		*mii;
	uint32_t		reg;
	uint16_t		cfg;
	union {
		uint32_t align_dummy;
		u_char eaddr[ETHER_ADDR_LEN];
        } eaddr;

	RL_LOCK_ASSERT(sc);

	mii = device_get_softc(sc->rl_miibus);

	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
		return;

	/*
	 * Cancel pending I/O and free all RX/TX buffers.
	 */
	re_stop(sc);

	/* Put controller into known state. */
	re_reset(sc);

	/*
	 * For C+ mode, initialize the RX descriptors and mbufs.
	 */
	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
		if (ifp->if_mtu > RL_MTU) {
			if (re_jrx_list_init(sc) != 0) {
				device_printf(sc->rl_dev,
				    "no memory for jumbo RX buffers\n");
				re_stop(sc);
				return;
			}
			/* Disable checksum offloading for jumbo frames. */
			ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
			ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
		} else {
			if (re_rx_list_init(sc) != 0) {
				device_printf(sc->rl_dev,
				    "no memory for RX buffers\n");
				re_stop(sc);
				return;
			}
		}
		re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
	} else {
		if (re_rx_list_init(sc) != 0) {
			device_printf(sc->rl_dev, "no memory for RX buffers\n");
			re_stop(sc);
			return;
		}
		if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
		    pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
			if (ifp->if_mtu > RL_MTU)
				pci_set_max_read_req(sc->rl_dev, 512);
			else
				pci_set_max_read_req(sc->rl_dev, 4096);
		}
	}
	re_tx_list_init(sc);

	/*
	 * Enable C+ RX and TX mode, as well as VLAN stripping and
	 * RX checksum offload. We must configure the C+ register
	 * before all others.
	 */
	cfg = RL_CPLUSCMD_PCI_MRW;
	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
		cfg |= RL_CPLUSCMD_VLANSTRIP;
	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
		/* XXX magic. */
		cfg |= 0x0001;
	} else
		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
	    sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
		reg = 0x000fff00;
		if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0)
			reg |= 0x000000ff;
		if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
			reg |= 0x00f00000;
		CSR_WRITE_4(sc, 0x7c, reg);
		/* Disable interrupt mitigation. */
		CSR_WRITE_2(sc, 0xe2, 0);
	}
	/*
	 * Disable TSO if interface MTU size is greater than MSS
	 * allowed in controller.
	 */
	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
		ifp->if_capenable &= ~IFCAP_TSO4;
		ifp->if_hwassist &= ~CSUM_TSO;
	}

	/*
	 * Init our MAC address.  Even though the chipset
	 * documentation doesn't mention it, we need to enter "Config
	 * register write enable" mode to modify the ID registers.
	 */
	/* Copy MAC address on stack to align. */
	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
	CSR_WRITE_4(sc, RL_IDR0,
	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
	CSR_WRITE_4(sc, RL_IDR4,
	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);

	/*
	 * Load the addresses of the RX and TX lists into the chip.
	 */

	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));

	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));

	/*
	 * Enable transmit and receive.
	 */
	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);

	/*
	 * Set the initial TX configuration.
	 */
	if (sc->rl_testmode) {
		if (sc->rl_type == RL_8169)
			CSR_WRITE_4(sc, RL_TXCFG,
			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
		else
			CSR_WRITE_4(sc, RL_TXCFG,
			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
	} else
		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);

	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);

	/*
	 * Set the initial RX configuration.
	 */
	re_set_rxmode(sc);

	/* Configure interrupt moderation. */
	if (sc->rl_type == RL_8169) {
		/* Magic from vendor. */
		CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
	}

#ifdef DEVICE_POLLING
	/*
	 * Disable interrupts if we are polling.
	 */
	if (ifp->if_capenable & IFCAP_POLLING)
		CSR_WRITE_2(sc, RL_IMR, 0);
	else	/* otherwise ... */
#endif

	/*
	 * Enable interrupts.
	 */
	if (sc->rl_testmode)
		CSR_WRITE_2(sc, RL_IMR, 0);
	else
		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);

	/* Set initial TX threshold */
	sc->rl_txthresh = RL_TX_THRESH_INIT;

	/* Start RX/TX process. */
	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
#ifdef notdef
	/* Enable receiver and transmitter. */
	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
#endif

	/*
	 * Initialize the timer interrupt register so that
	 * a timer interrupt will be generated once the timer
	 * reaches a certain number of ticks. The timer is
	 * reloaded on each transmit.
	 */
#ifdef RE_TX_MODERATION
	/*
	 * Use timer interrupt register to moderate TX interrupt
	 * moderation, which dramatically improves TX frame rate.
	 */
	if (sc->rl_type == RL_8169)
		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
	else
		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
#else
	/*
	 * Use timer interrupt register to moderate RX interrupt
	 * moderation.
	 */
	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
	    intr_filter == 0) {
		if (sc->rl_type == RL_8169)
			CSR_WRITE_4(sc, RL_TIMERINT_8169,
			    RL_USECS(sc->rl_int_rx_mod));
	} else {
		if (sc->rl_type == RL_8169)
			CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
	}
#endif

	/*
	 * For 8169 gigE NICs, set the max allowed RX packet
	 * size so we can receive jumbo frames.
	 */
	if (sc->rl_type == RL_8169) {
		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
			/*
			 * For controllers that use new jumbo frame scheme,
			 * set maximum size of jumbo frame depedning on
			 * controller revisions.
			 */
			if (ifp->if_mtu > RL_MTU)
				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
				    sc->rl_hwrev->rl_max_mtu +
				    ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
				    ETHER_CRC_LEN);
			else
				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
				    RE_RX_DESC_BUFLEN);
		} else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
		    sc->rl_hwrev->rl_max_mtu == RL_MTU) {
			/* RTL810x has no jumbo frame support. */
			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
		} else
			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
	}

	if (sc->rl_testmode)
		return;

	CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
	    RL_CFG1_DRVLOAD);

	ifp->if_drv_flags |= IFF_DRV_RUNNING;
	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;

	sc->rl_flags &= ~RL_FLAG_LINK;
	mii_mediachg(mii);

	sc->rl_watchdog_timer = 0;
	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
}

/*
 * Set media options.
 */
static int
re_ifmedia_upd(struct ifnet *ifp)
{
	struct rl_softc		*sc;
	struct mii_data		*mii;
	int			error;

	sc = ifp->if_softc;
	mii = device_get_softc(sc->rl_miibus);
	RL_LOCK(sc);
	error = mii_mediachg(mii);
	RL_UNLOCK(sc);

	return (error);
}

/*
 * Report current media status.
 */
static void
re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
	struct rl_softc		*sc;
	struct mii_data		*mii;

	sc = ifp->if_softc;
	mii = device_get_softc(sc->rl_miibus);

	RL_LOCK(sc);
	mii_pollstat(mii);
	ifmr->ifm_active = mii->mii_media_active;
	ifmr->ifm_status = mii->mii_media_status;
	RL_UNLOCK(sc);
}

static int
re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
	struct rl_softc		*sc = ifp->if_softc;
	struct ifreq		*ifr = (struct ifreq *) data;
	struct mii_data		*mii;
	uint32_t		rev;
	int			error = 0;

	switch (command) {
	case SIOCSIFMTU:
		if (ifr->ifr_mtu < ETHERMIN ||
		    ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu) {
			error = EINVAL;
			break;
		}
		RL_LOCK(sc);
		if (ifp->if_mtu != ifr->ifr_mtu) {
			ifp->if_mtu = ifr->ifr_mtu;
			if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
			    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
				re_init_locked(sc);
			}
			if (ifp->if_mtu > RL_TSO_MTU &&
			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
				ifp->if_capenable &= ~(IFCAP_TSO4 |
				    IFCAP_VLAN_HWTSO);
				ifp->if_hwassist &= ~CSUM_TSO;
			}
			VLAN_CAPABILITIES(ifp);
		}
		RL_UNLOCK(sc);
		break;
	case SIOCSIFFLAGS:
		RL_LOCK(sc);
		if ((ifp->if_flags & IFF_UP) != 0) {
			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
				if (((ifp->if_flags ^ sc->rl_if_flags)
				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
					re_set_rxmode(sc);
			} else
				re_init_locked(sc);
		} else {
			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
				re_stop(sc);
		}
		sc->rl_if_flags = ifp->if_flags;
		RL_UNLOCK(sc);
		break;
	case SIOCADDMULTI:
	case SIOCDELMULTI:
		RL_LOCK(sc);
		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
			re_set_rxmode(sc);
		RL_UNLOCK(sc);
		break;
	case SIOCGIFMEDIA:
	case SIOCSIFMEDIA:
		mii = device_get_softc(sc->rl_miibus);
		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
		break;
	case SIOCSIFCAP:
	    {
		int mask, reinit;

		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
		reinit = 0;
#ifdef DEVICE_POLLING
		if (mask & IFCAP_POLLING) {
			if (ifr->ifr_reqcap & IFCAP_POLLING) {
				error = ether_poll_register(re_poll, ifp);
				if (error)
					return (error);
				RL_LOCK(sc);
				/* Disable interrupts */
				CSR_WRITE_2(sc, RL_IMR, 0x0000);
				ifp->if_capenable |= IFCAP_POLLING;
				RL_UNLOCK(sc);
			} else {
				error = ether_poll_deregister(ifp);
				/* Enable interrupts. */
				RL_LOCK(sc);
				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
				ifp->if_capenable &= ~IFCAP_POLLING;
				RL_UNLOCK(sc);
			}
		}
#endif /* DEVICE_POLLING */
		RL_LOCK(sc);
		if ((mask & IFCAP_TXCSUM) != 0 &&
		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
			ifp->if_capenable ^= IFCAP_TXCSUM;
			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
				rev = sc->rl_hwrev->rl_rev;
				if (rev == RL_HWREV_8168C ||
				    rev == RL_HWREV_8168C_SPIN2)
					ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
				else
					ifp->if_hwassist |= RE_CSUM_FEATURES;
			} else
				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
			reinit = 1;
		}
		if ((mask & IFCAP_RXCSUM) != 0 &&
		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
			ifp->if_capenable ^= IFCAP_RXCSUM;
			reinit = 1;
		}
		if ((mask & IFCAP_TSO4) != 0 &&
		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
			ifp->if_capenable ^= IFCAP_TSO4;
			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
				ifp->if_hwassist |= CSUM_TSO;
			else
				ifp->if_hwassist &= ~CSUM_TSO;
			if (ifp->if_mtu > RL_TSO_MTU &&
			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
				ifp->if_capenable &= ~IFCAP_TSO4;
				ifp->if_hwassist &= ~CSUM_TSO;
			}
		}
		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
			/* TSO over VLAN requires VLAN hardware tagging. */
			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
			reinit = 1;
		}
		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
		    (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
		    IFCAP_VLAN_HWTSO)) != 0)
				reinit = 1;
		if ((mask & IFCAP_WOL) != 0 &&
		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
			if ((mask & IFCAP_WOL_UCAST) != 0)
				ifp->if_capenable ^= IFCAP_WOL_UCAST;
			if ((mask & IFCAP_WOL_MCAST) != 0)
				ifp->if_capenable ^= IFCAP_WOL_MCAST;
			if ((mask & IFCAP_WOL_MAGIC) != 0)
				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
		}
		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
			re_init_locked(sc);
		}
		RL_UNLOCK(sc);
		VLAN_CAPABILITIES(ifp);
	    }
		break;
	default:
		error = ether_ioctl(ifp, command, data);
		break;
	}

	return (error);
}

static void
re_watchdog(struct rl_softc *sc)
{
	struct ifnet		*ifp;

	RL_LOCK_ASSERT(sc);

	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
		return;

	ifp = sc->rl_ifp;
	re_txeof(sc);
	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
		    "-- recovering\n");
		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
			re_start_locked(ifp);
		return;
	}

	if_printf(ifp, "watchdog timeout\n");
	ifp->if_oerrors++;

	re_rxeof(sc, NULL);
	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
	re_init_locked(sc);
	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
		re_start_locked(ifp);
}

/*
 * Stop the adapter and free any mbufs allocated to the
 * RX and TX lists.
 */
static void
re_stop(struct rl_softc *sc)
{
	int			i;
	struct ifnet		*ifp;
	struct rl_txdesc	*txd;
	struct rl_rxdesc	*rxd;

	RL_LOCK_ASSERT(sc);

	ifp = sc->rl_ifp;

	sc->rl_watchdog_timer = 0;
	callout_stop(&sc->rl_stat_callout);
	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);

	/*
	 * Disable accepting frames to put RX MAC into idle state.
	 * Otherwise it's possible to get frames while stop command
	 * execution is in progress and controller can DMA the frame
	 * to already freed RX buffer during that period.
	 */
	CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
	    ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
	    RL_RXCFG_RX_BROAD));

	if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
		for (i = RL_TIMEOUT; i > 0; i--) {
			if ((CSR_READ_1(sc, sc->rl_txstart) &
			    RL_TXSTART_START) == 0)
				break;
			DELAY(20);
		}
		if (i == 0)
			device_printf(sc->rl_dev,
			    "stopping TX poll timed out!\n");
		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
	} else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
		    RL_CMD_RX_ENB);
		if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
			for (i = RL_TIMEOUT; i > 0; i--) {
				if ((CSR_READ_4(sc, RL_TXCFG) &
				    RL_TXCFG_QUEUE_EMPTY) != 0)
					break;
				DELAY(100);
			}
			if (i == 0)
				device_printf(sc->rl_dev,
				   "stopping TXQ timed out!\n");
		}
	} else
		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
	DELAY(1000);
	CSR_WRITE_2(sc, RL_IMR, 0x0000);
	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);

	if (sc->rl_head != NULL) {
		m_freem(sc->rl_head);
		sc->rl_head = sc->rl_tail = NULL;
	}

	/* Free the TX list buffers. */
	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
		txd = &sc->rl_ldata.rl_tx_desc[i];
		if (txd->tx_m != NULL) {
			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
			    txd->tx_dmamap);
			m_freem(txd->tx_m);
			txd->tx_m = NULL;
		}
	}

	/* Free the RX list buffers. */
	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
		rxd = &sc->rl_ldata.rl_rx_desc[i];
		if (rxd->rx_m != NULL) {
			bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
			    rxd->rx_dmamap);
			m_freem(rxd->rx_m);
			rxd->rx_m = NULL;
		}
	}

	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
			rxd = &sc->rl_ldata.rl_jrx_desc[i];
			if (rxd->rx_m != NULL) {
				bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag,
				    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
				bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag,
				    rxd->rx_dmamap);
				m_freem(rxd->rx_m);
				rxd->rx_m = NULL;
			}
		}
	}
}

/*
 * Device suspend routine.  Stop the interface and save some PCI
 * settings in case the BIOS doesn't restore them properly on
 * resume.
 */
static int
re_suspend(device_t dev)
{
	struct rl_softc		*sc;

	sc = device_get_softc(dev);

	RL_LOCK(sc);
	re_stop(sc);
	re_setwol(sc);
	sc->suspended = 1;
	RL_UNLOCK(sc);

	return (0);
}

/*
 * Device resume routine.  Restore some PCI settings in case the BIOS
 * doesn't, re-enable busmastering, and restart the interface if
 * appropriate.
 */
static int
re_resume(device_t dev)
{
	struct rl_softc		*sc;
	struct ifnet		*ifp;

	sc = device_get_softc(dev);

	RL_LOCK(sc);

	ifp = sc->rl_ifp;
	/* Take controller out of sleep mode. */
	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
			CSR_WRITE_1(sc, RL_GPIO,
			    CSR_READ_1(sc, RL_GPIO) | 0x01);
	}

	/*
	 * Clear WOL matching such that normal Rx filtering
	 * wouldn't interfere with WOL patterns.
	 */
	re_clrwol(sc);

	/* reinitialize interface if necessary */
	if (ifp->if_flags & IFF_UP)
		re_init_locked(sc);

	sc->suspended = 0;
	RL_UNLOCK(sc);

	return (0);
}

/*
 * Stop all chip I/O so that the kernel's probe routines don't
 * get confused by errant DMAs when rebooting.
 */
static int
re_shutdown(device_t dev)
{
	struct rl_softc		*sc;

	sc = device_get_softc(dev);

	RL_LOCK(sc);
	re_stop(sc);
	/*
	 * Mark interface as down since otherwise we will panic if
	 * interrupt comes in later on, which can happen in some
	 * cases.
	 */
	sc->rl_ifp->if_flags &= ~IFF_UP;
	re_setwol(sc);
	RL_UNLOCK(sc);

	return (0);
}

static void
re_set_linkspeed(struct rl_softc *sc)
{
	struct mii_softc *miisc;
	struct mii_data *mii;
	int aneg, i, phyno;

	RL_LOCK_ASSERT(sc);

	mii = device_get_softc(sc->rl_miibus);
	mii_pollstat(mii);
	aneg = 0;
	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
	    (IFM_ACTIVE | IFM_AVALID)) {
		switch IFM_SUBTYPE(mii->mii_media_active) {
		case IFM_10_T:
		case IFM_100_TX:
			return;
		case IFM_1000_T:
			aneg++;
			break;
		default:
			break;
		}
	}
	miisc = LIST_FIRST(&mii->mii_phys);
	phyno = miisc->mii_phy;
	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
		PHY_RESET(miisc);
	re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
	re_miibus_writereg(sc->rl_dev, phyno,
	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
	re_miibus_writereg(sc->rl_dev, phyno,
	    MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
	DELAY(1000);
	if (aneg != 0) {
		/*
		 * Poll link state until re(4) get a 10/100Mbps link.
		 */
		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
			mii_pollstat(mii);
			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
			    == (IFM_ACTIVE | IFM_AVALID)) {
				switch (IFM_SUBTYPE(mii->mii_media_active)) {
				case IFM_10_T:
				case IFM_100_TX:
					return;
				default:
					break;
				}
			}
			RL_UNLOCK(sc);
			pause("relnk", hz);
			RL_LOCK(sc);
		}
		if (i == MII_ANEGTICKS_GIGE)
			device_printf(sc->rl_dev,
			    "establishing a link failed, WOL may not work!");
	}
	/*
	 * No link, force MAC to have 100Mbps, full-duplex link.
	 * MAC does not require reprogramming on resolved speed/duplex,
	 * so this is just for completeness.
	 */
	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
}

static void
re_setwol(struct rl_softc *sc)
{
	struct ifnet		*ifp;
	int			pmc;
	uint16_t		pmstat;
	uint8_t			v;

	RL_LOCK_ASSERT(sc);

	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
		return;

	ifp = sc->rl_ifp;
	/* Put controller into sleep mode. */
	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
			CSR_WRITE_1(sc, RL_GPIO,
			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
	}
	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
		re_set_rxmode(sc);
		if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
			re_set_linkspeed(sc);
		if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
			CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
	}
	/* Enable config register write. */
	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);

	/* Enable PME. */
	v = CSR_READ_1(sc, sc->rl_cfg1);
	v &= ~RL_CFG1_PME;
	if ((ifp->if_capenable & IFCAP_WOL) != 0)
		v |= RL_CFG1_PME;
	CSR_WRITE_1(sc, sc->rl_cfg1, v);

	v = CSR_READ_1(sc, sc->rl_cfg3);
	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
		v |= RL_CFG3_WOL_MAGIC;
	CSR_WRITE_1(sc, sc->rl_cfg3, v);

	v = CSR_READ_1(sc, sc->rl_cfg5);
	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
	    RL_CFG5_WOL_LANWAKE);
	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
		v |= RL_CFG5_WOL_UCAST;
	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
	if ((ifp->if_capenable & IFCAP_WOL) != 0)
		v |= RL_CFG5_WOL_LANWAKE;
	CSR_WRITE_1(sc, sc->rl_cfg5, v);

	/* Config register write done. */
	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);

	if ((ifp->if_capenable & IFCAP_WOL) == 0 &&
	    (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
	/*
	 * It seems that hardware resets its link speed to 100Mbps in
	 * power down mode so switching to 100Mbps in driver is not
	 * needed.
	 */

	/* Request PME if WOL is requested. */
	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
	if ((ifp->if_capenable & IFCAP_WOL) != 0)
		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}

static void
re_clrwol(struct rl_softc *sc)
{
	int			pmc;
	uint8_t			v;

	RL_LOCK_ASSERT(sc);

	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
		return;

	/* Enable config register write. */
	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);

	v = CSR_READ_1(sc, sc->rl_cfg3);
	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
	CSR_WRITE_1(sc, sc->rl_cfg3, v);

	/* Config register write done. */
	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);

	v = CSR_READ_1(sc, sc->rl_cfg5);
	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
	v &= ~RL_CFG5_WOL_LANWAKE;
	CSR_WRITE_1(sc, sc->rl_cfg5, v);
}

static void
re_add_sysctls(struct rl_softc *sc)
{
	struct sysctl_ctx_list	*ctx;
	struct sysctl_oid_list	*children;
	int			error;

	ctx = device_get_sysctl_ctx(sc->rl_dev);
	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
	    "Statistics Information");
	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
		return;

	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
	    CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
	    sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
	/* Pull in device tunables. */
	sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
	error = resource_int_value(device_get_name(sc->rl_dev),
	    device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
	if (error == 0) {
		if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
		    sc->rl_int_rx_mod > RL_TIMER_MAX) {
			device_printf(sc->rl_dev, "int_rx_mod value out of "
			    "range; using default: %d\n",
			    RL_TIMER_DEFAULT);
			sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
		}
	}

}

static int
re_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
	struct rl_softc		*sc;
	struct rl_stats		*stats;
	int			error, i, result;

	result = -1;
	error = sysctl_handle_int(oidp, &result, 0, req);
	if (error || req->newptr == NULL)
		return (error);

	if (result == 1) {
		sc = (struct rl_softc *)arg1;
		RL_LOCK(sc);
		if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
			RL_UNLOCK(sc);
			goto done;
		}
		bus_dmamap_sync(sc->rl_ldata.rl_stag,
		    sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
		CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
		    RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
		    RL_DUMPSTATS_START));
		for (i = RL_TIMEOUT; i > 0; i--) {
			if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
			    RL_DUMPSTATS_START) == 0)
				break;
			DELAY(1000);
		}
		bus_dmamap_sync(sc->rl_ldata.rl_stag,
		    sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
		RL_UNLOCK(sc);
		if (i == 0) {
			device_printf(sc->rl_dev,
			    "DUMP statistics request timedout\n");
			return (ETIMEDOUT);
		}
done:
		stats = sc->rl_ldata.rl_stats;
		printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
		printf("Tx frames : %ju\n",
		    (uintmax_t)le64toh(stats->rl_tx_pkts));
		printf("Rx frames : %ju\n",
		    (uintmax_t)le64toh(stats->rl_rx_pkts));
		printf("Tx errors : %ju\n",
		    (uintmax_t)le64toh(stats->rl_tx_errs));
		printf("Rx errors : %u\n",
		    le32toh(stats->rl_rx_errs));
		printf("Rx missed frames : %u\n",
		    (uint32_t)le16toh(stats->rl_missed_pkts));
		printf("Rx frame alignment errs : %u\n",
		    (uint32_t)le16toh(stats->rl_rx_framealign_errs));
		printf("Tx single collisions : %u\n",
		    le32toh(stats->rl_tx_onecoll));
		printf("Tx multiple collisions : %u\n",
		    le32toh(stats->rl_tx_multicolls));
		printf("Rx unicast frames : %ju\n",
		    (uintmax_t)le64toh(stats->rl_rx_ucasts));
		printf("Rx broadcast frames : %ju\n",
		    (uintmax_t)le64toh(stats->rl_rx_bcasts));
		printf("Rx multicast frames : %u\n",
		    le32toh(stats->rl_rx_mcasts));
		printf("Tx aborts : %u\n",
		    (uint32_t)le16toh(stats->rl_tx_aborts));
		printf("Tx underruns : %u\n",
		    (uint32_t)le16toh(stats->rl_rx_underruns));
	}

	return (error);
}

static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
	int error, value;

	if (arg1 == NULL)
		return (EINVAL);
	value = *(int *)arg1;
	error = sysctl_handle_int(oidp, &value, 0, req);
	if (error || req->newptr == NULL)
		return (error);
	if (value < low || value > high)
		return (EINVAL);
	*(int *)arg1 = value;

	return (0);
}

static int
sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
{

	return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
	    RL_TIMER_MAX));
}

Man Man